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Terahertz Nanocommunication and
Nanonetworking
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Applications and Requirements

Requirements Software-defined metamaterials Wireless robotic materials body-centric communication On-chip communication
Network size 103 to 10° / 109 10 to 10 103 to 1012 Up to 10°
Node density 100 to 10000 nodes per cm? 1_to 100 nodes per cm? >103 nodes per cm? 10-100 per mm?

—TLafency ms to s / us ms ms to s — 10-100 ns
Throughput =16kbps7+0=1666-kbps +60-kbps=t6-vibps T-50 Mbps 10-100 Gbps
Traffic type downlink / bidirectional bidirectional bidirectional bidirectional
Reliability lose L oredinm high— very high very high

—Energy consumption very low low very low — low
Mobility none / medium (o nign nigh high none
Addressing none to cluster / individual cluster to individual individual individual
Security none / low to medium high very high medium
Additional features localization in-body communication

localization & tracking

* Different application domains = heterogeneous requirements;
e Some common denominators exist = applicability across application domains;

* Summarizing research across domains-> discussing feasibility across domains;
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Applications vs. Projects

* In-body communication

EU MSCA IF
ScalelTN

e Scalable Localization-enabled In-body
Terahertz Nanonetwork (ScalLelTN)

e Software-defined metamaterials

e Hardware Platform for Software-driven
Functional Metasurfaces (VISORSURF)
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* On-chip communication

* Wireless Plasticity for Massive Heterogeneous .)) Wi PLA SH

Computer Architectures (WiPLASH)
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Problems — THz Frequencies
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Problems — Intermittency

Energy

Eon \ / \ E,a.x — Storage capacity

O W Eon — turn-on threshold

Time
Eorr — turn-off threshold
1 2 3 4 5 16/71(8 9 10
1: Node turned off, harvesting energy; 6: Node receiving packet, packet received;
2: Node turned on, harvesting energy; 7: Node turned on, harvesting energy;
3: Node receiving packet, packet received; 8: Node receiving packet, packet not received;
4: Node turned on, harvesting energy; 9: Node turned off, harvesting energy;
5: Energy storage full, not harvesting energy; 10: Node turned on, harvesting energy;
70 — - 70 70
—e— No repetitions
Number = 1; delay = 5.0 [ms];
60 Number = 1; delay = 10.0 [ms]; i 60
Number = 1; delay = 50.0 [ms];
50 Number = 1; delay = 100.0 [ms]; 50 50
03 Number = 1; delay = 200.0 [ms];
;40 Number = 2; delay = 5.0 [ms]; 40 40
£ Number = 2; delay = 10.0 [ms];
a Number = 2; delay = 50.0 [ms];
£30 Number = 2; delay = 100.0 [ms]; 30 30
g Number = 2; delay = 200.0 [ms]; ..
201 ——- Number = 3; delay = 5.0 [ms]; 20 20
v~ Number = 3; delay = 10.0 [ms];
++ Number = 3; delay = 50.0 [ms]; 10
10 Number = 3; delay = 100.0 [ms]; 10 ; e
+ Number = 3; delay = 200.0 [ms]; s Jomaas
NN 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 03 2 3 4 5 6 7 8 9
Electric charge harvested per 20 ms cycle [pC] Electric charge harvested per 20 ms cycle [pC] Electric charge harvested per 20 ms cycle [pC]
(a) Eon=100 pJ, Eopr=40 p]J (b) Eon=300 pJ, Eopr=40 p] (c) Eon=300 pJ, Eorr=100 pJ

Lemic et al. “Assessing the Reliability of Energy Harvesting Terahertz Nanonetworks for
Controlling Software-Defined Metamaterials”, ACM NanoCom, 2019
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Problems — Energy Consumption
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Eidle (TPI/ 7-pulse -n- B)

Ignored 10~ 10~ 10-12 10~ 10-% 10-°
Idle energy per 100 fs [p]]
Baseline (Emax = 800 pJ; teyce = 20 ms;)
Baseline (Emax = 17240 p); teycre = 1.71 ms;)
Proposed method (Emax = 800 pJ; teyce = 20 ms;)
—— Proposed method (Emax = 17240 pJ; teyce = 1.71 ms;)

Lemic, et al. "Idling Energy Modeling and Reduction in Energy Harvesting Terahertz

(JETCAS), 2020
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Nanonetworks", IEEE Journal on Emerging and Selected Topics in Circuits and Systems
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Potential Solution — Localization

* Localization required = how to localize?
* Backscatter-based localization in THz frequencies:
* Benefit — no energy consumption of the nanonodes (they can be asleep);

 Challenges: THz in-body propagation, multiple responses;

}») - nanonode lffa\\ ¥
D
I—5 - body-area node

- original signal

+ =" _ backscattered
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Potential Solution — Localization

* How many BAN nodes, their P, and locations on the body?
* How strong the backscattered signals must be?

—> to achieve certain accuracy. Latency and reliability?

Addressing near the surface:
this nanonode is embedding
its address in the
packscattered signal

 Multiple responses?

Random back-off:
this nanonode is
not backscattering

2 D

Addressing far from the
surface: this nanonode is
embedding only part of
its address in the
backscattered signf'al

Trilateration constraints:
only estimates inside of
a body are acceptable
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Estimating Localization Reliability

High-precision drug-delivery, nanosurgery = location should be correct!

Challenges: training data collection, adaptation to new localization algorithms;

Primary Secondary Target / - Number of neurons in a hidden layer
observations observations  variable c 655)§ 4
] i 1
= -
© -
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Regression e <
RSS;1 *++ RSSy, Xy Y, Error, algorithm =
© —
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RSS;m *** RSSym Xm Yum Errory, RgS
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(@) g gy o ,
) @ W XestFl 0
Primary Secondary Predicted a8 fST R PEL
observations observations value ° i
Regression Z il &
; < \ Yest)
algorithm 2
RSS;¢ »os RSy | X Ye model precict() > Error, § INPUT HIDDEN  Number of hidden layers OuTPUT
n LAYER LAYERS LAYER

Lemic et al. “Regression-Based Estimation of Individual Errors in Fingerprinting Localization”,
IEEE Access, 2019

Lemic et al. “Artificial Neural Network-based Estimation of Individual Localization Errors in
Fingerprinting”, IEEE CCNC, 2020
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Potential Solution — Communication

* Localization required = why not using it in communication?
* Location-aware multi-hop communication:
* Benefit: controlled wake-up of some nanonodes without sync;

* Challenges: Addressing, data amount/type vs. transmission distance;

s
}») - nanonode DL
P =
@)
\—5 - body-area node
- multi-hop communication

« ~" - backscattered communication
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Location-aware Multi-hop Communication

Technology 1: high

range, sad features
L —————— <> Offloading

<> Discovery

_-

(Xmm Ymm Zwr)
/'\

Technology 2: lower
range, better fea

( é))

(Xas3, Yas3s Zas3)

( é))

(Xgs2s Yesar Zssa)
(Xgs1, Yes1s Zas1)

EVALUATION (LoRa & SigFox):

E(SNR) = a+buy +clogo + %E(w(U(,\/Q) +3/2)) — %10%2 e 80% of correct negative decisions;

* 95% of correct positive decisions;

Lemic et al. “Location-based Discovery and Vertical Handover in Heterogeneous Low-Power
Wide-Area Networks”, IEEE Internet of Things Journal, 2019
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Conclusions

* Intermittency - energy harvesting nanonodes;

* Energy consumption modelling & nanonodes;

 Nano-localization = software defined metamaterials, wireless robotic materials;

* Localization quality > software defined metamaterials, wireless robotic materials;

 Location-aware communication = software defined metamaterials, ...
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Applications vs. Projects

* In-body communication

EU MSCA IF
ScalelTN

e Scalable Localization-enabled In-body
Terahertz Nanonetwork (ScalLelTN)

e Software-defined metamaterials

e Hardware Platform for Software-driven
Functional Metasurfaces (VISORSURF)

* On-chip communication

* Wireless Plasticity for Massive Heterogeneous .)) Wi PLASH

Computer Architectures (WiPLASH)




Applications and Requirements

Requirements Software-defined metamaterials Wireless robotic materials body-centric communication On-chip communication
Network size 103 to 10° / 107 10 to 109 103 to 1012 Up to 10°
Node density 100 to 10000 nodes per cm? 1 to 100 nodes per cm? >102 nodes per cm? 10-100 per mm?
Latency ms to s / us ms ms to s 10-100 ns
Throughput 1-10 kbps / 10-1000 kbps 100 kbps-10 Mbps 1-50 Mbps 10-100 Gbps
Traffic type downlink / bidirectional bidirectional bidirectional bidirectional
Reliability low / medium high very high very high
Energy consumption very low low very low low
Mobility none / medium to high high high none
Addressing none to cluster / individual cluster to individual individual individual
Security none / low to medium high very high medium
Additional features localization in-body communication

localization & tracking

* Different application domains = heterogeneous requirements;

e Some common denominators exist = applicability across application domains;

* Summarizing research across domains-> discussing feasibility across domains;




Motivation

Metasurfaces are planar structures composed
of arrays of subwavelength elements (unit
cells) that enable unprecedented control of
electromagnetic waves




Opportunity
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Opportunity
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Opportunity: Applications in 6G

Hybrid precoding design

Simple beamforming at THz _ .
Indoor signal focusing

Non-Orthogonal Multiple Access

Index modulation Energy efficient multi-user MISO

Beyond Max-SNR: Joint Encoding

UAV communications Indoor beaming for VR applications

Weighted sum-rate maximization :
& Wireless Power Transfer

Two-way Communications




Intelligent metasurfaces: the HyperSurface

(a) HyperSurface

ept

tile conc

(switch fabric)




Challenges of SDMs

 Dimensioning the metasurfaces and, thus, their
internal network for an application
(beam steering)
* Understanding the internal communication needs
 Designing the intra-surface network accordingly




Dimensioning of metasurfaces
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Access, 2020.




Understanding communication needs
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Intra-surface network design

* Communication requirements not very
stringent, but resources are limited

* mmMWave: one chip per A E o E 0

* |/O pins for communication among ( @ @ @ G
chips are expensive
* Choice of topology is limited (02)-(12) ()*GP
 |Impacts routing, fault tolerance —(0a)-(11) (5 3,1)°

*  Bandwidth is low i S ey @_.

o)

Input
GW
ACK
GW

D. Kouzapas, et al., "Towards Fault Adaptive
Routing in Metasurface Controller Networks,"

Journal of Systems Architecture, vol. 106, no.
101703, June 2020.




Outstanding questions

e How much will these metasurfaces consume, cost?

* (Can we use energy harvesting to power them and
have perpetual operation?

* Given the I/O constraints of the chips, do we want
wireless communication within the metasurface?

* Which technologies will allow us to do that?




Applications and Requirements

Requirements Software-defined metamaterials Wireless robotic materials body-centric communication On-chip communication
Network size 103 to 10° / 107 10 to 109 103 to 1012 Up to 10°
Node density 100 to 10000 nodes per cm? 1 to 100 nodes per cm? >102 nodes per cm? 10-100 per mm?
Latency ms to s / us ms ms to s 10-100 ns
Throughput 1-10 kbps / 10-1000 kbps 100 kbps-10 Mbps 1-50 Mbps 10-100 Gbps
Traffic type downlink / bidirectional bidirectional bidirectional bidirectional
Reliability low / medium high very high very high
Energy consumption very low low very low low
Mobility none / medium to high high high none
Addressing none to cluster / individual cluster to individual individual individual
Security none / low to medium high very high medium
Additional features localization in-body communication

localization & tracking

* Different application domains = heterogeneous requirements;

e Some common denominators exist = applicability across application domains;

* Summarizing research across domains-> discussing feasibility across domains;




Motivation

* Multicore processors make
computations in parallel and share
data and synchronize via a Network-
on-Chip (NoC)

* The design of the NoC is critical:

* Slows down the processor if it has delays

e Can be responsible of 30-50% of the
power consumption of the processor




Motivation
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Opportunity 0.1-1 THz _
10+ Gbps |
Fix problems with wireless as a L pl/bit
complement of existing networks
* Low latency
* Inherently broadcast
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Challenges

* Characterizing the wireless channel within the chip
* Understanding the potential gains




Channel characterization
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Channel engineering

____________________ X * We can engineer the
/ Characterize the package
Materials | ': channel!
Floorplan ! :
—_—
| Full-wave |h,H: TABLE I
! S I | > SUMMARY OF THE OPTIMIZED PACKAGE DESIGNS
|
: > o Ver : Trms (NS) Bc (GHz) Lyna.t (dB) Larg (dB) n
: I w =10 0.07 14.02 58.62 42.76 3.28
\ ,' w = 0.5 0.15 6.76 4549 36.48 1.74
M - ’ w = 0.59 1.69 28.55 21.88 1.32
Thicknesses | ~F - -----commmmmommno- - Std. 0.52 1.92 75.62 5457 461
T, (silicon)| | Frequency f; Path loss PL
Ty (heat spr.) «IDelay spread DS
1 ] [ |
! 0ptlmlzer W:_W X. Timoneda, S. Abadal, A. Franques, D.
: | Manessis, J. Zhou, J. Torrellas, E. Alarcon, and
:\\ Engineer the channel :: A. Cabellos-Aparicio, “Engineer the Channel

N R and Adapt to it: Enabling Wireless Intra-Chip

____________________ Communication,” IEEE Transactions on
Communications, vol. 68, no. 5, pp. 3247-3258,

2020.




Wireless computer architecture

* Applications run in 2X faster in average
e Computing energy reduced by 40%
(this is a lot in computer architecture) [0

V. Fernando, et
al., “Replica: A
Wireless Manycore for

Communication- .
; 2.0
Intensive and is
Approximate Data, fue
in ASPLOS ’19. Fro
0.6
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Outstanding questions

* Which protocols will allow us to achieve the
expected gains?

* What if we reach THz frequencies?

e What if we can do beaming for on-chip
communication?

* Which technologies allow us to do that?




Conclusions (Il)

* Software-defined metamaterials and on-chip networks are two area-constrained

environments with high impact where wireless THz nanonetworks could play a
disruptive role

 We studied the context and potential gains, now it is time to think about the
protocols that best fit these scenarios (existing or new?)

* No application will be possible if nano-THz hardware does not live up to its
promise. Which technology will provide that? CMOS? SiGe BiCMOS? Graphene?
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