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Abstract—Location information is a valuable source of context
that can be utilized by end-user applications and wireless
networks to optimize their performance and usability. When
used, location information should ideally be considered jointly
with the estimate of its accuracy. Most of the current approaches
for estimating the accuracy rely on performing a static perfor-
mance benchmark of a localization solution in a deployment
environment, which fails to capture the dynamic nature of the
environment. We address this problem for fingerprinting-based
localization by grounding the estimation of localization errors
on the low-level features, i.e. the RSS values from APs used
in fingerprinting. We use these low-level features measured at
different locations in an environment, as well as their respective
localization errors, to train different regression models, allowing
us to predict the localization errors at new locations, given
new observed values of the low-level features at these locations.
Our evaluation results show substantially better performance of
the proposed regression-based estimation of localization errors
compared to static performance benchmarks.

I. INTRODUCTION

Location information of mobile devices is a valuable source
of context information in wireless networks. As such, it has a
potential to be used by the end-user applications for providing
context-aware services, as well as by wireless networks for
optimizing their performance. In practice, localization services
feature a certain level of localization errors. These errors
should be accounted for when leveraging location information,
which is currently often not the case, as discussed in [1].

Nevertheless, there are some examples of leveraging prac-
tically obtainable (i.e. erroneous) location information. An
obvious one is in end-user navigation systems (e.g. Google
Maps), where, in addition to the location information of the
user, a confidence interval around the location label is usually
shown. Some examples also exist in the domain of context-
aware communication. In [2], the authors propose a mecha-
nism for location-based selection of mobile relays in wireless
networks, where their selection algorithm takes into account
the erroneous nature of location information. Moreover, in [3]
the authors propose a location-based mechanism for Device-to-
Device (D2D) link establishment. The mechanism, in addition
to the devices’ location information per-se, considers the
quality of the provided information.

The current approaches for estimating localization errors
rely on static performance benchmarks that are performed
upon deploying a localization solution in a given environ-
ment [4]. These benchmarks typically provide some aggregate
statistical metric (e.g. mean value, Cumulative Distribution

Function (CDF)) for characterizing the localization accuracy
for the environment [5]. Such spatially aggregated metrics
do not account for the fact that the localization errors can
vary substantially in different regions of the environment.
For example, it has been shown in [6] that the localization
errors for a number of solutions are considerably larger at
the edges of an environment, in comparison to its center.
This issue can be solved by generating a more rich static
performance benchmark that captures localization errors for
different regions of an environment. Even then, this approach
does not account for dynamic changes in an environment
(e.g. failures of anchor nodes, interference). Moreover, this
approach requires a two-step process of generating location
estimates and then assessing their quality by comparing them
with ground truth information. In case the expected errors of
the estimated location information are too high for a given
use-case, the location information would be deemed useless
and there would be no need for estimating it in the first place.

These issues have been sparsely discussed in the literature.
One example is [7], where the authors hypothesize that the lo-
calization errors can be estimated based on the entropy of low-
level features used for estimating location information, only to
conclude that there is no significant correlation between the
entropy and the localization errors.

To address these issues, there is a need for dynamic es-
timation of localization errors based only on the low-level
features used for generating location information. If such an
estimation would suggest acceptable error for a given use-
case, the localization solution would be requested to generate
and provide a location estimate. By leveraging the generated
location estimate, the estimate of localization errors could then
potentially be improved. Although we believe that a dynamic
estimation of errors is needed for localization solutions in
general, in this work we constrain ourselves to fingerprinting,
one of the most promising and widely utilized localization
solutions for office-like indoor environments. We train differ-
ent off-the-shelf regression algorithms with Received Signal
Strength (RSS) values from different Access Points (APs) used
in fingerprinting, as well as with the observed localization
errors in case location information is estimated using these
RSS values. Using the trained models, we are able to predict
the localization errors at new locations based solely on the
observed RSS values at these locations. We also show consider
the usage of the estimated location information as an input
feature for regression.



By using WiFi as an example technology, we demonstrate
the feasibility of regression-based estimation of localization
errors. Specifically, our results show that regression-based
estimation using only RSS values yields roughly 25% more
accurate estimation of localization errors compared to static
benchmarks characterized by the average localization error.
Moreover, we demonstrate the consistency of our observations
across a variety of environmental conditions and parameteriza-
tions of a representative fingerprinting solution. The observed
improvement increases to roughly 40% in case the estimated
location information is also used as an input for regression.

II. REGRESSION-BASED ESTIMATION OF LOCALIZATION
ERRORS IN FINGERPRINTING

Let us assume that N APs are used for fingerprinting in a
deployment environment. Moreover, let us assume the avail-
ability of a static performance benchmark of a fingerprinting
solution in the environment, where the benchmark provides
a mapping between an RSS observation and the localization
error of the solution for that observation. The localization error
is specified as the Euclidean distance between the true location
where the RSS observation is measured and the estimate of
location information provided by the fingerprinting solution.
Specifically, let us assume the availability of a set of M
RSS observations from all APs, i.e. [RSS1,i, ..., RSSN,i],
i = 1, ...,M , where each set of observations maps to a certain
localization error Errori. In case of a missing RSS value
in an observation, we substitute the missing value with the
noise-floor figure, which increases the amount of information
that can be used and, hence, improves the performance of
regression-based estimation (as discussed in Section IV).

Regression is a predictive modeling technique based on
a relationship between a target variable and independent
variables (i.e. observations). The general idea of regression
is to fit a curve to the data in a way that minimizes the
differences between the distances of the data points and
the curve. We call the vectors of RSS values the primary
observations, while the resulting localization errors are con-
sidered as target variables for the fitting procedure for the
regression algorithms, as depicted in Figure 1(a). Under the
assumption that the estimates of location information are also
available, one can also use this information as an observation
in the fitting procedure of a regression algorithm. We call the
estimated location information the secondary observation. We
consider location estimates in a 2-dimensional (2D) plane and,
therefore, we label them as (Xi, Yi). Extending the problem
to a 3-dimensional (3D) plane is straightforward.

The fitting procedure of a regression algorithm yields op-
timal parameterizations of the algorithm for the provided
training data. The trained regression model can then be used
for estimating localization errors (i.e. the predicted value)
based on either only primary observations or on both primary
and secondary observations, as depicted in Figure 1(b).

In this work, we consider a number of well-known re-
gression algorithms, with details provided in e.g. in [8], [9].
In particular, we consider ordinary least squares (“OLS”),

(a) Model fitting phase

(b) Prediction phase

Figure 1: Regression-based estimation of expected localization errors

ridge (“Ridge”), lasso (“Lasso”), elasticNet (“Elastic”), poly-
nomial (“Poly”), k-nearest neighbors (“kNN”), support vector
(“SVR”), and random forest (“RF”) regression algorithms.

III. EVALUATION METHODOLOGY

We approach the evaluation of the proposed procedure for
the estimation of localization errors in fingerprinting through
simulation and using WiFi as an example technology. The aim
of the evaluation is twofold. First, we aim at demonstrating the
feasibility of regression-based estimation of localization errors
in fingerprinting. We do that by showing that regression-based
estimation outperforms the estimation of localization errors
based on static performance benchmarks. Second, for the two
regression algorithms that perform best in the initial scenario,
we aim at demonstrating their consistently better performance
than the static performance benchmarks across a variety of
fingerprinting-relevant parameterization scenarios.

The vector of RSS values observed from different WiFi APs
in the simulation environment is selected as a fingerprint of
a location, which is a well-known fingerprint creation pro-
cedure [10]. For calculating the similarity between a training
and runtime fingerprint we use the Euclidean distance between
RSS vectors, which is again a well-established and exten-
sively used procedure [10]. In the post-processing procedure
of fingerprinting, we use k-Nearest Neighbors (kNN) with
parameter k set to 4, which has been shown to be optimal
for the environment used in the simulation [10].

In the simulation environment, we specify the locations and
transmit powers of APs. RSS values obtained at each location
are modeled using the COST 231 multi-wall model for indoor
radio propagation [11]. The applicability of the model for
WiFi fingerprinting has been demonstrated [12] and the model
has been extensively used for simulating the behavior of
fingerprinting solutions (e.g. [13], [14]). In the model, the first
attenuation contribution is a one-slope term relating the RSS
to the distance between an AP and the receiver. This term is
characterized by the constant l0, which is the path-loss at 1 m
distance from the AP at the center frequency of 2.45 GHz, and



the path-loss exponent γ. The second attenuation contribution
is a linear wall attenuation term, where the number of walls in
the direct path between the AP and the receiver is counted and
certain attenuation is assumed for each of them. The model
outputs RSS values from the defined APs at a location of
the receiver. A noise is then added to the RSS values, where
the noise is modeled using a Gaussian distribution N (0, σ).
Gaussian noise is frequently used to account for different
variations caused by e.g. interference or quantization [14].

For the simulation environment, the TWIST testbed is
selected [15], [16]. The TWIST testbed environment is an
office building, with its outline as given in Figure 2. In the
parameterization of the simulation model, measurements from
the testbed were used in the least-square fitting procedure
for minimizing the cost function between the measured RSS
values and the modeled ones. The input parameters of the
model are the constant lc related to the least-square fitting
procedure, the path-loss exponent γ, and the wall attenuation
factor lw. Additionally, a zero-mean Gaussian noise with stan-
dard deviation σ has been added to the modeled RSS values.
If not explicitly stated otherwise, the parameters derived and
used in the simulation are as lc = 53.73 dBm, γ = 1.64,
lw = 4.51 dBm, and σ = 1 dBm. The transmit power
of each AP is set to 20 dBm. For most of our results, we
defined a set of 4 APs, with their locations as indicated in
Figure 2 (AP1, AP2, AP3, AP4). The receiver’s true location
has been selected randomly, followed by estimating its location
using the selected fingerprinting solution. The procedure has
been repeated 5000 times for generating the data points for
the evaluation. The metric used for the evaluation is the
“prediction error” [m], defined as the absolute difference
between the calculated and the estimated localization error.
The results have been reported using regular box-plots.

We have divided our data points in a training and eval-
uation sets in the ratio of 80:20. For the hyper-parameter
tuning we used a grid-search procedure on a training set.
Based on cross-validation, this procedure yielded the close-
to-optimal hyper-parameters for each regression algorithm.
Intuitively, the optimal hyper-parameters will differ for other
deployment environments. In addition, the main goal of our
evaluation is to demonstrate the feasibility of regression-based
estimation of localization errors, not necessarily its optimal
performance. For these and for brevity reasons, we omit the
hyper-parameters of the regression algorithms from the paper.

IV. EVALUATION RESULTS

The first box-plot in Figure 3 (and consequent figures)
depicts a reference against which the proposed approach is
compared. This box-plot shows the distribution of prediction
errors in a static performance benchmark, where the prediction
error for a given evaluation point (i.e. a data point from
the evaluation set) is calculated as the absolute difference
between the average localization error in the environment
and the observed localization error for that particular point.
The second box-plot in Figure 3 also depicts the distribution
of prediction errors in a reference scenario. However, in

this case, the prediction error for a given evaluation point
is calculated by first estimating location information at that
point, followed by calculating the localization error for that
estimate. From a static performance benchmark, we then find
the nearest evaluation point to the estimated location and take
its localization error as the estimated localization error for that
location estimate. The prediction error then equals the absolute
difference between the calculated localization error and the
estimated localization error for that evaluation point. As visible
from the figure, the first and second box-plots are comparable,
which indicates that in our static performance benchmark there
is no strong spatial variability of the errors in different regions
of the environment, i.e. the errors are equally distributed in
the simulation environment. Intuitively, if there is a strong
spatial variability of the errors, the prediction error depicted
with the second box-plot would be considerably smaller than
the one depicted with the first box-plot. Due to that, in the
consequent figures we consider only the distribution of the
absolute differences between the average localization error
in the environment and the observed localization error for a
particular evaluation point as a reference.

The subsequent groups of box-plots in Figure 3 depict the
errors achieved by different regression algorithms. The first
box-plot in each group (a group characterized by box-plots
of the same color) depicts errors achieved when only primary
observations (i.e. RSS values) are used for the fitting of a
particular model. The second box-plot in a group depicts the
observed prediction errors in case the secondary observations
(i.e. estimated location information) are also included in the
fitting procedure. This depiction is followed in the subsequent
figures. As visible from the figure, some regression algorithms
achieve substantially better estimation of localization errors
than the reference. In particular, polynomial and kNN algo-
rithms yield respectively 15% and 25% better results than the
reference estimation in case primary observations are used in
the fitting of the model. If also the secondary observations are
used in the model fitting, the improvement is roughly 25% and
40% in comparison to the reference for polynomial and kNN
algorithms, respectively. We believe the reason for the best
performances achieved by the polynomial and kNN algorithms
are related to low dimensionality of independent variables and
relatively large number of data points.

In the second step, we evaluate the consistency of the
estimation of localization errors across various fingerprinting-
relevant parameters. We do that for the two regression al-
gorithms that achieved the best performance in the initial
evaluation scenario - polynomial and kNN.

First, we evaluate the influence of the number and spa-
tial distribution of training points in fingerprinting on the
performance of estimation algorithms. For the environment
depicted in Figure 2, we define 40, 105, and 420 training
points, which translates roughly to a regular 2D grid with
the cell sizes of 3, 2, and 1 m, respectively. In addition to
the regular 2D grid that is usually used in the generation of
training sets in fingerprinting, we also evaluate the influence
of a hexagonal training grid, which is a more optimal spatial



Figure 2: Floor-plan of TWIST Figure 3: Regression algorithms Figure 4: Number of training points

Figure 5: Number of APs Figure 6: Noise levels Figure 7: Number of data points

distribution of training points in fingerprinting [14], as well as
random placement (i.e. no grid), which is the usual spatial
distribution of training points in case the training set is
generated by crowd-sourcing [17]. The results are depicted
in Figure 4 for the regular 2D grid only, since we have not
observed a significant influence of spatial distributions on the
prediction errors, in case the same number of training points
is used across spatial distributions. In other words, although
different spatial distributions of training points influence the
absolute values of localization errors in fingerprinting [14],
these influences are too small to have an observable effect on
the prediction error because the same amount of observations
is used for model fitting for different spatial distributions.
Furthermore, the prediction error slightly improves (i.e. 2-
5%) with the increase in the number of training points, which
is consistent across spatial distributions. This is because the
increase in the number of training points increases the amount
of information used for the model fitting.

Second, we evaluate the influence of the number of APs
used for fingerprinting on the performance of regression algo-
rithms. In order to do that, we introduce additional APs in the
deployment environment in locations as depicted in Figure 2.
We introduce new APs based on Voronoi diagrams, which is
shown to be the optimal approach in placing new APs for
fingerprinting purposes [14]. The limitation of the method is
that it requires a placement of an AP in each Voronoi vertice,
hence it is not always possible to introduce a single new AP,
but a number of them. For this particular environment, we first
introduce 2 new APs (AP5, AP6), followed by introducing
4 more (AP7, AP8, AP9, AP10), as depicted in Figure 2.
The results are depicted in Figure 5. As visible in the figure,
the increase in the number of APs substantially improves the
prediction error for both the reference and regression-based
estimations. For the reference this is because the absolute
localization errors are also reduced with the introduction of
new APs. For the regression-based estimation the reduction of
prediction errors is partially also caused by the increase in the
number of observations used for model fitting.

Third, we evaluate the influence of different noise levels
on the performance of regression-based estimation. To do
that, we use σ = 1dBm in the model fitting phase, and
increase σ as depicted in Figure 6 in the prediction phase. As
visible in the figure, the prediction errors for both reference
and regression-based estimations increase with the increase
in the noise levels. For both methods, this is because the
absolute localization errors increase with the increase of the
noise level. The results also demonstrate consistently better
performance of regression-based estimation than the reference,
across different noise levels. This can serve as an indicator
that the regression-based estimation can perform well under
varying interference conditions in an environment.

Finally, we evaluate the influence of the number of data
points on the performance of the regression algorithms. The
results are given in Figure 7. As we increase the number of
data points from 1000 to 5000, we observe a decrease of the
prediction errors for regression-based estimation. However, the
error distributions are statistically unchanged for the reference
estimation. These results demonstrate the main weakness
of the regression-based estimation. The regression methods
require a relatively large amount of data for accurately esti-
mating localization errors, while the amount of data necessary
for the reference evaluation can be lower.

V. EXPLORATORY DATA ANALYSIS

In this section, we present the results of a set of standard
exploratory data analysis techniques for regression. The indi-
cations we provide can be used in future work for improving
the performance of the regression-based estimation of local-
ization errors in fingerprinting. We present the indications for
the kNN algorithm. Similar indications have been observed
for polynomial regression and these are therefore omitted.

Figure 8 depicts the Quantile-Quantile (QQ) plot of pre-
diction errors. As visible in the figure, the prediction errors
are fairly normally distributed with an exception of outliers
quantiles, which suggests that a linear transformation of any
variables would bring little improvement to the model. The



Figure 8: QQ-plot

same indication is given by a relatively high R2 score of
roughly 94%. However, detection and removal of the outliers
from the data could benefit the performance of the model.

The studentized residuals are plotted against the predicted
values in Figure 9. There is a visible pattern in the depicted
data (i.e. a funnel shape), which is an indicator of both
the non-linearities in the data used for model fitting and
in the heteroskedasticity in the model. There are two well-
established approaches in tackling both the non-linearities and
heteroskedasticity issues. The first would involve transforming
the predicted variable. However, the prediction errors are
currently normally distributed, as indicated in Figure 8 and
as desired. The transformation would also influence the distri-
bution of prediction errors, which would negatively influence
the performance of the model. The second approach, which
we believe is more suitable for this scenario, is to try to tune
the regression algorithms (e.g. changing the distance metric for
the kNN regression) and modify the observation variables (e.g.
rescaling the data, reducing dimensionality). Furthermore, as
a rule of thumb, studentized residuals with values bigger than
2 can be considered as outliers. As visible in Figure 9, there
is a number of outliers in the data. The performance of the
model could potentially benefit if these outliers are removed.

Figure 9: Studentized residuals vs. predicted values

VI. CONCLUSION

In this paper, we demonstrated the feasibility of regression
for estimating localization errors in fingerprinting localization.
In particular, we have shown that polynomial and kNN regres-
sion algorithms yield better performance than the reference
estimation based on static performance benchmarks. These
improvements are consistent across a number of environmental
and fingerprinting-related parameters. Moreover, we have indi-
cated potential directions for improvement of regression-based

estimation of localization errors, which include modifying the
regression algorithms and removing outliers from the data.
Our future work will be oriented toward further exploration
of these insights. We will also investigate different Machine
Learning (ML) methods for estimating localization errors, with
primary focus on deep learning. Furthermore, we will evaluate
the possibility of using ML for estimating localization errors
for other types of solutions. Finally, to strengthen our findings
we will test the developed ML methods on different experi-
mental datasets with potentially non-uniform distributions of
localization errors in different environmental regions.
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