Terahertz Nanocommunication and Networking: Emerging Applications, Approaches, and Open Challenges

Filip Lemic

Internet Technology and Data Science Lab, University of Antwerp - imec, Belgium NaNoNetworking Center in Catalunya, Polytechnic University of Catalonia, Spain

Sergi Abadal NaNoNetworking Center in Catalunya, Polytechnic University of Catalonia, Spain

Terahertz Nanocommunication and Nanonetworking

Software-defined metamaterials

Wireless robotic materials

On-chip communication

In-body communication

Lemic et al. "Survey on Terahertz Nanocommunication and Networking: A Top-Down Perspective", https://arxiv.org/abs/1909.05703, 2020

Applications and Requirements

Requirements	Software-defined metamaterials	Wireless robotic materials	body-centric communication	On-chip communication
Network size	10^3 to 10^6 / 10^9	10 to 10 ⁶	10^3 to 10^{12}	Up to 10^3
Node density	<u>100 to 10000 nodes per cm²</u>	1 to 100 nodes per cm ²	$>10^3$ nodes per cm ³	$10-100 \text{ per mm}^2$
Latency	ms to s / μ s	ms	ms to s	10-100 ns
Throughput	1-10 kbps / 10-1000 kbps	100 kbps-10 Mbps	1-50 Mbps	10-100 Gbps
Traffic type	downlink / bidirectional	bidirectional	bidirectional	bidirectional
Reliability	low / medium	high	very high	very high
Energy consumption	very low	low	very low	low
Mobility	none / medium to high	high	high	none
Addressing	none to cluster / individual	cluster to individual	individual	individual
Security	none / low to medium	high	very high	medium
Additional features		localization	in-body communication	
			localization & tracking	

- Different application domains → heterogeneous requirements;
- Some common denominators exist → applicability across application domains;
- Summarizing research across domains → discussing feasibility across domains;

Applications vs. Projects

- In-body communication
 - Scalable Localization-enabled In-body Terahertz Nanonetwork (ScaLeITN)
- Software-defined metamaterials
 - Hardware Platform for Software-driven Functional Metasurfaces (VISORSURF)
- On-chip communication
 - Wireless Plasticity for Massive Heterogeneous Computer Architectures (WiPLASH)

Problems – THz Frequencies

GÍDLab

INTERNET & DATA LAB

Problems – Intermittency

Lemic et al. "Assessing the Reliability of Energy Harvesting Terahertz Nanonetworks for Controlling Software-Defined Metamaterials", ACM NanoCom, 2019

Problems – Energy Consumption

Glab

INTERNET & DATA LAB

Lemic, *et al.* "*Idling Energy Modeling and Reduction in Energy Harvesting Terahertz Nanonetworks*", IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), 2020

unec

Potential Solution – Localization

- Localization required \rightarrow how to localize?
- Backscatter-based localization in THz frequencies:
 - Benefit no energy consumption of the nanonodes (they can be asleep);
 - Challenges: THz in-body propagation, multiple responses;

Potential Solution – Localization

- How many BAN nodes, their P_{Tx} and locations on the body?
- How strong the backscattered signals must be?

G 「DLab

INTERNET & DATA LAB

 \rightarrow to achieve certain accuracy. Latency and reliability?

Estimating Localization Reliability

- High-precision drug-delivery, nanosurgery \rightarrow location should be correct!
- Challenges: training data collection, adaptation to new localization algorithms;

Lemic *et al.* "*Regression-Based Estimation of Individual Errors in Fingerprinting Localization*", IEEE Access, 2019

Lemic et al. "Artificial Neural Network-based Estimation of Individual Localization Errors in Fingerprinting", IEEE CCNC, 2020

Potential Solution – Communication

- Localization required \rightarrow why not using it in communication?
- Location-aware multi-hop communication:
 - Benefit: controlled wake-up of some nanonodes without sync;
 - Challenges: Addressing, data amount/type vs. transmission distance;

Location-aware Multi-hop Communication

$$\mathbb{E}(\text{SNR}) = a + b\mu_Z + c\log\sigma + \frac{c}{2}\mathbb{E}(\psi(U(\lambda/2) + 3/2)) - \frac{c}{2}\log 2$$

EVALUATION (LoRa & SigFox):

- 80% of correct negative decisions;
- 95% of correct positive decisions;

Lemic *et al.* "Location-based Discovery and Vertical Handover in Heterogeneous Low-Power Wide-Area Networks", IEEE Internet of Things Journal, 2019

Conclusions

- Intermittency → energy harvesting nanonodes;
- Energy consumption modelling → nanonodes;
- Nano-localization → software defined metamaterials, wireless robotic materials;
- Localization quality → software defined metamaterials, wireless robotic materials;
- Location-aware communication → software defined metamaterials, ...

Applications vs. Projects

- In-body communication
 - Scalable Localization-enabled In-body Terahertz Nanonetwork (ScaLeITN)
- Software-defined metamaterials
 - Hardware Platform for Software-driven Functional Metasurfaces (VISORSURF)
- On-chip communication
 - Wireless Plasticity for Massive Heterogeneous Computer Architectures (WiPLASH)

Applications and Requirements

Requirements	Software-defined metamaterials	Wireless robotic materials	body-centric communication	On-chip communication
Network size	10^3 to 10^6 / 10^9	10 to 10 ⁶	10^3 to 10^{12}	Up to 10^3
Node density	100 to 10000 nodes per cm^2	1 to 100 nodes per cm^2	$>10^3$ nodes per cm ³	$10-100 \text{ per mm}^2$
Latency	ms to s / μ s	ms	ms to s	10-100 ns
Throughput	1-10 kbps / 10-1000 kbps	100 kbps-10 Mbps	1-50 Mbps	10-100 Gbps
Traffic type	downlink / bidirectional	bidirectional	bidirectional	bidirectional
Reliability	low / medium	high	very high	very high
Energy consumption	very low	low	very low	low
Mobility	none / medium to high	high	high	none
Addressing	none to cluster / individual	cluster to individual	individual	individual
Security	none / low to medium	high	very high	medium
Additional features		localization	in-body communication	
			localization & tracking	

- Different application domains → heterogeneous requirements;
- Some common denominators exist → applicability across application domains;
- Summarizing research across domains → discussing feasibility across domains;

Motivation

Metasurfaces are planar structures composed of arrays of subwavelength elements (unit cells) that enable unprecedented control of electromagnetic waves

Opportunity

Opportunity

Opportunity: Applications in 6G

Hybrid precoding design

Simple beamforming at THz

Indoor signal focusing

Non-Orthogonal Multiple Access

Index modulation Energy efficient multi-user MISO

Beyond Max-SNR: Joint Encoding

UAV communications Indoor beaming for VR applications

Weighted sum-rate maximization

Wireless Power Transfer

Two-way Communications

Intelligent metasurfaces: the HyperSurface

Challenges of SDMs

- Dimensioning the metasurfaces and, thus, their internal network for an application (beam steering)
- Understanding the internal communication needs
- Designing the intra-surface network accordingly

Dimensioning of metasurfaces

H. Taghvaee, S. Abadal, et al, "Scalability Analysis of Programmable Metasurfaces for Beam Steering," IEEE Access, 2020.

Understanding communication needs

UPC

Intra-surface network design

- Communication requirements not very stringent, but resources are limited
- mmWave: one chip per λ
- I/O pins for communication among chips are expensive
 - Choice of topology is limited
 - Impacts routing, fault tolerance
 - Bandwidth is low

D. Kouzapas, et al., "Towards Fault Adaptive Routing in Metasurface Controller Networks," Journal of Systems Architecture, vol. 106, no. 101703, June 2020.

Outstanding questions

- How much will these metasurfaces consume, cost?
- Can we use energy harvesting to power them and have perpetual operation?
- Given the I/O constraints of the chips, do we want wireless communication within the metasurface?
- Which technologies will allow us to do that?

Applications and Requirements

Requirements	Software-defined metamaterials	Wireless robotic materials	body-centric communication	On-chip communication
Network size	10^3 to 10^6 / 10^9	10 to 10^{6}	10^3 to 10^{12}	Up to 10 ³
Node density	100 to 10000 nodes per cm^2	1 to 100 nodes per cm^2	$>10^3$ nodes per cm ³	$10-100 \text{ per mm}^2$
Latency	ms to s / μ s	ms	ms to s	10-100 ns
Throughput	1-10 kbps / 10-1000 kbps	100 kbps-10 Mbps	1-50 Mbps	10-100 Gbps
Traffic type	downlink / bidirectional	bidirectional	bidirectional	bidirectional
Reliability	low / medium	high	very high	very high
Energy consumption	very low	low	very low	low
Mobility	none / medium to high	high	high	none
Addressing	none to cluster / individual	cluster to individual	individual	individual
Security	none / low to medium	high	very high	medium
Additional features		localization	in-body communication	
			localization & tracking	

- Different application domains → heterogeneous requirements;
- Some common denominators exist → applicability across application domains;
- Summarizing research across domains → discussing feasibility across domains;

Motivation

- Multicore processors make computations in parallel and share data and synchronize via a Networkon-Chip (NoC)
- The design of the NoC is critical:
 - Slows down the processor if it has delays
 - Can be responsible of 30-50% of the power consumption of the processor

Opportunity

Fix problems with wireless as a complement of existing networks

• Low latency

N3Cat

- Inherently broadcast
- Flexible

UPC

Challenges

- Characterizing the wireless channel within the chip
- Understanding the potential gains

Channel characterization

0.8

/Spread [ns]

Delay

Xa Max

0.2 0.4

0.6

0.3

mm

0.5

nm

mm

0.7

15 20 25

(a) Scaling with silicon thickness T_s ($T_h = 0.2 \text{ mm}$)

- **Field distribution**
- Path loss

5

90 10 10 10

Bath loss [30

Delay Spread [ns]

.6

.2

Delay spread ${\color{black}\bullet}$

10

Distance [mm]

(b) Scaling with heat spreader thickness T_h ($T_s = 0.7$ mm)

Channel engineering

Wireless computer architecture

- Applications run in 2X faster in average
- Computing energy reduced by 40%
- (this is a lot in computer architecture)

V. Fernando. et

al., "Replica: A

Communication-

Approximate Data,"

Intensive and

in ASPLOS '19.

Wireless Manycore for

Outstanding questions

- Which protocols will allow us to achieve the expected gains?
- What if we reach THz frequencies?
- What if we can do beaming for on-chip communication?
- Which technologies allow us to do that?

Conclusions (II)

- Software-defined metamaterials and on-chip networks are two area-constrained environments with high impact where wireless THz nanonetworks could play a disruptive role
- We studied the context and potential gains, now it is time to think about the protocols that best fit these scenarios (existing or new?)
- No application will be possible if nano-THz hardware does not live up to its promise. Which technology will provide that? CMOS? SiGe BiCMOS? Graphene?

Acknowledgments

https://sites.google.com/ view/scaleitn <u>www.visorsurf.eu</u> Twitter Facebook <u>www.wiplash.eu</u> Twitter LinkedIn

European Commission

Terahertz Nanocommunication and Networking: Emerging Applications, Approaches, and Open Challenges

Sergi Abadal

NaNoNetworking Center in Catalunya, Polytechnic University of Catalonia, Spain

Filip Lemic

Internet Technology and Data Science Lab, University of Antwerp - imec, Belgium NaNoNetworking Center in Catalunya, Polytechnic University of Catalonia, Spain

