Integrable Hamiltonian Systems: Problems 9

Prof. dr. Sonja Hohloch (lectures) & dr. Marine Fontaine (problems) Universiteit Antwerpen – Autumn 2018 (Dated: November 27, 2018)

The problems marked with * are due at the beginning of the class on Tuesday 4 December.

Problem 9.1. Prove the Marsden-Weinstein reduction theorem for torus actions.

Problem 9.2*. (10 points) Show that the 2-dimensional trapezoids with vertices (0,0), (0,1), $(\ell, 1)$ and $(\ell + n, 0)$ with $n \in \mathbb{Z}_+$ and $\ell > 0$ are Delzant.

Reminder: A Delzant polytope Δ in \mathbb{R}^n is a polytope with the following properties:

- It is simple: there are n edges meeting at each vertex p.
- It is *rational*: the edges meeting at a vertex p are rational in the sense that each edge is of the form $p + tu_i$ with $t \ge 0$ and $u_i \in \mathbb{Z}^n$.
- It is *smooth*: for each vertex p the corresponding u_1, \ldots, u_n can be chosen to be a \mathbb{Z} -basis of \mathbb{Z}^n .

Problem 9.3*. (20 points) Repeat the Delzant's construction for the polytope $\Delta \subset \mathbb{R}^2$ with vertices (0,0), (0,1) and (1,0) and whose normal vectors to the *i*th facet i = 1,2,3 are respectively given by $\nu_1 = (0,-1)$, $\nu_2 = (-1,0)$ and $\nu_3 = (1,1)$.