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Abstract—Location information is among the main enablers
of context-aware applications and wireless networks. Practical
localization services are able to generate location estimates
that are generally erroneous. To maximize its usability and
benefits, each location estimate should be leveraged jointly with
the corresponding estimate of its localization error. Hence, we
propose an Artificial Neural Network (ANN)-based method for
the estimation of individual localization errors. We do that for
fingerprinting, one of the most prominent localization solutions
for GPS-constrained environments. First, we provide insights
on how to optimally hyperparameterize the proposed method.
We do that by exploring its hyperparameter’ space in order
to find its close-to-optimal hyperparameterization for different
environments and fingerprinting technologies. We believe the
provided insights can serve to reduce the overhead of deploying
the method in new environments. Second, we demonstrate that
the method, when hyperparameterized according to the provided
insights, substantially outperforms the current state-of-the-art.
The improvement is more than 25% in the best case scenario.

I. INTRODUCTION

Location information is a valuable source of contextual
information that can be utilized by both end-users’ applica-
tions (e.g., tracking of people through their smartphones or
wearables for assisted living, wellness, social networking, and
other applications) [1] and for optimizing the performance of
wireless networks (e.g., location-based relaying, routing, or
link establishment) [2]. Localization solutions are not able to
provide perfectly accurate location estimates, but these esti-
mates are generally burdened with certain levels of localization
errors [3]. To maximize the usability, each location estimate
should be utilized together with the corresponding estimates
of its quality. This quality is primarily characterized by the
amplitude of the localization error of the location estimate.

Static performance benchmarks have traditionally been uti-
lized for estimating the amplitudes of localization errors. These
benchmarks provide some statistical characterizations of lo-
calization errors across the whole environment of interest and,
therefore, are not very accurate in estimating the localization
error of an individual location estimate. This is because of the
spatial variability and dynamic nature (e.g., due to interference
and mobility) of localization errors in an environment [4]. To
address this issue, we have proposed a set of regression-based
methods for estimating individual localization errors have been
proposed for fingerprinting localization [5]. Moreover, we
have shown in that these methods significantly outperform the
reference estimation grounded on the static benchmarks.

However, the regression-based methods are not perfectly
accurate and their performance cannot be further improved [5].

This is due to their simplicity (i.e., small number of tunable
hyperparameters), which hampers their potential modifications
aiming at maximizing the estimation accuracy. The estimation
of individual localization errors should be as accurate as
possible, especially for the use-cases involving location-based
optimization of wireless networks. For example, the authors
in [6] and [7] have shown that the over- or underestimation of
individual localization errors significantly reduces the benefits
of location-based relay selection and device-to-device link es-
tablishment, respectively. Artificial Neural Networks (ANNs)
are arguably the state-of-the-art machine learning tools for
estimating various types of continuous output variables [8].
In contrast to regression, ANNs have a substantially larger
number of tunable hyperparameters, which enables their opti-
mization and tuning the ANN for a specific problem.

Along the discussion above, we propose an ANN-based
method for estimating individual localization errors in fin-
gerprinting. Moreover, we explore a relatively large hyper-
parameter’ space and tuning ranges of the proposed method.
Based on that, we derive indications on how to optimally
hyperparameterize the regular ANN architecture for the given
problem. We follow by experimentally demonstrating the
feasibility of such ANN for estimating individual localization
errors. Specifically, we show that the close-to-optimally hyper-
parameterized ANN significantly outperforms the state-of-the-
art regression-based methods in various environments and for
multiple fingerprinting technologies. We use fingerprinting due
to its popularity for indoor [9], [10] and Global Positioning
System (GPS)-confined outdoor environments [11].

II. ANN-BASED ESTIMATION OF INDIVIDUAL
LOCALIZATION ERRORS IN FINGERPRINTING

Let us assume that a fingerprinting-based localization so-
lution is deployed in a given environment. Moreover, we
assume the availability of a static performance benchmark of
the solution in the environment. First, the benchmark provides
a set of M Received Signal Strength (RSS) observations
from N Base Stations (BSs) used for fingerprinting, where
each RSS observation is measured at a certain ground truth
location in the environment. Hence, the RSS observations can
be expressed by RSS; = [RSS1,;,..., RSSn], i =1,.... M.
Second, the benchmark provides a mapping between the RSS
observation RSS; and the corresponding localization error
Error;. The localization error Error; for the RSS observation
RSS; is calculated as the Euclidean between the ground truth
location ¢ and the corresponding estimated location.
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Figure 1: Schematics of the artificial neural network

During the operation of the fingerprinting solution, i.e. when
requested to provide an estimate, the ground truth location of
that estimate is not known. This means that the localization
error for that estimate cannot be calculated and, hence, it has
to be estimated. We leverage the standard ANN architecture
for this estimation. We use the ANN architecture because of its
reported successful utilization for problems with low hetero-
geneity of input variables (e.g., [8]). The functional diagram of
the proposed method is given in Figure 1. In general, the ANN
consists of an input layer, a number of hidden layers, and an
output layer. The input layer accepts the input variables that
are then propagated through the trained ANN for estimating
the output variable in the output layer. For the problem at hand,
we first consider RSS observations as input variables, hence
we call the RSS observations primary observations. We do that
because there exist use-cases (e.g. [2]) in which there would
be no need for estimating location if its localization errors
would be higher than a certain set threshold, thus only an
RSS observation for that location would initially be available.
Second, we consider the estimated location as an additional
input variable, thus we name it secondary observation. We
consider estimated location in a 2-Dimensional (2D) space.
Its expansion to a 3-Dimensional (3D) or reduction to 1-
Dimensional (1D) space is straightforward.

The ANN generally consists of a number of neurons, with
the schematics of a neuron as depicted in Figure 2. The neuron
provides a mapping between weighted input variables and
an output variable, as shown in the figure. Specifically, the
neuron sums the products of inputs X; and their corresponding
weights w;, and applies an activation function F' to the product
to get the output. An activation function enables potentially
(and usually) nonlinear functional mapping between the input
and output variables. The activation function is activated based
on a threshold 6, otherwise the output variable equals to zero.

In order for the ANN to become operational, it has to
be trained, i.e. the input weights for each neuron have to
be learned. We leverage the previously described static per-
formance benchmark for this training. Given that the output
variables in the training data (i.e. the localization errors) are
known and continuous values, the problem at hand is an
instance of a supervised learning-based regression problem.
In such a problem, it is possible to compare the output values
calculated by the ANN with the correct output values and,
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Figure 2: Schematics of a neuron

based on them, calculate the continuous output error. This
procedure is known as forward-propagation. The output error
can then be used for adjusting the weights of the neurons,
so that in the following iterations the network’ calculated
output values will be closer to the correct output values. The
procedure for adjusting the weights is called back-propagation.

Intuitively, the accuracy of the ANN depends on the amount
and quality of data in the training dataset. In addition, the
accuracy of the ANN-based estimation can be maximized
by carefully selecting hyperparameters of the ANN. The
hyperparameters are variables that specify the structure and
learning behavior of the ANN. Specifically, the hyperparam-
eters include the number of hidden layers, as well as the
number of neurons in each hidden layer, as shown in Figure 1.
Moreover, the hyperparameters include the activation function
F with its threshold 6, as well as the initialization of weights
(i.e. initialization modes or initializers). The hyperparameters
also include the constraints on weights’ magnitudes and the
dropout rate (percentage of randomly selected neurons that
are ignored during training), both used to prevent overfitting
of the ANN. The weights are modified using a function called
optimization function or optimizer. Moreover, the batch size is
the total number of training samples present in a single batch,
where a batch is one chunk of a training dataset. Finally, one
epoch corresponds to an entire dataset being passed forward
and backward through the ANN once.

III. EVALUATION
A. Evaluation Methodology

In the evaluation, we leverage three datasets from two types
of outdoor environments (i.e., urban and rural). Their detailed
descriptions are provided in [12], while here we briefly sum-
marize their relevant features. First, we use LoRa and SigFox
datasets collected in the city of Antwerp, Belgium. Second,
we leverage a SigFox dataset collected in a rural environment
between the cities of Ghent and Antwerp, Belgium. For each
measurement location in the datasets, the Mobile Terminal
(MT) broadcasts a packet, followed by its reception by the
neighboring BSs. If the packet is received, the BSs log its
RSS, otherwise the default RSS noise value of -200 dBm is
logged. Hence, each data point contains a vector of RSS values
observed by different BSs at a given location of the MT. More-
over, each data point contains the GPS coordinates of the MT,
which allows correlating location information with an RSS
observation. In the collections of measurements, proprietary
nation-wide SigFox and LoRa networks were leveraged.
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Figure 3: Overview of the used datasets

TABLE I: Initial hyperparameters used in ANN training

Hyperparameter Value
Initialization mode uniform
Activation function and optimized relu | rmsprop

Number of hidden layers 2

Number of neurons in hidden layers 30/ 15
Dropout rate 30%

Number of batches/epochs 10720
Weight constraint max(3)

The LoRa dataset contains 123,529 data-points, as depicted
in Figure 3(a). In total, 68 BSs are detected in the dataset. In
the SigFox dataset, 14,378 RSS observations were collected
(Figure 3(b)). Altogether, 84 BSs have received some of the
packets transmitted by the MT. The SigFox dataset collected
in the rural environment contains 25,638 data-points observed
from altogether 137 BSs, as depicted in Figure 3(c).

The RSS vector from different BSs used for fingerprinting
is selected as a fingerprint of a location, which is a well-
known fingerprint creation procedure [13]. For calculating the
similarity between a training and runtime fingerprint we use
the Euclidean distance between RSS vectors, which is again
a well-established and extensively used procedure [13]. In the
post-processing procedure of fingerprinting, we use k-Nearest
Neighbors (kNN) with parameter k£ set to 4, which has been
shown to be best selection for a variety of environments [14].

We randomly divide the datasets into a fingerprinting train-
ing, ANN training, and evaluation sets in the ratio 10:70:20.
The fingerprinting training set is used for “deploying” the
fingerprinting solution. The ANN training set is mimicking
a static performance benchmark used for the training of the
ANN (and existing regression-based methods). The evaluation
set is leveraged for establishing the accuracy of the proposed
and existing methods for the estimation of individual localiza-
tion errors. As the evaluation metric we use “prediction error”,
which is, for each evaluation point, defined as the absolute
value of the difference between the calculated and estimated
localization error. The distributions of prediction errors for the
entire evaluation set are depicted as regular box-plots.

B. Optimal ANN Hyperparameterization

In the first step of the evaluation, our goal is to determine
which hyperparameters have a considerable effect on the
performance of the ANN. We do that so that in the future
deployments of the method, the hyperparameters’ optimization
space could be reduced, i.e. the hyperparameter tuning would
be needed only for influential hyperparameters. We define in-

fluential hyperparameters as the ones whose change affects the
average prediction error by more than 10%. For the influential
hyperparameters, our consequent goal is to determine if there
are hyperparameterizations that consistently yield optimal
performance across different environments and fingerprinting
technologies. Given that such hyperparameterizations exist,
the hyperparameter tuning in the future deployments could
be constrained to the values indicated by our evaluation.

The initial hyperparameters used in the ANN training are
summarized in Table I. These are selected by following a set of
rule-of-thumb guidelines for parameterizing ANNs based on
the input data features [8]. Note that the number of neurons
in a given hidden layer equals half of the number of neurons
in the previous hidden layer, rounded to the lower whole
number. This is again based on the rule-of-thumb guidelines
from the literature [8]. We tune hyperparameters individually,
while keeping the other ones at their initial values (Table I).
Hence, we are able to derive a set of close-to-optimal (i.e.
locally optimal) ANN hyperparameters for different deploy-
ment environments and fingerprinting technologies. We follow
this procedure, in contrast to performing an extensive multi-
hyperparameter search (which would result in a globally
optimal hyperparameters) because of an extremely high com-
putational complexity and time overhead of that alternative.
The results for different dropout rates and weight constraints,
initialization modes, numbers of batches and epochs, activation
functions, optimizer functions, and numbers of neurons and
layers are shown in Figures 4 5, 6, 7, 8, and 9, respectively.
The sub-figures depict the results for the LoRa, SigFox, and
SigFox-rural datasets, respectively.

The first observation from the results is that indeed the op-
timal selection of hyperparameters can substantially improve
the performance of the ANN. For example, only by changing
the activation function from softmax to tanh, the prediction
error can be reduced by roughly 30% for all three scenarios,
as shown in Figure 7. Similarly, by changing the optimizer
function from nadam to adamax, the prediction error can be
reduced by up to 35%, as depicted in Figure 8. However,
not all hyperparameters play a significant role in the ANN
optimization for the given problem. For example, changes
in the initialization modes have only minor effects on the
overall performance of the ANN (i.e., less than 10% in average
prediction error), as shown in Figure 5. Similarly, a change in
the number of batches and epochs does not have a significant
effect on the ANN performance (Figure 6).
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Second, our results indicate that close-to-optimal hyperpa-
rameters can be extrapolated from one environment to another,
as well as from one technology to another. For example,
the dropout rate of 0.4 and weight constraint of max(1)
yield the optimal performance for LoRa and SigFox-based
fingerprinting in the same urban outdoor environment, as
well as for SigFox-based fingerprinting in a rural outdoor
environment (Figure 4). Similar observations can be made for
other hyperparameters, as visible in the figures.

The first observation motivates the need for careful selection
of the values for the significant hyperparameters, which is,
however, a burdensome and lengthy process. We believe that
the derived indications can serve for substantially reducing the
hyperparameters’ optimization space for future deployments.
This claim is further supported by the second observation that
the extrapolation of hyperparameters across environments and
technologies seems to be feasible. Specifically, the optimal
hyperparameters include setting the activation function to tanh,
optimization function to adamax, using the dropout rate of
around 40% and weight constraint of max(1), and setting the
number of neurons to 50, 25, and 12 in the first, second, and
third hidden layer, respectively (in general terms, an increase
in the number of neurons in the hidden layers benefits the
estimation accuracy).

C. Comparison with Existing Methods

In the second step of the evaluation, we demonstrate the
feasibility of the proposed method for the estimation of
individual localization errors in fingerprinting. We do that by
demonstrating that the performance of the close-to-optimally
hyperparameterized ANN is substantially and consistently

better than the existing state-of-the-art methods based on
simple regression. The results are depicted in Figure 10. The
first box-plot in the figures (labeled with “Error”) depicts
the distributions of localization errors. The second box-plot
in Figures 10(a) and 10(b) (labeled with “Ref”) shows the
distributions of prediction errors in case the localization error
is estimated using the reference estimation. In the reference
estimation, as the estimated localization error the fingerprint-
ing solution reports the average localization error across the
entire environment, where the average localization error is
derived from the static performance benchmark. This box-plot
is omitted in Figure 10(c) for reasons discussed below. The
third box-plot (the second one in Figure 10(c)) also depicts the
distributions of prediction errors for the reference estimation.
However, here the estimated localization error is derived by
first estimating location, followed by mapping of that estimate
to the nearest ground truth location from the benchmark.
The localization error attributed to that location from the
benchmark is then reported as the estimated localization error.

The following box-plots depict the distribution of prediction
errors for the polynomial and kNN regression, and the ANN-
based method. The polynomial and kNN regression are shown
to be the best performing regression-based methods for the
problem at hand [5]. These are depicted for both the case when
only RSS observations have been used as an input variable and
the case when estimated location have been used as an addi-
tional input variable for estimation. As visible in the figures,
ANN-based estimation generally outperforms other methods,
in terms of both average/median prediction errors and the
outliers. The improvement is higher than 50% in the best case
scenario, compared to the reference estimation based on static
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Figure 10: Comparison between different methods for estimating localization errors in fingerprinting

benchmarks. Moreover, the ANN-based estimation yields at
least 15% better performance in terms of average prediction
error than the second best method (i.e. kKNN regression) and
this improvement is higher than 25% in the best case scenario.
Particularly interesting are the results observed for the
SigFox-rural dataset. In the dataset, there are regions with
a small number of measurement locations (even a single
measurement point), as well as clusters with dense measure-
ment locations (Figure 3(c)). This results in highly diverse
localization errors, i.e. the localization errors in the clusters are
much smaller than the ones at sparsely populated locations.
This effect can also be discerned by the large difference
between median and average localization errors, which equal
roughly 18 and 370 meters, respectively. A similar observation
has been made in [12]. The reference estimation of localization
errors based on average localization error due to this hetero-
geneity yields very large prediction errors (i.e. on average
more than 500 m) and is therefore omitted in Figure 10(c). For
the same reason, the reference that grounds the estimation of
localization error on mapping of the estimated location to the
nearest location from the static performance benchmark yields
very accurate results. Nevertheless, the ANN method yields
15% more accurate estimation than this reference in terms
of average prediction errors, even in this more challenging
scenario. Note that the polynomial regression also yields very
high prediction errors, hence its results are also omitted.

IV. CONCLUSION

We proposed a method for ANN-based estimation of indi-
vidual localization errors in fingerprinting. By evaluating the
method using three large outdoor datasets, we have demon-
strated its feasibility and encouraging performance for the
given problem. Specifically, we have shown that it outperforms
the reference based on average localization errors and the
currently available regression-based methods by up to 55%
and 30%, respectively. Moreover, we have reduced the ANN
hyperparameters’ space and tuning ranges, which will simplify
the deployment of the method in new environments. We be-
lieve that the obvious drawback of the method, i.e. the fact that
a significant amount of data has to be collected for its training,
can be overcome by crowd-sourcing. Crowd-sourcing is an
established procedure for collecting training measurements for
fingerprinting (e.g. [15]), and there are no intrinsic differences

between the two training procedures. Future efforts will aim
at further optimizing the hyperparameters’ space, as well as
evaluating the method in new environments and for other
technologies, primarily WiFi-based indoor fingerprinting.
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