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Abstract—Multi-Radio Access Technology (RAT) IoT devices
are able to combine the high coverage of Low-Power Wide-
Area (LPWA) technologies with the higher data-rates of shorter
range technologies such as IEEE 802.11ah. In such scenarios, a
discovery procedure has to be used for detecting the availability of
a IEEE 802.11ah network. Currently, these procedures consume
substantial energy, as the discovery has to be periodically
performed, even if the IEEE 802.11ah technology is not available,
which is undesirable for low-power Internet of Things (IoT)
devices. We propose using the device’s location information for
making more optimized discovery and handover decisions. We
demonstrate the feasibility of this approach in performing energy
efficient handovers between various LPWA technologies and
IEEE 802.11ah based on estimated location. We carry out our
evaluation in terms of the energy consumption of the procedure
and the duration of the device’s association to IEEE 802.11ah.
We show that the location-based procedure substantially reduces
the energy consumption of the mobile device compared to the
traditional discovery based on periodical listening for beacons.

I. INTRODUCTION

Low-Power Wide-Area (LPWA) network technologies uti-

lize sub-GHz frequencies for connecting Internet of Things

(IoT) devices, providing long range and low-power connectiv-

ity. Some LPWA technologies offer connectivity over a range

of tens of kilometers with throughputs of at most kilobits

per second (e.g., NB-IoT, LoRa, Sigfox). In contrast, shorter

range sub-GHz technologies, such as IEEE 802.11ah [1],

provide megabits per second data-rates at shorter ranges of

around 1 kilometer [2]. As such, IEEE 802.11ah is suitable

for bandwidth-consuming tasks, such as firmware updates or

data offloading.

Many IoT use-cases would benefit from almost full coverage

of LPWA networks combined with higher throughput and

energy efficiency of IEEE 802.11ah. To enable that, several

multi-Radio Access Technology (RAT) devices have been pro-

posed, such as the one presented in [3]. Since IEEE 802.11ah

is not expected to be continuously available due to its relatively

short range, these multi-RAT devices will have to utilize a

discovery procedure for deciding if a vertical handover from

LPWA to IEEE 802.11ah should be performed. Currently,

these discovery procedures rely on the device listening for

beacons transmitted by the nearby IEEE 802.11ah Access

Point (AP). When a beacon is received, the device initiates the

connection to IEEE 802.11ah. This procedure can consume

high amounts of energy due to periodic idle listening when

IEEE 802.11ah is not available, which is undesirable for IoT

devices targeting low-power performance.

To mitigate these drawbacks, in our previous work we

presented a mechanism that, based on the location information

of the device, performs more efficient discovery and handover

procedures between sub-GHz LPWA technologies [4]. The

mechanism reduces the need for continuous idle listening as

the device is able to listen for beacons only if there is a high

probability that a given technology will be available.

As many use-cases require localization capability of the

mobile IoT devices (e.g., track-and-trace of equipment in

construction sites [5], [3]), these devices usually have means of

localizing themselves. The Global Positioning System (GPS)

is a widely used localization approach, providing high local-

ization accuracy, but consuming relatively high amounts of

energy in its operation. This is not always feasible for IoT

devices targeting low-power performance. Hence, a number of

alternative approaches have been suggested in the literature.

Very promising candidates for low-power localization are sub-

GHz technologies themselves [6], [7], [8], [9], [10]. However,

their localization accuracy is at least one order of magnitude

lower than the one provided by the GPS. Given that the

localization errors in such scenarios can be substantial, our

mechanism explicitly accounts for such errors, in addition to

the location estimates per-se. In [4], the proposed mechanism

has been validated in terms of percentage of correct decisions

(i.e., when the mechanism correctly decided to connect to a

given technology) and its feasibility has been demonstrated for

Sigfox and LoRa.

In this work, we adapt the proposed mechanism to sup-

port discovery and vertical handover to IEEE 802.11ah. We

evaluate the mechanism in terms of energy consumption and

association time of the device to IEEE 802.11ah, which

provides more accurate network performance insights than the

plain number of correct decisions. Moreover, we evaluate the

effects of different types of localization services and show

the feasibility of the mechanism for IEEE 802.11ah even in

case the location estimates feature relatively large localization

errors of up to hundreds of meters. Finally, we demonstrate

that the threshold that is used as an internal parameter in the

mechanism can successfully serve its purpose of tuning the

mechanism’s performance to the use-case requirements.

II. LOCATION-AWARE HANDOVER ALGORITHM

An overview of the considered scenario is given in Figure 1.

We assume a moving multi-RAT device implementing at least

one LPWA technology, in addition to IEEE 802.11ah. If the
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Fig. 1. The considered scenario where a device implementing multiple sub-
GHz technologies can adapt the choice of technology based on its location.

Algorithm 1: Handover based on periodic beacon listening

1 for TB beacon intervals elapsed do

2 Wake up to receive beacon for one beacon interval;

3 if Beacon Received then

4 Start Association Procedure;

5 else

6 Sleep;

IEEE 802.11ah technology is available, the device should

perform a vertical handover from the LPWA to IEEE 802.11ah.

In the following, we present two mechanisms that can be used

for deciding if a vertical handover to IEEE 802.11ah should be

initiated. The first one relies on periodic listening for beacons,

while the other accounts for the location of the device in order

to take the decision on when to start listening for beacons.

A. Periodic Beacon Listening

The first procedure is described by Algorithm 1. While

the device is not associated to IEEE 802.11ah, it periodically

wakes up to listen for beacons. When a beacon is received, the

device starts the association to IEEE 802.11ah. If the device

manages to associate to IEEE 802.11ah it remains associated

until, after a certain amount of beacons missed, the connection

is dropped [1]. Once disconnected from IEEE 802.11ah, the

device starts the discovery procedure again.

On the one hand, by waking up periodically, this mechanism

allows the device to associate to IEEE 802.11ah whenever it is

available. On the other hand, due to continuous idle listening

even if IEEE 802.11ah is not available, the device consumes

substantial amounts of energy. In order to reduce the energy

consumption, the device can wake up less frequently (i.e.,

once every TB beacon intervals, where TB is a configurable

parameter). However, this leads to higher delays in association.

B. Location-based Handover

In the location-based mechanism, the device uses its lo-

cation estimates in order to decide if the listening for

IEEE 802.11ah beacons should be initiated. The location

estimates are provided by a localization service, which, as

mentioned, features a certain level of localization error. This

error ranges from tens (i.e., GPS) to hundreds (i.e., LPWA) of

meters, which we assume to be characterized by a zero-mean

Gaussian distribution. Moreover, the mechanism assumes the

location of the IEEE 802.11ah AP to be perfectly accurate and

known by the moving device, which is a realistic assumption,

given the static position of the AP [11], [12].

The mechanism proposed in our previous work [4] accounts

for this erroneous location information for calculating the

estimated Signal-to-Noise Ratio (SNR) between the mobile

device and the AP. Here we modify the mechanism to use

IEEE 802.11ah as target technology. Specifically, we integrate

into the mechanism the propagation loss model from [13],

where the signal attenuation L(d) in dB is given by:

L(d) = lc + 10γ log(d). (1)

lc is a constant value related to the model fitting procedure.

The attenuation L(d) is dependent on the distance d from the

transmitting or receiving device (i.e., AP) and on the path-loss

coefficient γ of the environment.

As mentioned before, we assume that the 2D coordinate of

the location information of the device provided by GPS or

the localization service of the LPWA technology features a

certain level of localization error. This error is modeled by a

zero-mean Gaussian distribution characterized by its standard

deviation σ. This type of modelling of localization errors

has been established in the literature [14], [15], [16]. The

true location information of the device is then a Gaussian

distributed random variable pair (XD, YD) given as follows,

with (µxD
, µyD

) being the estimated location of the device:

XD ∼ N (µxD
, σ2) , YD ∼ N (µyD

, σ2) . (2)

As we assume the location of the AP to be known as

(xAP , yAP ), the estimated Euclidean distance between the AP

and the device can be derived as:

λ =
√

(µxD
− xAP )2 + (µyD

− yAP )2 (3)

According to [11], the estimated SNR calculated between

the device and the AP can be then calculated as:

SNR = ln
Ptx

Nkσγ
−

γ

2
ln(

λ2

σ2
g(

λ2

σ2
)), (4)

with Ptx being the transmit power of the AP in dBm

and N being the noise floor. Moreover the parameter k for

IEEE 802.11ah equals 0.5 and γ equals 3.76, while the

function g(.) is defined as follows:

g(ξ) = exp(

∫

∞

ξ/2

e−t

t
dt). (5)

Algorithm 2 shows how the device decides whether to start

listening for beacons. The required SNR is the value needed

by IEEE 802.11ah in order to be able to receive and decode

signals (i.e., 0 dB). If the estimated SNR is over the required

SNR increased by a certain Threshold, the device will start

listening for beacons; otherwise the IEEE 802.11ah radio will



Algorithm 2: Location-based Handover

1 for Beacon interval elapsed do

2 Calculate estimated SNR;

3 if Estimated SNR ≥ required SNR + Threshold then

4 Wake up to receive beacon for one beacon

interval;

5 if Beacon Received then

6 Start Association Procedure;

7 else

8 Sleep;

9 end

10 else

11 Sleep;

12 end

13 end

remain in a power saving mode until a new location estimate is

generated. Threshold is a parameter in the mechanism that can

be configured during its deployment and based on a particular

use-case. Specifically, if the focus is on energy efficiency, then

the mechanism should be ”conservative” in making handover

decisions (i.e., the value of the threshold should be higher

than 0 dB). If the focus is more on faster association, the

mechanism should be more ”liberal” (i.e., the threshold should

be lower than 0 dB). By utilizing the Threshold parameter,

the resulting energy consumption and association time to

IEEE 802.11ah of this procedure can be tuned based in the

choice of the policy of the mechanism (i.e., ”conservative” or

”liberal”).

III. RESULTS AND DISCUSSION

A. Simulation Set Up and Methodology

In our evaluation, we simulate a device repeatedly moving

away from the IEEE 802.11ah AP and then moving back

towards it. We do that by utilizing the ns-3 event-based

simulation framework for IEEE 802.11ah [17]. The goal of

the evaluation is to compare the energy consumption and

association time to IEEE 802.11ah of a moving device, using

the two presented handover mechanisms (i.e., periodic beacon

listening and location-based).

Going away from the coverage area and coming back to

the starting point is defined as a ”cycle” and in each of our

experiments we execute 1000 cycles to achieve statistically

meaningful performance metrics. We set the furthest distance

of the device to the AP to 1000 meters, as the device loses the

connection from IEEE 802.11ah at around 600 meters from

the AP (using the modulation and coding scheme MCS10).

As a baseline for comparison, we use the periodic beacon

listening algorithm. The device wakes up for every 1 (BL

1), 5 (BL 5), or 10 (BL 10) beacon intervals, to listen

for an incoming beacon during one beacon interval period.

The association time is calculated as the average association

time during a single cycle. As we assume the device has a

speed of 1 m/s (in line with various track-and-trace scenarios,

TABLE I
DEFAULT POWER CONSUMPTION, PHY AND MAC LAYER PARAMETERS

USED IN THE EVALUATION

Parameter Value

Transmission power 0 dBm
Transmission gain 0 dB
Reception gain 3 dB
Noise Floor 3 dB
Propagation loss model Outdoor, macro [13]
Error Rate Model YansErrorRate
Wi-Fi mode MCS10, 1 MHz
Minimum Distance from AP 1 m
Maximal Distance from AP 1000 m
Beacon Interval 2.048 s
Speed 1 m/s

Power consumption (from [18]) Value

Receiving (Prx) 92 mW
Idle (Pidle) 20 mW
Sleeping (Psleep) 99 nW

e.g., [9]), the maximum time the device can be associated to

IEEE 802.11ah is roughly 1200 s per cycle.

As mentioned, the Threshold parameter is envisioned to be

used in the location-based mechanism for tuning its perfor-

mance to the use-case requirements (i.e., energy consumption

minimization vs. associating time maximization). To evaluate

if it serves its purpose, we vary the Threshold values from

-2 (to have a more ”liberal” wake-up policy) to 2 dB (a

more ”conservative” policy). The discovery decision is made

based on the current location of the device, that is generated

every beacon interval. If the discovery decision made by the

mechanism is positive, then the device wakes up and starts

listening for beacons, otherwise it remains asleep. To isolate

the effects of the handover mechanism and characterize its per-

formance, we only consider the energy consumed by listening

for beacons and not that of data transmission and localization.

We calculate the energy consumption by multiplying the time

spent in each radio state (i.e., Rx, Idle, Sleep) with the power

consumption in that state. The power consumption values are

obtained from the Atmel AT86RF215 radio [18] and given in

Table I.

To account for background noise, as well as noise caused by

surrounding devices communicating in the same frequencies,

we add a certain amount of white background noise to the

calculated SNR on a given communication link, drawn from

a zero-mean Gaussian distribution with a standard deviation

between 0 and 4 dB [19], [20]. Moreover, we evaluate the

mechanism for different localization inaccuracies typical for

the GPS (10 m), Sigfox/LoRa fingerprinting (400 m) [21],

[22], and NB-IoT time-difference of arrival (100 m) [9], by

adding a value drawn from a zero-mean Gaussian distribution

with standard deviation based on the localization inaccuracy

to the current location of the device. In order to demonstrate

the effects of localization errors on the performance of the

mechanism, we also perform simulations assuming a non

erroneous location. A comprehensive list of the simulation

parameters is given in Table I.



B. Influence of SNR Threshold Parameter

In Figures 2 and 3 we show respectively the results for

the association time and for the energy consumption (y-axis)

for varying values of the Threshold parameter (x-axis). We

do that for different location inaccuracies (i.e., GPS, NB-IoT,

and Sigfox/LoRa), as well as for perfectly accurate location of

the mobile device, while considering no background noise in

the communication channel. We show three different baselines

based on periodic beacon listening with different periods. As

visible in the figure, as the device wakes up less frequently,

its average association time is reduced, i.e., higher delays in

association are incurred. Moreover, it can be derived from the

figures that BL 5 is the best performing baseline algorithm, as

it achieves a total association time very similar to BL 1, while

simultaneously consuming 5 times less energy.

Figure 2 indicates that setting the Threshold parameter to

values lower than 0 dB leads to longer association times

of the location-based mechanism compared to the baseline.

This is observed for all location inaccuracies and irrespective

of the baseline. However, as shown in Figure 3, the energy

consumption of the location-based mechanism is higher than

the one observed for the BL 5 and BL 10 baselines for the

liberal Threshold values lower than 0 dB. In conclusion, the

Threshold parameter used for tuning the performance of the

location-based mechanism can indeed serve its purpose of

trading-off the association time and energy consumption.

However, for a relatively high localization error of 400 me-

ters (e.g., when using localization based on Sigfox and LoRa

fingerprinting) and for a Threshold higher than 0 dB, the

location-based mechanism becomes too conservative and does

not wake up the device to listen for beacons anymore. There-

fore, the device does not associate to IEEE 802.11ah and

its energy consumption equals zero. This is not the case for

the Threshold higher than 0 dB and a GPS and NB-IoT-

like location inaccuracies. Figure 3 shows a decrease in the

energy consumption of the device compared to the baselines,

while having comparable association time. For NB-IoT-like

accuracy, the optimal Threshold is 1 dB and the energy

consumption of the location-based mechanism is 100 times

lower and the association time is slightly higher than the best

performing baseline. A similar observation can be made for the

Threshold of 0 dB and GPS-like accuracy, where the energy

consumption of the location-based mechanism is more than

2 times lower than the best performing baseline (i.e., BL 5),

however in this case the association time has a 2% decrease.

For a large localization error of 400 meters, the location-based

mechanism is not able to significantly outperform the baseline

BL 5, as both energy consumption and association time are

similar for the optimal SNR Threshold of 0 dB. When uti-

lizing perfectly accurate location information, the mechanism

manages to outperform the baselines by not listening to un-

necessary beacons, thus having the lowest energy consumption

and the best association time. However, we would like to

note that in these experiments, the IEEE 802.11ah network

is available approximately 60% of the time. If it would be
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Fig. 3. Energy consumed while not associated, considering different location
inaccuracies, without background noise.

available a smaller percentage of time, the energy consumed

by the baseline algorithm would increase, as it would more

frequently perform unnecessary beacon listening. As a result,

our location-based algorithm would more easily outperform

the baseline in such scenarios, even with high localization

errors of 400 meters or more.

Figures 4 and 5 depict the same insight as the previous ones,

however taking into account a realistic amount of white noise

with the standard deviation of 2 dB. The results are in this

case very similar to the ones from the previous experiment,

with the only difference being that the association time-related

performance of the location-based mechanism degrades faster

than without noise for the Threshold higher than 0 dB. Even

so, they show the same improvements to the baseline as before.

The above-discussed results indicate that the optimal value

of the Threshold parameter depends on the expected localiza-

tion errors. If the expected localization errors are relatively

high (e.g., 400 meters), the Threshold should be set in a

liberal way, otherwise the mechanism will never yield positive

discovery decisions. In contrast, when the localization error is

100 meters or less, the optimal value is between 0 and 1 dB.

C. Influence of Localization Error

Figures 6 and 7 show respectively the results of the average

association time and the energy consumed for beacon listening

(y-axis) considering different localization errors (x-axis) and
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Fig. 5. Energy consumed while not associated, considering different location
inaccuracies, with an average amount of noise of 2 dB.

different thresholds between -2 dB and 2 dB. These graphs

show how GPS-like localization accuracy yields better energy

consumption and association time when using a more liberal

Threshold (i.e., lower than 0 dB). For localization errors of

200 meters and above, the trend is different. A conservative

Threshold is more optimal in terms of energy consumption for

smaller errors close to 200 meters, and a more liberal Thresh-

old becomes better as the error increases further. This is due

to the previously mentioned fact that conservative Threshold

values no longer allow association to IEEE 802.11ah when

the localization error becomes very high. Specifically, the

Threshold of 2 dB is optimal for 200 meters error, 1.5 dB is

optimal up to 400 meters, 0.5 dB is optimal up to 500 meters

and -0.5 dB is optimal while having localization error over

500 meters. These results indicate that the location-based

mechanism can achieve good performance even in case of

very large localization errors. Hence, the mechanism can be

operational even on highly energy-constrained IoT devices that

cannot support the operation of the energy-hungry GPS.

D. Influence of White Background Noise

In Figures 8 and 9 we show respectively the results for the

association time and for the energy consumption (y-axis), for

different values of Threshold (x-axis) and white background
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Fig. 6. Duration of association to IEEE 802.11ah in seconds with different
thresholds and localization inaccuracies, with an average amount of noise of
2 dB.
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Fig. 7. Energy consumed while not associated with different thresholds and
localization inaccuracies, with an average amount of noise of 2 dB.

noise (between 0 dB and 4 dB), with a localization inaccuracy

of 10 m.

By including white noise in the communication channel,

we emulate an environment densely populated with devices

communicating in the sub-GHz frequency band. Figure 9

shows that when the Threshold is higher than -1 dB, the energy

consumed while the device is not connected to IEEE 802.11ah

is nearly 0 J, meaning that the mechanism always correctly

decides to connect to IEEE 802.11ah. An interesting obser-

vation is that the increase in the background noise improves

the association time and decreases the energy consumed while

not being associated to IEEE 802.11ah. This is the effect

of the noise being modeled as a Gaussian random variable.

For that reason, the coverage area of the IEEE 802.11ah

AP is effectively increased with an increase in the standard

deviation of the noise value due to possible additive noise.

This causes an increase in the association time and consequent

decrease in the energy consumed while listening for beacons.

The above-results show the capacity of the location-based

mechanism to coexist with other communicating devices in

densely populated environments.
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IV. CONCLUSION

We evaluated the association time and energy consumption

of a location-based mechanism for initiating vertical handover

from LPWA (e.g., NB-IoT, Sigfox, LoRa) to IEEE 802.11ah

networks. Moreover, we compared the achieved results with a

baseline approach, where the device wakes up periodically to

listen for IEEE 802.11ah beacons. Our results show that the

location-based mechanism substantially improves the energy

consumption of the device by 100 times, while having similar

association time compared to the best baseline approach.

Future work will be focused on studying the behavior of

mobile devices at the edge of the IEEE 802.11ah coverage

area toward reducing possible oscillations and optimising the

edge perfomance. We will consider environment-specific (e.g.,

non-Gaussian) localization errors and signal attenuation in our

evaluation framework. Finally, we will aim at validating the

results experimentally in different testbed infrastructures.
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