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Summary

In this work we will point out a relation between two important topics of sym-
plectic dynamical systems — homoclinic points and Lagrangian Floer homology.
Based on this we will construct a new symplectic invariant for homoclinic tan-
gles:

Primary homoclinic Floer homology

Let (M,ω) be (R2, dx ∧ dy) or a symplectic closed two-dimensional manifold
with genus g ≥ 1 and let ϕ be a symplectomorphism with hyperbolic fixed
point x. For symplectomorphisms the (un)stable manifolds L0 := W u(x, ϕ) and
L1 := W s(x, ϕ) are Lagrangian submanifolds. Thus the set of homoclinic points
H := L0 ⋔ L1 can be seen as the intersection set associated to the noncompact
Lagrangian intersection problem (L0, L1). This motivates the construction of
(Lagrangian) Floer homology for homoclinic tangles.

There is a Z-action on H. For transversely intersecting L0 ⋔ L1 the set H/Z is
still infinite. This prevents the well-definedness of the usual Floer differential on
H. Moreover the action filtration admits neither finite sup- nor finite sublevel
sets (mod Z).

Nevertheless there is a natural subset of H on which the Floer differential is
well-defined. Denote by [p, q]i the segment between p and q in Li for i ∈ {0, 1}.
We call p contractible if the loop [p, x]0 ∪ [p, x]1 is contractible and denote by
H[x] ⊂ H the set of contractible homoclinic points. Then

Hpr := {p ∈ H[x] |]p, x[0 ∩ ]p, x[1 ∩ H[x] = ∅}

is the set of primary homoclinic points. H̃pr := H/Z is finite and we denote the
equivalence class of p ∈ Hpr by 〈p〉. The Maslov index µ induces a grading on

H̃pr and we define, analogously to classical Lagrangian Floer homology,

Ck := Ck(x, ϕ) :=
⊕

〈p〉∈H̃pr

µ(〈p〉)=k

Z〈p〉,

∂〈p〉 :=
∑

〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉,

H∗ := H∗(x, ϕ) :=
ker ∂

Im ∂
.

The well-definedness of ∂ and the proof of ∂ ◦ ∂ = 0 are tricky combinations of
dynamical and combinatorial arguments.
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H∗ is invariant under so called contractibly strongly intersecting (symplectic)
isotopies. The proof has to combine analytical and combinatorial arguments.
Note that a primary point p ∈ Hpr might vanish (analogously arise) in two
ways:

• p vanishes as intersection point,
• p persists as intersection point, but is no longer primary.

The invariance implies an existence and bifurcation criterion for homoclinic
points and the fixed point. In the two-dimensional situation H∗ also can be
defined for nonsymplectic diffeomorphisms, but there is no natural invariance.
Thus H∗ is an symplectic invariant.

H∗ is invariant under conjugacy. Moreover we compare H∗(x, ϕ) and H∗(x, ϕ
n).

Chaotic primary homoclinic Floer homology takes also the chaos near a homo-
clinic tangle into account and gives rise to a symplectic zeta function. Moreover
we define the action spectrum and action filtration of primary homoclinic Floer
homology and investigate their properties.
Then we analyse the problems which prevent differential graded algebras or
A∞-structures based on (primary) homoclinic points.

Finally we sketch a stronger invariance theorem and applications to Birkhoff in-
variants. Moreover we briefly discuss the problems arising on higher dimensional
manifolds.

H∗ is the first invariant which takes the algebraic interaction of homoclinic points
into account. Moreover H∗ simultanously is a semi-global and semi-local invari-
ant: On the one hand the branches and homoclinic points can lie anywhere on
the manifold, but on the other hand we are bound to contractible points. Thus
the topology of the manifold enters only indirectly: If H∗(x, ϕ) = 0 then either
L0 and L1 do not intersect or there are no contractible homoclinic points. There
is obviously no direct way to relate H∗(x, ϕ) to the topology of M or L0 and L1.
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CHAPTER 1

Introduction

We will give a brief overview over the history of homoclinic points and La-
grangian Floer homology. Then we will turn to the topic of this thesis and
introduce and present Floer homology for homoclinic tangles.

1. Homoclinic points

Given a diffeomorphism ϕ with hyperbolic fixed point x we call the intersec-
tion points of the stable and unstable manifold of x homoclinic points (of x).
Homoclinic points approach the fixed point in backward and forward iteration.
Analogously we define homoclinic solutions for flows. For integrable systems like

q̇ = p and ṗ = q − q2

induced by the HamiltonianH(q, p) := 1
2
p2−1

2
q2+ 1

3
q3 the existence of homoclinic

solutions γ with limt→±∞ γ(t) = (0, 0) was well known for a long time. The
associated phase portrait is sketched in figure 1.1 (a). Here whole halfspaces of
the unstable and stable manifold coincide.
Poincaré’s [Po1, Po2] important discovery was the existence of systems where
the stable and unstable manifold intersect, but do not coincide. He studied the
n-body problem when he noticed around 1889 the existence of motions which

(a)

p

q

γ

(b)

Wu
λ

xλ

W s
λ

Figure 1.1. Homoclinic solutions
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could not be presented by trigonometric series due to their lack of convergence.
This phenomenon arises if we perturb the above integrable system slightly by a
1-periodic time dependent term:

q̇ = p and ṗ = q − q2 + λ sin(2πt)

is induced by the Hamiltonian Hλ(t, q, p) := 1
2
p2 − 1

2
q2 + 1

3
q3 − λ sin(2πt)q with

λ > 0 sufficiently small. For λ = 0 we obtain the integrable system. Denote
the time dependent flow of the perturbed system by ϕλt and its time-1 map by
ϕλ1 . The latter has a hyperbolic fixed point xλ near (0, 0) and the stable and
unstable manifolds W s := W s

λ(xλ, ϕ
λ
1) and W u := W u

λ (xλ, ϕ
λ
1) intersect, but do

not coincide as sketched in figure 1.1 (b).
The set W s ∩W u carries a Z-action induced by iterating ϕλ1 . If we try to sketch
higher iterates of figure 1.1 (b) we obtain a rather complicated picture, compare
figure 5.2: Since the system is volume preserving the contraction and expansion
near the hyperbolic fixed point forces the loops to become thinner and longer,
accumulate on itself and intersect each other. This picture is called the homo-
clinic tangle of W s and W u.

In 1935 the next important result about homoclinic solutions was announced
by Birkhoff [Bi] who proved that near a homoclinic orbit there is an intricate
amount of (mostly high)periodic orbits.

In 1963 the dynamical structure of a homoclinic tangle was formally described by
Smale [Sm1, Sm2]. He devised his famous horseshoe which relates the dynamics
of the homoclinic tangle to the dynamics of the shift operator on the space of
bi-infinite sequences of two symbols.

After this break-through (un)stable manifolds and homoclinic points were stud-
ied under genericity and stability aspects by Smale, Kupka, Robinson, Palis,
Takens and others (see for instance [Ku], [Ro], [Pa], [Ta]). Smale and Kupka
showed that generically (un)stable manifolds intersect transversely. Moreover
Smale showed that the existence of homoclinic points not necessary prevents
stability of the map.
In 1972 Takens proved for volume preserving maps on compact two-dimensional
manifolds with the C1-topology that a hyperbolic fixed point generically has a
homoclinic point. The generalization to higher dimensions took until 1996 by
Xia [Xia1]. On closed surfaces and with Cr-topology, r > 1, it was proven by
Oliveira [Ol] under certain conditions on the symplectomorphism in 2000. In
2006 Xia [Xia3] proved it for symplectomorphisms isotopic to the identity on
closed surfaces.
In the 1970’s paths of diffeomorphism and the homoclinic bifurcation behaviour
came into focus with important works by Palis, Newhouse, Takens and others
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(see for instance [Ne1], [NePT], [PaT1], [PaT2]), but many questions are still
open.

There are good survey articles by Newhouse [Ne2] and Shil’nikov [Sh] covering
this period. Many results have been proven independently in the western and
Russian mathematical community.
In 1973 Zehnder [Ze] proved the generic existence of homoclinic points in the
KAM-picture around an elliptic fixed point (see Arnold & Avez [ArA], Moser
[Mo]).

In 1963 Melnikov [Me] deduced by means of perturbation theory a criterion
which controlled the existence of homoclinic points of slightly time dependent
systems arising from homoclinic loops of time independent systems. This ap-
proach was extended and improved by many mathematicians and physicists,
see for instance Kirchgraber & Stoffer [KiS], Kuznetsov & Zaslavsky [KZ], Za-
slavsky [Za], Rom-Kedar [RK1, RK2], Wiggins [W] and others.
Sometimes the splitting of the homoclinic loop of the time independent system is
to small to be detected by Melnikov’s method. For certain of those cases Lazutkin
[Laz] and Gelfreich [Ge1] presented an invariant which has been extended by
Lazutkin, Gelfreich and Simo and others (see [Ge2], [GeL], [GeS]).

Since the break-though by Rabinowitz [Ra2] the calculus of variations is a strong
tool for existence results of homoclinic points. Usually under certain convex-
ity assumtions on the Hamiltonian Rabinowitz, Bolotin, Coti Zelati, Ekeland,
Séré and others (see for instance [Ra1], [CZES], [Sér]) deduce many impor-
tant results. Cieliebak & Séré [CiS] combined variational technics and pseudo-
holomorphic curves. Lisi [Li] generalized [CZES] using Lagrangian embedding
technics. And finally Ambrosetti & Badiale [AmB] devised an approach which
encompasses the Melnikov method and the calculus of variations.

There is also an combinatorial and numerical approach to homoclinic tangles.
Easton [E] devised a ‘structure index’ as invariant of a homoclinic tangle. Ro-
tation numbers of homoclinic points appear in Hocket & Holmes [HH]. Rom-
Kedar [RK1, RK2] combined combinatorial and approximation methods in or-
der to deduce the ‘topological approximation method’ which analyses mixing and
transport in a homoclinic tangle under iteration. Contopoulos & Polymilis [CP]
investigated the long-time behaviour of homoclinic points using high-precision
computer programs.

2. Lagrangian Floer homology

In the 1960s Arnold [Ar1] announced several important conjectures concerning
symplectic topology and Hamiltonian diffeomorphisms (time-1 maps of a time
dependent Hamiltonian flows). He claimed that on compact symplectic manifolds
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(M,ω) the number of fixed points of a nondegenerate Hamiltonian diffeomor-
phisms ϕ : M →M is greater or equal to the sum of the Betti numbers:

# Fix(ϕ) ≥
∑

k

rkHk(M).

Since the diagonal △ and the graph of ϕ are Lagrangian submanifolds of
(M ×M,ω⊕ (−ω)) the above question can be transformed into the Lagrangian
intersection problem

(1.1) #(△ ⋔ graphϕ) ≥
∑

k

rkHk(M).

⋔ stands for ‘transversely intersecting’. Floer [Fl1, Fl2, Fl3] proved the con-
jecture in case π2(M) = 0 using the ‘L2 gradient flow’ of the action functional.
The general case has been proven successively by several authors, compare for
example [Sa], [FO3].
We briefly sketch Floer’s approach. Consider a compact Lagrangian submanifold
L ⊂ M with π2(M,L) = 0 and set L0 := L and L1 := ϕ(L). Floer defined a
relative Maslov index µ(p, q) = µ(p) − µ(q) for p, q ∈ L0 ⋔ L1. Using an ω-
compatible almost complex structure J he defined M(p, q) := M(p, q, L0, L1, J)
to be the space of maps u : R × [0, 1] →M such that

(1.2)






∂su+ J∂tu = 0 ‘J-holomorphic’,

u(s, 0) ∈ L0, u(s, 1) ∈ L1 for all s ∈ R,

lim
s→−∞

u(s, ·) = p, lim
s→+∞

u(s, ·) = q.

For generic J the space M(p, q) is a smooth manifold of dimension µ(p)−µ(q).

It carries the R-action (σ.u)(s, t) := u(s+ σ, t) such that M̂(p, q) := M(p, q)/R

is of dimension µ(p) − µ(q) − 1. For µ(q) = µ(p) − 1 holds #M̂(p, q) < ∞
since M̂(p, q) is compact. Thus m2(p, q) := #M̂(p, q) mod 2 is well-defined. For
Z2 := Z/2Z-coefficients Floer defined a chain complex via

(1.3)

Ck(L0, L1) :=
⊕

p∈L0⋔L1
µ(p)=k

Z2p,

d : C∗ → C∗−1, d(p) :=
∑

q∈L0⋔L1
µ(q)=µ(p)−1

m2(p, q)q

and proved d ◦ d = 0 using the so called ‘gluing’ and ‘breaking’ constructions.
The homology

FH∗(L0, L1, J) :=
ker d

Im d
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is called Lagrangian Floer homology and Floer proved independence
of the chosen J and invariance under Hamiltonian deformations. Thus
FH∗(L0, L1, J) = FH∗(L) which he could identify with the Morse homology
and thus the singular homology of L.

Fukaya & Oh & Ohta & Ono [FO3] devised an obstruction theory for Lagrangian
Floer homology if L1 is not a Hamiltonian deformation of L0.

Floer’s proof consists of nontrivial Fredholm analysis and elliptic regularity the-
ory. Nevertheless for dimM = 2 there is an equivalent combinatorial approach
by de Silva [dS], Gautschi & Robbin & Salamon [GauRS] and Robbin [R]. For
two transverse embedded noncontractible nonisotopic closed curves L0 and L1

they find

dimHF (L0, L1) = min{#(L0 ⋔ L′
1) | L′

1 embedded and isotopic to L1}.
Closely related to the combinatorics of two-dimensional Lagrangian Floer ho-
mology are differential graded algebras (DGAs) of Legendrian knots, compare
Chekanov [Che], Ng [Ng], Etnyre & Ng & Sabloff [ENS]. DGAs of Legendrian
knots can be seen as application of contact homology and and symplectic field
theory (SFT) devised by Eliashberg & Givental & Hofer [EGH].

3. Floer homology for homoclinic tangles

Let (M,ω) be a symplectic manifold with π2(M) = 0 and consider a sym-
plectomorphism ϕ : M → M having a hyperbolic fixed point x. Note that
(un)stable manifolds of symplectomorphisms are in fact Lagrangians. Homo-
clinic points can be seen as intersection set of the Lagrangian intersection prob-
lem W s(x, ϕ) ∩ W u(x, ϕ). Thus Floer’s approach to (1.1) inspires Lagrangian
Floer homology for L0 := W u(x, ϕ) and L1 := W s(x, ϕ) which we will discuss
now.

Consider transversely intersecting H := L0 ⋔ L1. Floer’s definition of the Maslov
index µ carries over, but apart from that there are striking differences to the
classical situation:

(1) The Lagrangians L0 and L1 are noncompact.
(2) L0 ⋔ L1 carries a Z-action induced by ϕ.
(3) (L0 ⋔ L1)/Z is countably infinite.

If dimM > 2 there is no combinatorial approach. For given p and q the noncom-
pactness of L0 and L1 turns the Fredholm analysis associated to the dimension

formula and compactness discussion of M̂(p, q) into a nearly hopeless task. Thus
we first try to understand the two-dimensional situation where we can resort to
combinatorics.
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From now on (M,ω) is a closed two-dimensional manifold with genus g ≥ 1
or (R2, dx ∧ dy). Note π2(M) = 0 in both cases. L0 and L1 are one-dimensional
injectively immersed submanifolds and for p, q ∈ H we define [p, q]i to be the
unique (unoriented) segment between p and q in Li. Moreover we abbreviate
pn := ϕn(p) for n ∈ Z. The loop cp starting in p, running through [p, x]0 to x
and back through [x, p]1 to p defines a homotopy class [p] := [cp] ∈ π1(M,x).
For sake of [p] = [pn] we restrict us from now on to the contractible points
H[x] := {p ∈ H | [p] = [x]}. Then we can define µ(p) := µ(p, x) and obtain a
grading H[x] =

⊕
n∈Z

{p ∈ H[x] | µ(p) = n}. If we adjust the segments [p, x]0 and
[p, x]1 to meet orthogonally in p and x then µ(p) is the sum of twice the winding
number of the segments using the parametrization of cp.

Let D, Db, Dc be the standard 2-gons from figure 3.2. The combinatorial ap-
proach (see the previous section) allows to redefine M(p, q) for µ(p, q) = 1 as
space of smooth immersed di-gons u : D →M satisfying

(1) u is orientation preserving,
(2) u(B0) ⊂ L0 and u(B1) ⊂ L1,
(3) u((−1, 0)) = p and u((1, 0)) = q.

Dividing by the group of orientation preserving diffeomorphisms of D fixing the

vertices yields M̂(p, q). Analogously define for µ(p, q) = 2 the space N (p, q) and

N̂ based on u : Db →M and u : Dc →M .
The huge obstacle in higher dimensions turns out to be trivial for dimM = 2:
We always have

#M̂(p, q) ∈ {0, 1}.
We call ϕ L-orientation preserving if ϕ is orientation preserving on L0 and L1

and otherwise L-orientation reversing. For L-orientation preserving ϕ we can

define Z-valued signs m(p, q) ∈ {±#M̂(p, q)}. But as long as we deal with H[x]

there are in the L-orientation reversing case only Z2-signs possible.

Is now (1.3) well-defined in our setting? Set p ∼ q if and only if q = pn for some

n ∈ Z and define H̃ := H/∼. Let 〈p〉 denote the equivalence class of p w.r.t. ∼.
The well-definedness of (1.3) is tied to the following questions: Does for given
p ∈ H[x] hold

(1.4)






#{q ∈ H[x] | m(p, q) 6= 0} <∞ ?

#{n ∈ Z | m(p, qn) 6= 0} <∞ for q ∈ H ?

#{〈q〉 ∈ H̃ | m(p, qn) 6= 0 for some n ∈ Z} <∞ ?

Unfortunately all three sets can be infinite: For x in figure 1.2 holds m(x, pn) 6= 0
for all n ∈ Z. There are also tangles with p, q ∈ H and m(p, qn) 6= 0 for n ∈ Z>no

or n ∈ Z<n0 for some n0 ∈ Z. And for p in figure 1.2 holds m(p, sn) 6= 0 6=
m(p, rn) and 〈sn〉 and 〈rn〉 are all mutually distinct for n ∈ N.
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r1

q

p̃−2

p̃

p̃−1

x

p5

p4

q1
s1

s2

r3

r2

p

L1

L0

y

ỹ

Figure 1.2. The differential of p is infinite mod Z with converg-
ing action

For a single p ∈ H nevertheless (1.3) makes geometrically sense: The sum might
be infinite, but geometrically we have ddp = 0 due to the so called gluing and
cutting construction: Call the two connected components of Li\{x} the branches
of Li for i ∈ {0, 1} and call L0 and L1 strongly intersecting if each branch of
L0 intersects each branch of L1. This is in fact a generic property on compact
manifolds. We obtain

Theorem 1.5 (Gluing and Cutting). (1) Let p, q, r ∈ H with [p] = [q] =

[r] and µ(p, q) = 1 = µ(q, r). Let u ∈ M̂(p, q) and v ∈ M̂(q, r). Then
the gluing procedure # for u and v yields an immersed heart w := v#u ∈
N̂ (p, r).

(2) Let L0 and L1 be transversely and strongly intersecting. Let p, r ∈ H
with [p] = [r] and µ(p, r) = 2 and w ∈ N (p, r). Then there are unique
q0, q1 ∈ H with µ(p, qi) = 1 = µ(qi, r) and ui ∈ M(p, qi), vi ∈ M(qi, r)
such that vi#ui = w for i ∈ {0, 1}. Moreover

(1.6) m(p, q0) ·m(q0, r) = −m(p, q1) ·m(q1, r).

The proof relies on the contraction and expansion property of the homoclinic
tangle near x, more precisely on the so called ‘λ-lemma’. Now (1.6) implies
ddp = 0 for a single p ∈ H.
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Now we try to solve the dilemma (1.4). The natural idea is a filtration (Hc)c∈R ⊂
H[x] satisfying

(1) Hc ⊂ Hc′ for c < c′ and ϕ(Hc) = Hc and #H̃c <∞.
(2) Theorem 1.5 holds within Hc for all c.

This turns out to be a rather tricky task. The most natural idea are the sublevel
set of the (well-defined) action functional

A(p) := A(p, x) :=

∫

u

ω

where p ∈ H[x] and u : [0, 1]2 → M is smooth with u(0, ·) = p, u(1, ·) = x,
u(s, i) ∈ Li for all s ∈ [0, 1] and i ∈ {0, 1}. If µ(p, q) = 1 and m(p, q) 6= 0 then

A(p) > A(q)

such that sublevel sets of A are naturally compatible with Theorem 1.5. Un-
fortunately we notice for p, (rn)n∈N and (sn)n∈N in figure 1.2 (more detailed in
Chapter 9)

A(sn) < −2A(p) < A(rn) and lim
n→∞

A(sn) = −2A(p) = lim
n→∞

A(rn).

Thus the action filtration fails — and so does (nearly) every attempt, compare
Chapter 9 !

Fortunately there is a natural subset of H for which the sets of (1.4) are finite
and Theorem 1.5 holds: The set of primary points

Hpr := {p ∈ H[x] |]p, x[0 ∩ ]p, x[1 ∩ H[x] = ∅}
is finite mod Z since for p ∈ Hpr every p 6= q ∈ Hpr has exactly one iterate in

[p, p1]0 ⋔ [p, p1]1. Nonprimary points we call secondary. We define H̃pr := Hpr/∼,
[〈p〉] := [p], µ(〈p〉, 〈q〉) := µ(p, q) and µ(〈p〉) := µ(p) for primary p and q. For
〈p〉, 〈q〉 ∈ H̃pr set

m(〈p〉, 〈q〉) :=
∑

n∈Z

m(p, qn).

For primary points it is possible to define signs which admit also in the L-
orientation reversing case Z-coefficients.

Definition 1.7. We define

Cm := Cm(x, ϕ; Z) :=
⊕

〈p〉∈H̃pr

µ(〈p〉)=m

Z〈p〉,

∂m : Cm → Cm−1, ∂〈p〉 :=
∑

〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉
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on a generator 〈p〉 and extend ∂ by linearity.

We obtain

Theorem 1.8. (C∗, ∂∗) is a chain complex, i.e.

∂ ◦ ∂ = 0,

and the primary homoclinic Floer homology of ϕ in x

Hm := Hm(x, ϕ; Z) :=
ker ∂m

Im ∂m+1
.

is welldefined. Analogously primary homoclinic Floer cohomology is defined.

The the well-definedness of Definition 1.7 and the proof of Theorem 1.8 rely on
Theorem 1.5 and on classifications of M(p, q) and N (p, q) for p, q ∈ Hpr which
turn out to be embeddings on the universal cover of M . This allows to show
#{n ∈ Z | m(p, qn) 6= 0} < ∞ which implies the well-definedness of ∂. Note
that L0 and L1 actually need not to be strongly intersecting in order to show
the cutting procedure for primary points.

We compute several examples and give a rough classification for systems with ex-
actly two primary equivalence classes in each pair of intersecting branches. Note
that for primary points p the Maslov index has only values µ(p) ∈ {±1,±2,±3}.
Primary homoclinic Floer homology is on two-dimensional manifolds also de-
fined for diffeomorphisms. It is invariant under conjugation of the symplectomor-
phism or diffeomorphism by a homeomorphisms, but the ‘symplectic aspects’ are
only preserved under symplectic conjugacy.

Nevertheless the invariance discussion shows that primary homoclinic Floer ho-
mology is a symplectic invariant:

Definition 1.9. (1) Let ϕ, ψ ∈ Diffω(M) and x ∈ Fix(ϕ) and y ∈ Fix(ψ)
both hyperbolic. An isotopy (between (x, ϕ) and (y, ψ)) is a smooth
path Φ : [0, 1] → Diffω(M), τ 7→ Φ(τ) =: Φτ with Φ0 = ϕ, Φ1 = ψ,
x0 = x and x1 = y and xτ ∈ Fix(Φτ ) as continuation for all τ ∈ [0, 1]
between x and y. Φ is called Hamiltonian if Φτ is Hamiltonian for all
τ ∈ [0, 1].

(2) Let ϕ ∈ Diffω(M) and x ∈ Fix(ϕ) hyperbolic. (x, ϕ) is called con-
tractibly strongly intersecting (csi) if L0 and L1 are strongly inter-
secting and if each pair of branches has contractible homoclinic points.
An isotopy Φ is csi if (xτ ,Φτ ) is csi for all τ ∈ [0, 1].

Attaching τ to a symbol associates it to Φτ , i.e. Hτ
pr denotes the set of primary

points of Φτ etc.
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Theorem 1.10. Let (M,ω) be a closed symplectic two-dimensional manifold
with genus g ≥ 1. Let ϕ, ψ ∈ Diffω(M) with hyperbolic fixed points x ∈ Fix(ϕ)
and y ∈ Fix(ψ). Let (x, ϕ) and (y, ψ) be csi and let all primary points of ϕ and
ψ be transverse. Assume there is a csi isotopy Φ from (x, ϕ) to (y, ψ). Then

H∗(x, ϕ) ≃ H∗(y, ψ).

We will give a brief sketch of the proof of Theorem 1.10 after the next two state-
ments. Note that in contrast to classical Floer theory invariance needs existence
of certain intersection points. The proof carries over to compactly supported
symplectomorphisms on R2.

Theorem 1.11. Let ϕ, ψ ∈ Diffdx∧dy(R
2) be compactly supported with hyper-

bolic fixed points x ∈ Fix(ϕ) and y ∈ Fix(ψ). Let (x, ϕ) and (y, ψ) be strongly
intersecting and let all primary points of ϕ and ψ be transverse. Assume there
is a compactly supported strongly intersecting isotopy Φ from (x, ϕ) to (y, ψ).
Then

H∗(x, ϕ) ≃ H∗(y, ψ).

As applications we obtain from the above theorems the following existence and
bifurcation criterion:

Corollary 1.12. Assume the conditions of Theorem 1.10 resp. Theorem 1.11
for (M,ω), (x, ϕ) and (y, ψ), but H∗(x, ϕ) 6= H∗(y, ψ). Then (x, ϕ) and (y, ψ)
cannot be joint by a csi (resp. compactly supported) isotopy.
Thus if there is a path (Φτ )τ∈[0,1] ∈ Diffω(M) between ϕ and ψ then

(1) either Φ is no isotopy, i.e. there is τ0 ∈ [0, 1] where xτ0 vanishes or
undergoes a bifurcation,

(2) or if Φ is a (compactly supported) isotopy there has to be a pair of
branches and some τ0 ∈ [0, 1] where all contractible homoclinic points
vanish, i.e. there are homoclinic bifurcations.

(3) or Φ is no compactly supported isotopy.

In particular symplectomorphisms ϕ and ψ admitting homoclinic tangles like
figure 5.2 resp. figure 5.3 cannot be joint by a (compactly supported) csi isotopy.

Now we sketch the proof of Theorem 1.10. The modern ‘homotopy of homo-
topies’ approach is not available since the methods in the proof of Theorem
1.8 do not carry over to the parameter dependent case. Thus we generalize and
modify Floer’s original idea to our setting with Z-action, Z-coefficients and com-
binatorial features:

(1) Csi is stable under small perturbations in the set of symplectomor-
phisms (not in Diff(M)!). Thus generic perturbations make sense. Note
that primary homoclinic Floer homology is already determined by com-
pact segments centered around the fixed point. Perturb Φ such that
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the bifurcations relevant for primary homoclinic Floer homology can
be modeled as sequence of ‘moves’ similarly to knot theory. Since the
(un)stable manifolds do not admit self-intersections only the ‘second
Reidemeister move’ appears.

(2) A primary point arises (analogously vanishes) if
• it arises as intersection point,
• the intersection point was secondary and becomes primary

(‘primary-secondary flip’).
If a move generates (analogously destroys) two points the following
combinations are possible:

• both primary (‘primary move’),
• one primary and one secondary (‘mixed move’),
• both secondary (‘secondary move’).

A mixed move might also flip a certain number of primary points sec-
ondary although they do not participate in the move itself!

(3) Show invariance of primary homoclinic Floer homology under primary,
mixed and secondary moves.

We believe Theorem 1.10 also true for Hamiltonian diffeomorphisms with Hamil-
tonian isotopies, see Chapter 9. Moreover as long as the combinatorics of the
proof can be justified we have invariance in a ‘combinatorial sense’.

Now we compare H∗(x, ϕ) and H∗(x, ϕ
n). Denote by 〈p1〉, . . . , 〈pk〉 the gen-

erators of C∗(x, ϕ) and set pji := ϕj(pi). Then C∗(x, ϕ
n) is generated by

〈p0
1〉, . . . , 〈p0

k〉, 〈p1
1〉, . . . , 〈pn−1

k 〉. ϕ induces a Zn-action on C(x, ϕn) which passes
to H∗(x, ϕ

n). For even n ∈ N let K = Q and for odd n let K = Z2 and define

f : C∗(x, ϕ
n; K) ≃ C−∗(x, ϕ−n,K) → C∗(x, ϕ; K), f(〈pji 〉) := 〈pi〉,

g : C∗(x, ϕ; K) → C∗(x, ϕ
n; K) ≃ C−∗(x, ϕ−n; K), g(〈pi〉) :=

1

n

n−1∑

j=0

〈pji 〉

which are chain maps and we compute f ◦ g = IdC∗(x,ϕ;K). Denote by g∗ and f∗
the induced maps on the (co)homology. If we use those signs which allow in the
L-orientation reversing case Z-coefficients we can replace Z2 by Q.

Theorem 1.13. Let ϕ ∈ Diff(M) and x ∈ Fix(ϕ) hyperbolic satisfy the condi-
tions of Theorem 7.1 if ϕ is not symplectic.

(1) Let ϕ be L-orientation preserving and n ∈ N0. Then g∗ is injective and
f∗ surjective. Thus

dimH∗(x, ϕ; Q) ≤ dimH∗(x, ϕ
n; Q) = dimH−∗(x, ϕ−n; Q)

and the difference is measured by the long exact sequence

· · · → Hl(ker f ; Q) → Hl(x, ϕ
n; Q) → Hl(x, ϕ; Q) → Hl−1(ker f,Q) → · · ·
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(2) Let ϕ be L-orientation reversing then ϕ2 is L-orientation preserving
and the first item applies for ϕ2 and ϕ2n = (ϕ2)n. For n ∈ N0 odd g∗ is
injective and f∗ surjective. Thus

dimH∗(x, ϕ; Z2) ≤ dimH∗(x, ϕ
n; Z2) = dimH−∗(x, ϕ−n; Z2)

and the difference is measured by the long exact sequence

· · · → Hl(ker f ; Z2) → Hl(x, ϕ
n; Z2) → Hl(x, ϕ; Z2) → Hl−1(ker f,Z2) → · · ·

In all explicitly computed examples we obtained H∗(x, ϕ) = H∗(x, ϕ
n) for all

n ∈ N.

Whereas the action functional A did not yield an accessable filtration on H it
is clearly compatible with the definiton of primary homoclinic Floer homology.
The action spectrum of (x, ϕ) is the set of its critical values

Σx,ϕ := {A(〈p〉) | 〈p〉 ∈ H̃pr(x, ϕ)}.
We define the primary radius r = r(L0, L1) which can be estimated by

√
2
π
A(p, q) ≥ r

for ‘adjacent’ primary points p and q. There is a filtered chain complex for a ∈ R

Ca
k := Ca

k (x, ϕ,Z) :=
⊕

〈p〉 ∈ H̃pr

µ(p) = k
A(p) ≤ a

Z〈p〉

which gives rise for −∞ ≤ a < b < c ≤ ∞ to the long exact sequence

· · · → H
]b,c]
k+1 → H

]a,b]
k

i∗−→ H
]a,c]
k

j∗−→ H
]b,c]
k → H

]a,b]
k−1 → . . .

of filtered primary homoclinic Floer homology groups which is invariant
under conjugation by a symplectomorphism.
Unfortunately there is no analogon of the constructions done by Schwarz [Sch3]
and Leclercq [Le] who assign to a given homology class of M resp. L a section
of the action spectrum bundle. Again invariance properties are diffcult to obtain
since the homotopy argument is not at our disposal. Only for Melnikov and
Lazutkin systems we can estimate the relative action A(p)−A(q) for ‘adjacent’
points depending on the isotopy parameter and obtain estimates for the primary
radius. Nevertheless it is possible to distinguish certain ‘invariant’ levels realized
by homology classes in the filtration.

Apart from the importance of the invariance properties and their implications
for existence and bifurcations of fixed and homoclinic points primary homoclinic
Floer is interesting as algebraic structure:
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It is the first invariant which measures the algebraic interaction within a ho-
moclinic tangle. Instead of investigating the chaos produced by the iterations
H∗(x, ϕ) tries to find order. All other invariants or technics known to the au-
thor (see the first section of this chapter) try to analyse the iteration behaviour,
predict or prevent the existence of homoclinic points or are confined to a small
neighbourhood of the fixed point.
Primary homoclinic Floer homology simultanously is a semi-global and semi-
local invariant: On the one hand the branches and homoclinic points can lie
anywhere on the manifold, but on the other hand we are bound to contractible
points. Thus the topology of the manifold enters only indirectly: If H∗(x, ϕ) = 0
then either L0 and L1 do not intersect or there are no contractible homoclinic
points. There is obviously no direct way to relate H∗(x, ϕ) to the topology of M
or L0 and L1.
Moreover we can define a version of primary homoclinic Floer homology which
recovers parts of the chaos close to the homoclinic tangle. Chaotic primary ho-
moclinic Floer homology is best seen as sequence n 7→ HFix

∗ (x, ϕn). Its chain
groups coincide with them of H∗(x, ϕ

n), but the boundary operator ignores all
immersions which contain fixed points of ϕn in their ranges. This yields a quite
unpredictable sequence which can be used in order to define a symplectic zeta
function.

It is not possible to define a differential graded algebra or an A∞-structure based
on primary points since the cutting construction is not well-defined within the
set of primary points. Within the set of homoclinic points, cutting and gluing is
possible, but problems similar to those in (1.4) arise.

4. Overview

Chapter 1: We give an survey over homoclinic points and Lagrangian Floer
homology. Then we motivate, state and briefly explain the results of this thesis.
Chapter 2: We recall the necessary properties of (symplectic) dynamical sys-
tems, define homotopy properties of homoclinic points and the Maslov index.
Chapter 3: We introduce the spaces M(p, q) and N (p, q), discuss their prop-
erties and prove the general cutting and gluing construction. Then we define
‘coherent’ signs (valid for arbitrary homoclinic points) which allow Z- resp. Z2-
coefficients in case of L-orientation preserving resp. reversing symplectomor-
phisms.
Chapter 4: We define and analyse primary homoclinic points, define primary
homoclinic Floer (co)homology and prove well-definedness.
Chapter 5: We calculate some examples and give a rough classification.



14 Introduction

Chapter 6: We prove the invariance of primary homoclinic Floer homology
under certain symplectic isotopies and deduce an existence and bifurcation cri-
terion.
Chapter 7: We define primary homoclinic Floer homology for diffeomorphisms.
Then we prove invariance under topological and symplectic conjugacy. Moreover
we compare H∗(x, ϕ) and H∗(x, ϕ

n) and define chaotic primary homoclinic Floer
homology. Furthermore we introduce new signs which are only valid for primary
points, but admit also in the L-orientation reversing case Z-coefficients. Finally
we points out why differential graded algebras and A∞-structures cannot be
defined using primary points.
Chapter 8: We discuss the action spectrum and action filtration for primary
homoclinic Floer homology.
Chapter 9: We sketch a generalization of the invariance theorem and point
out an application to Birkhoff invariants. Then we discuss the generalization of
primary homoclinic Floer homology to nonprimary points and to higher dimen-
sional manifolds.
Appendix A: We sketch Melnikov’s perturbation method.
Appendix B: We sketch Lazutkin’s approach and its generalizations.



CHAPTER 2

Foundations

In this chapter we fix some notion and recall some facts from the theory of
(symplectic) dynamical systems, in particular about (un)stable manifolds. Then
we give the definition of homoclinic points and define homotopy classes and a
Maslov index for them.

1. Symplectic dynamical systems

Let (M,ω) be a symplectic manifold of dimension 2n and H : R ×M → R be
a 1-periodic time dependent Hamiltonian function, i.e. H(t, ·) = H(t+ 1, ·) for
all t ∈ R. Setting Ht := H(t, ·) the Hamiltonian vector field Xt := X(t, ·) :=
XH(t, ·) is given by

ω(Xt, ·) = −dHt(·)
which reads in local coordinates (q, p) ∈M

{
q̇ = Hp(t, q, p)

ṗ = −Hq(t, q, p).

Its time dependent flow is given by

ϕ̇t = Xt(ϕt) with ϕ0 = Id

and we call ϕ1 the time-1 map. The 1-periodicity in time of H implies X(t+
1, x) = X(t, x) for all x ∈M and t ∈ R which leads to a Z-action on the solution
space given by n.x(t) := x(t+ n) for a solution x and n ∈ Z.

Instead of considering the dynamics of the flow ϕt we can consider the discrete
dynamical system induced by iterating the time-1 map ϕ1. For instance, in this
way a 1-periodic solution x corresponds to the fixed point x0 := x(0) of the
time-1 map.

In this work we will focus on discrete dynamical systems for which we will now
fix some notation.

For a diffeomorphism ϕ we denote by

Fix(ϕ) := {x ∈M | ϕ(x) = x}
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its fixed point set and we call x ∈ Fix(ϕ) hyperbolic if Dϕ(x) has no eigen
values of modulus 1. The following well-known definition and theorem can be
found for example in the appendix of Palis & Takens [PaT2].

Definition and Theorem 2.1 (Invariant manifold theorem). Let ϕ be a Ck-
diffeomorphism with k ≥ 1 and x ∈ Fix(ϕ) hyperbolic. We call

W s := W s(x) := W s(x, ϕ) := {q ∈M | lim
k→∞

ϕk(q) = x},

W u := W u(x) := W u(x, ϕ) := {q ∈M | lim
k→−∞

ϕk(q) = x}.

the stable and unstable manifolds of ϕ in x. They are injectively immersed
submanifolds of the same differentiability class as ϕ and dimW s resp. dimW s

equals the number of eigenvalues of Dϕ|x with modulus smaller resp. larger than
1. Thus in particular dimW s(x, ϕ) + dimW u(x, ϕ) = dimM .

In order to appreciate the (un)stable manifolds from the symplectic and Hamil-
tonian point of view we introduce the following definitions.

If (V, ω) is a symplectic vector space and W < V a subspace we define W ω :=
{v ∈ V | ω(v, w) = 0 ∀ w ∈W}. W is called isotropic if W < W ω, i.e. ω|W = 0,
and Lagrangian if W = W ω. This implies for the dimensions of V , W and W ω

the relations dimV = dimW + dimW ω and for W isotropic dimW ≤ dimW ω

and for W Lagrangian dimW = 1
2
dim V .

Now consider a submanifold L ⊂ (M,ω) and call L isotropic resp. Lagrangian
if TxL < TxM is isotropic resp. Lagrangian for all x ∈ L. In particular the dimen-
sion of a Lagrangian submanifold equals half of the dimension of the underlying
manifold.

A diffeomorphism ϕ of M is called symplectic or symplectomorphism if
ϕ∗ω = ω. In particular note that the diffeomorphisms ϕt : M → M induced by
the flow of a Hamiltonian system are symplectic.

We prove now that the (un)stable manifolds of a hyperbolic fixed point of a
symplectomorphism are Lagrangian submanifolds.

Proposition 2.2. Let (M2n, ω) be a symplectic manifold and x a hyperbolic
fixed point of a symplectomorphism ϕ. Then the stable and unstable manifold
W s := W s(x, ϕ) and W u := W u(x, ϕ) are Lagrangian.

Proof : ϕ is contracting resp. expanding along W s resp. W u, i.e.
for p ∈ W s and v ∈ TpW

s holds limn→∞ dϕn(p).v = 0 and thus
limn→∞ ω(dϕn(p).v, dϕn(p).w) = 0 for all p ∈ W s and v, w ∈ TpW

s. But since
ϕ∗ω = ω we also have ω(dϕn(p).v, dϕn(p).w) = ω(v, w) for all n ∈ N. Therefore ω
has to vanish along W s, i.e. W s is isotropic and dimTxW

s ≤ dim(TxW
s)ω. Anal-

ogously we deduce W u isotropic. Now suppose W s or W u are not Lagrangian.
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Since x is hyperbolic we have dimW s+dimW u = dimM = 2n and we estimate

2n = dim TxW
s + dimTxW

u

< dim(TxW
s)ω + dim(TxW

u)ω

= 2n− dimTxW
s + 2n− dimTxW

u

= 2n E

2. (Un)stable manifolds and homoclinic points

Within this section M is assumed to be either R2 or a closed two-dimensional
manifold with genus g ≥ 1, but some of the following statements and definitions
are also true in higher dimensions.

Let ϕ : M → M be a diffeomorphism with hyperbolic fixed point x and one-
dimensional (un)stable manifolds W s(x, ϕ) and W u(x, ϕ). In accordance to the
notation in Floer theory and Lagrangian intersection theory we abbreviate

L0 := W u(x, ϕ) and L1 = W s(x, ϕ).

The connected components of Li\{x} are denoted by L+
i and L−

i for i ∈ {0, 1}
and are called the branches of the (un)stable manifolds. The set

H := H(x, ϕ) := L0 ∩ L1

is called the set of homoclinic points of x under ϕ. It consists out of those
points p who approach x under backward and forward iteration of ϕ (note that
we include the fixed point in the definition of H). ϕ induces a Z-action

Z ×H → H, (n, p) 7→ ϕn(p)

which is free on H\{x}. For the remainder of this section fix parametrizations
γi : R → Li for i ∈ {0, 1} as assured by Theorem 2.1. Since L0 and L1 are
1-dimensional we can define

Notation 2.3. The parametrization γi : R → Li induces an ordering <i resp.
≤i on Li via

γi(t) <i γi(s) ⇔ t < s resp. γi(t) ≤i γi(s) ⇔ t ≤ s.

By abuse of notation we can say that p, q ∈ Li induce an ordering on Li via
setting p <i q resp. p ≤i q.

For i ∈ {0, 1} consider p, q ∈ Li and set tpi = γ−1
i (p), tqi := γ−1

i (q), t−i :=
min{tpi , tqi} and t+i := max{tpi , tqi}. We call

[p, q]0 := γ0([t
−
0 , t

+
0 ]) resp. [p, q]1 := γ1([t

−
1 , t

+
1 ])
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the segments in L0 resp. L1 between p and q. The segments are independent
of the chosen parametrization and a priori just sets of points without additional
information like parametrization, orientation etc. Thus [p, q]i = [q, p]i. Analo-
gously we define the open and half-open segments ]p, q[i and [p, q[i.

We have to distinguish carefully between the intrinsic topology of the (un)stable
manifolds induced by the immersions γi and the manifold topology induced by
the topology of M . The γi : R → Li are generally no homeomorphisms onto
their images in the manifold topology. Now a continuous bijective map from a
quasicompact space (i.e. every open covering admits a finite subcovering) to a
Hausdorff space is a homeomorphism. Thus for K ⊂ R compact the restriction
γi|K : K → γi(K) is a homeomorphism. We define the path spaces

P(L0, L1) := {β : [0, 1] →M | β(0) ∈ L0, β(1) ∈ L1},
ΛxM := {β : [0, 1] →M | β(0) = x = β(1)}.

Provide C([0, 1];M) with the compact-open topology and ΛxM ⊂ C([0, 1];M)
with the induced one. On P(L0, L1) we use the smallest topology such that the
following three maps are continuous:

P(L0, L1) → C([0, 1];M), β 7→ β,

P(L0, L1) → R, β 7→ γ−1
0 (β(0)),

P(L0, L1) → R, β 7→ γ−1
1 (β(1)).

We define the concatenation # of two paths α, β : [0, 1] →M with α(1) = β(0)
to be

β#α(t) :=

{
α(2t) for t ∈ [0, 1

2
]

β(2t− 1) for t ∈ [1
2
, 1].

For p ∈ Li let tpi := γ−1
i (p) and define

βp0(t) := γ0(t
x
0 + (tp0 − tx0)t) and βp1(t) := γ1(t

p
1 + (tx1 − tp1)t).

Lemma 2.4. P(L0, L1) and ΛxM are homotopy equivalent and π0(P(L0, L1)) ≃
π1(M,x).

Proof : For the first claim consider β ∈ P(L0, L1) and abbreviate β0 := β
β(0)
0

and β1 := β
β(1)
1 . Define the maps

f : P(L0, L1) → ΛxM, β 7→ β1#(β#β0),

g : ΛxM → P(L0, L1), β 7→ β

and calculate f(g(β)) = β1#(β#β0) where β0 ≡ x ≡ β1. Then

H : [0, 1] × ΛxM → ΛxM,

H(τ, β)(t) := β1#(β#β0)((−3
4
τ + 1)t+ 1

4
τ)
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satisfies H(0, β)(t) = β1#(β#β0)(t) and H(1, β)(t) = β(t) and therefore f ◦ g ≃
IdΛxM .
In order to show g ◦ f ≃ IdP(L0,L1) calculate g(f(β)) = β1#(β#β0). Consider

H : [0, 1] × P(L0, L1) → P(L0, L1),

H(τ, β)(t) := β1#(β#β0)((−3
4
τ + 1)t+ 1

4
τ)

which fulfils H(0, β)(t) = β1#(β#β0)(t) and H(1, β)(t) = β(t) and therefore
g ◦ f ≃ IdP(L0,L1).
For the second claim recall from algebraic topology (see Spanier [Sp] § 1.6) that
the suspension S of a sphere Sk is homeomorphic to Sk+1, i.e. S(Sk) ≃ Sk+1 for
k ≥ 0. Moreover, if X and Y are pointed topological spaces and if Ω(Y ) denotes
the pointed loop space of Y then the mapping classes [S(X), Y ] ≃ [X,Ω(Y )]
are equivalent. In our context this yields πk+1(M,x) ≃ πk(ΛxM) for k ≥ 0 and
therefore we obtain using the first claim π0(P(L0, L1)) ≃ π0(ΛxM) ≃ π1(M,x).

Now we want to assign to each p ∈ H a homotopy class in π0(P(L0, L1)) ≃
π1(M,x).

Definition 2.5. Let p ∈ H and denote by cp : [0, 1] → L0 ∪ L1 the curve with
cp(0) = x = cp(1) which runs through [x, p]0 to p and through [p, x]1 back to x.
Set [p] := [cp] ∈ π1(M,x) and [−p] for the path with the inverse parametrization
and define for γ ∈ π1(M,x)

Hγ := {p ∈ H | [p] = γ}.
Later on we will mostly use the following class of homoclinic points:

Definition 2.6. p ∈ H is called contractible if [p] = [x].

Since there is the natural Z-action by ϕ on H we have to ask if and under which
conditions some of the homotopy classes or even the whole decomposition

H =
⋃

γ∈π1(M,x)

Hγ

stay invariant under the action.

Lemma 2.7. (1) For all diffeomorphisms ϕ the class of contractible homo-
clinic points H[x] is invariant under the action of ϕ.

(2) Let ϕ = ϕ1 be the time-1 map of a flow. Define ξ : S1 → M , ξ(t) :=
ϕt(x) and assume ξ contractible or π1(M,x) abelian. Then [p] = [ϕn1 (p)]
for all p ∈ H and n ∈ Z, i.e. the decomposition H =

⋃
γ∈π1(M,x) Hγ is

compatible with the action.
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Proof : The first claim is clear.
The rough idea for the second claim is to consider cp from Definition 2.5 and
τ 7→ ϕτ (cp) and adjust the endpoints in order to obtain a homotopy within
ΛxM . Thus for a path c ∈ ΛxM and τ ∈ [0, 1] define βcτ ∈ ΛxM via

βcτ (t) :=






ϕ4tτ (x) for t ∈ [0, 1
4
],

ϕτ (c(4(t− 1
4
))) for t ∈ [1

4
, 1

2
],

ϕ2τ(1−t)(x) for t ∈ [1
2
, 1].

Note that by change of parametrization βc0 is homotopic to c and that βc1 =
ξ̄#(c#ξ) where ξ̄(t) := ξ(1 − t). Since Li is invariant under ϕ1 we obtain
ϕ1([x, p]i) = [x, ϕ1(p)]i for i ∈ {0, 1} and therefore ϕ1(cp) = cϕ1(p).
This yields [cp] = [ξ̄] ∗ [cϕ1(p)] ∗ [ξ] = [ξ]−1 ∗ [cϕ1(p)] ∗ [ξ] ∈ π1(M,x). If [ξ] is
trivial or if π1(M,x) is commutative we get [cp] = [cϕ1(p)] ∈ π1(M,x) and thus
[p] = [ϕ1(p)] and the claim follows by induction.

To get a feeling about the geometric meaning of those homotopy classes consider

Example 2.8. (1) For a homoclinic tangle in R2 like in figure 2.2 the de-
composition H =

⋃
γ∈π1(R2,x) Hγ is trivial since π1(R

2, x) = 0.

(2) Consider the discrete dynamical system generated by the time-1 map ϕ1

of a Hamiltonian system on an annulus or cylinder. Since its funda-
mental group equals Z we get the decomposition H =

⋃
n∈Z

Hn where
Hn consists of those homoclinic points p whose trajectories t 7→ ϕt(p)
travel n times around the cylinder resp. the center of the annulus.

3. Maslov index and Maslov grading

Denote by L(n) the space of Lagrangian subspaces of (R2n, ω0) with ω0 :=∑n
i=1 dxi ∧ dyi. The following can be found for instance in McDuff & Salamon

[McS2], §2.2, §2.3.
The unitary group U(n) is a maximal compact subgroup of the symplectic group
Sp(2n) and the quotient Sp(2n)/U(n) is contractible. Since the determinant det :
U(n) → S1 induces an isomorphism of fundamental groups we get π1(Sp(2n)) ≃
Z. And since L(n) is naturally isomorphic to U(n)/O(n) there is also π1(L(n)) ≃
Z. Explicit isomorphisms are given by the Maslov index which we will define now.

First consider Sp(2n). Each Ψ ∈ Sp(2n) can be uniquely decomposed as Ψ =

P ◦ Q where P := (Ψ ◦ ΨT )−
1
2 is symmetric and positive definite and Q :=

(Ψ◦ΨT )−
1
2 ◦Ψ ∈ Sp(2n)∩O(2n) is orthogonal and can be written asQ =:

(
X −Y
Y X

)
.

Setting

ρ : Sp(2n) → S1, ρ(Ψ) := det(X + iY )
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we define for a loop Ψ : R/Z → Sp(2n) the Maslov index of loops of
symplectic matrices to be

µ(Ψ) := deg(ρ ◦ Ψ)

where deg is the mapping degree of ρ ◦ Ψ : R/Z → S1. For a lift α : R → R of
ρ ◦ Ψ, i.e. det(X(t) + iY (t)) = e2πiα(t), holds

µ(Ψ) = α(1) − α(0).

Now consider L(n): Represent Λ ∈ L(n) by Λ =
(
X
Y

)
where U := X+ iY ∈ U(n)

and define
ρ : L(n) → S1, ρ(Λ) := det(U ◦ U)

where the square of U is needed since we consider unoriented Lagrangian sub-
spaces. For a loop Λ : R/Z → L(n) define the Maslov index of loops of
Lagrangian subspaces by

µ(Λ) := deg(ρ ◦ Λ)

where deg denotes the mapping degree of ρ ◦ Λ : R/Z → S1. If α : R → R is a
lift of ρ ◦ Λ, i.e. if

det(X(t) + iY (t)) = eiπα(t)

we get
µ(Λ) = α(1) − α(0).

The Maslov index of Lagrangian subspaces has the following properties:

Theorem 2.9. The Maslov index is the unique isomorphism µ : π1(L(n)) → Z

which satisfies

(1) Homotopy: Two loops in L(n) are homotopic if and only if they have
the same Maslov index.

(2) Product: If Λ : R/Z → L(n) and Ψ : R/Z → Sp(2n) then

µ(Ψ ◦ Λ) = µ(Λ) + 2µ(Ψ).

In particular, for Ψ ≡ Ψ0 constant we have µ(Ψ ◦Λ) = µ(Λ); and for a
constant loop Λ(t) ≡ Λ0 holds µ(Λ) = 0.

(3) Direct sum: For n = n′ + n′′ identify L(n′) ⊕L(n′′) as a submanifold
of L(n). Then µ(Λ′ ⊕ Λ′′) = µ(Λ′) + µ(Λ′′).

(4) Normalization: Λ : R/Z → L(n), t 7→ eiπtR ⊂ R2 ≃ C has Maslov
index 1.

In two dimensions we have Sp(2) = SL(2) and every 1-dimensional subspace is
Lagrangian. Therefore we can assign a Maslov index to a smooth loop γ : R/
Z → R2 with γ̇ 6= 0 by defining it as the Maslov index of Γ : R/Z → L(1) ,
t 7→ Γt := Span

R
{γ̇(t)}. In fact the Maslov index of γ equals twice its tangent

winding number.
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Now consider a symplectomorphism ϕ with fixed point x. We assume all homo-
clinic points with which we deal in the remainder of this section to be transverse
intersection points of L0 and L1. Since ϕ is symplectic L0 and L1 are Lagrangian
by Proposition 2.2.

We want to define a (relative) Maslov index for p, q ∈ H. Consider p and q as
constant paths in P(L0, L1). Since the following construction requires a path u
connecting p and q in P(L0, L1) it works only for points in the same connected
component of P(L0, L1). The following approach is due to Viterbo [V] and Floer
[Fl1].

Fix α ∈ P(L0, L1) and denote its connected component by Pα(L0, L1). Consider
the constant paths p, q ∈ Pα(L0, L1). (In dimension two this means [p] = [q] =
[α] in the light of Definition 2.5.) Let u : [0, 1] → P(L0, L1) with u(0) ≡ p
and u(1) ≡ q and see it as map u : [0, 1]2 → M via u(s, t) := u(s)(t). The
square [0, 1]2 is contractible and we can find a trivialization Φ := Φu : u∗TM →
[0, 1]2 × R2n with

• the symplectic form on the fibers is mapped to the standard ω0 on
R2n ≃ Cn,

• Φ is constant on {0} × [0, 1] and on {1} × [0, 1],
• Φ(TpL1) = iΦ(TpL0) and Φ(TqL1) = iΦ(TqL0).

Denote by ∂[0, 1]2 the boundary of [0, 1]2 and define the loop Λu : ∂[0, 1]2 →
L(n) starting in (0, 0) and running through (1, 0), (1, 1) and (0, 1) back to (0, 0)
piecewise via

(s, 0) 7→ Φ(Tu(s,0)L0),

(1, t) 7→ e
iπt
2 Φ(TqL0),

(s, 1) 7→ Φ(Tu(s,1)L1),

(0, t) 7→ e
iπ(t−1)

2 Φ(TpL1).

Definition 2.10. Under the above conventions we define the relative Maslov
index for p, q ∈ H via µ(p, q) := µ(Λu).

Since π2(M) = 0 and therefore c1|π2(M) = 0 (where c1 denotes the first Chern
class) the construction is independent from the choosen path u and the trivial-
ization Φ. Therefore µ(p, q) is well-defined.

For the remainder of this section we assume (M,ω) to be two-dimensional. We
obtain for the contractible homoclinic points:

Proposition 2.11. Consider p, p̃, q ∈ H with [p] = [p̃] = [q] = [x]. Then

(1) µ(q, p) = −µ(p, q) and µ(p, q) + µ(q, p̃) = µ(p, p̃).



3 Maslov index and Maslov grading 23

1 2 1 1

0 1 0 1 0 1

22

p
2

0 1

p 3
4 5

4 3
12

L1

L0

L0

L1

(a) ‘n-legged camel’ (b) ‘cycle’

Figure 2.1. The Maslov index µp(q) := µ(q, p)

(2) µ(p, q) = µ(ϕn(p), ϕn(q)) for n ∈ Z, i.e. the (relative) Maslov index of
p and q is invariant under the Z-action of ϕ on H.

(3) µ(p, ϕn(p)) = 0 for all n ∈ Z.
(4) µ(p, q) = µ(p, ϕn(q)) for n ∈ Z.

Proof : The first item follows from the concatenation of the paths.
For the second one choose for p and q a smooth u : [0, 1]2 →M and a trivializa-
tion Φ : u∗TM → [0, 1]2×R2n as used in Definition 2.10 in order to define µ(p, q).
Setting Ψ := Φ ◦ (Dϕ)−1 yields a trivialization Ψ : (ϕ ◦ u)∗TM → [0, 1]2 × R2

which satisfies the hypothesis of Definition 2.10 and yields Λu = Λϕ◦u. This
implies µ(p, q) = µ(ϕ(p), ϕ(q)) and the claim follows by induction.
The third item is true since [x] = [p] = [ϕn(p)] by assumption and by Lemma
2.7 such that we can decompose and write using the first and second item

µ(p, ϕn(p)) = µ(p, x) + µ(x, ϕn(p)) = µ(p, x) − µ(ϕn(p), x)

= µ(p, x) − µ(ϕn(p), ϕn(x)) = µ(p, x) − µ(p, x)

= 0.

The fourth item follows from the third item and µ(p, ϕn(q)) = µ(p, q) +
µ(q, ϕn(q)) = µ(p, q).

Now we want to induce a grading by the (relative) Maslov index on the set of
contractible points in H.

Definition 2.12. For p ∈ H with [p] = [x] we set µ(p) := µx(p) := µ(p, x)
which defines a grading µ : H[x] → Z such that

H[x] =
⋃

n∈Z

Hn
[x] for Hn

[x] := {p ∈ H[x] | µ(p) = n}.

Now we describe and sketch some examples for the Maslov index and the induced
grading.
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Figure 2.2. Homoclinic tangle with Maslov grading µ(p) := µ(p, x)

‘Cycles’ or ‘n-legged camels’ (see figure 2.1) can produce strictly increasing or
alternating sequences of Maslov indices. ‘Camels’ and ‘cycles’ definitively can
occur in homoclinic tangles, see Contopoulos & Polymilis [CP].
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In figure 2.2 the Maslov index µ(p) := µ(x, p) is computed for (parts of) a
homoclinic tangle in R2. Since 0 = π1(R

2, x) = π0(P(L0, L1)) the path space
P(L0, L1) consists of one connected component. Obvioulsy µ(p) can become
arbitrarily high.





CHAPTER 3

Immersions, gluing and cutting

In this chapter we define and discuss the spaces of immersed 2-gons needed for
the definition of the Floer differential later on. Then we present the gluing and
cutting construction on which the vanishing of the square of the Floer differential
relies. Finally we introduce coherent orientations.

Within this chapter the symplectic manifold (M,ω) is either a closed surface with
genus g ≥ 1 or (R2, ω). ϕ : M → M is a symplectomorphism with hyperbolic
fixed point x and (un)stable manifolds L0 := W u(x, ϕ) and L1 := W s(x, ϕ) and
H := L0 ∩ L1. The connected components of Li\{x} are denoted by L+

i and
L−
i for i ∈ {0, 1} and are called the branches of the (un)stable manifolds. We

assume all appearing homoclinic points to be transverse intersection points.
There is a Z-action of ϕ on H given by Z×H → H, (n, p) 7→ ϕn(p) which is free
on H\{x}. Our convention for the Maslov index is µ(p) := µ(p, x) and therefore

µ(p, q) = µ(p, x) + µ(x, q) = µ(p, x) − µ(q, x) = µ(p) − µ(q).

1. Di-gons and hearts

In this section we will define and discuss the moduli spaces which we need for
the definition of the coefficients in the Floer differential.

p0

p1

p3

Image of a convex vertex

p4

p2

(a) (b)

Convex vertices: p0, p1, p3, p4

Concave vertices: p2

Figure 3.1. Convex and concave vertices
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B1
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B1

(b) (c)(a)

-1 11-1
D

Db Dc

Figure 3.2. Di-gon and heart

We call a vertex of a polygon in R2 concave if the imaginary continuations of
the two edges which meet in the vertex pass through the interior of the polygon
after meeting in the vertex. Otherwise the vertex is called convex. The situation
is sketched in figure 3.1 (a).

In the following we need a special kind of polygons, namely

Definition 3.1. (1) A di-gon is the polygon D ⊂ R2 with two convex
vertices at (−1, 0) and (1, 0) sketched in figure 3.2 (a). Denote its upper
boundary (edge) by B1 and its lower boundary by B0.

(2) A heart shaped polygon or briefly a heart is either the polygon
Db of figure 3.2 (b) or the polygon Dc of figure 3.2 (c). A heart is
characterised by two vertices at (−1, 0) and (1, 0) where one is convex
and one concave. Denote their upper boundaries by B1 and their lower
boundaries by B0.

Di-gons also appear in the literature as 2-gons, lunes or half-moons, see
Chekanov [Che], de Silva [dS], Gautschi & Robbin & Salamon [GauRS] or
Robbin [R].

We recall that a smooth immersion is a smooth map with injective differen-
tial. If the domain of definition is a polygon we require the map to
be an immersion also on the boundary, i.e. also in the vertices. This
requirement implies the following important fact:

Remark 3.2. The image of a small neighbourhood of a convex (concave) vertex
of a polygon under an orientation preserving immersion is a wedge-shaped region
with angle smaller (larger) than π, see figure 3.1 (b).

Now we are able to define the moduli spaces which we need for the definition of
the Floer differential.
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(a) 1 disk

L0
L1

q

p

(b) 2 disks

q

p

Figure 3.3

Definition 3.3. Let D be the di-gon and p, q ∈ H with µ(p, q) = 1. We define
M(p, q) to be the space of smooth, immersed di-gons u : D → M satisfying

(1) u is orientation preserving,
(2) u(B0) ⊂ L0 and u(B1) ⊂ L1,
(3) u((−1, 0)) = p and u((1, 0)) = q.

Denote by G(D) the group of orientation preserving diffeomorphisms of D which

preserve the vertices and call M̂(p, q) := M(p, q)/G(D) the space of un-
parametrized immersed di-gons.

Recall that for p, q ∈ H there is exactly one segment [p, q]i, i ∈ {0, 1} joining
them (see figure 3.3 (a)) and that π2(M) = 0 since M is a closed two-dimensional

manifold with genus g ≥ 1 or R2. Therefore it is easy to see that #M̂(p, q) ∈
{0, 1} for p and q with µ(p, q) = 1. Note that for closed L0 and L1 there might
be two connecting segments between p and q in each of the Li and maybe
two unparametrized immersions with µ(p, q) = 1 and the correct boundary
conditions, see figure 3.3 (b).

For the gluing and cutting procedure later on we need the following moduli
spaces.

Definition 3.4. Consider the hearts Db and Dc and p, q ∈ H with µ(p, q) = 2.
We define Nb(p, q) resp. Nc(p, q) to be the space of smooth immersed hearts
u : Db →M resp. u : Dc →M satisfying

(1) u is orientation preserving,
(2) u(B0) ⊂ L0 and u(B1) ⊂ L1,
(3) u(−1, 0) = p and u(1, 0) = q.

We set N (p, q) := Nb(p, q) ∪̇ Nc(p, q). Denote by G(Db) resp. G(Dc) the group
of orientation preserving diffeomorphisms of Db resp. Dc which preserve the

vertices and let N̂b(p, q) := Nb(p, q)/G(Db) resp. N̂c(p, q) := Nc(p, q)/G(Dc) and
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Figure 3.4. Shapes for immersions with µ(p) = µ(q) + 1 = µ(r) + 2

N̂ (p, q) := N̂b(p, q) ∪̇ N̂c(p, q) be the spaces of unparametrized immersed
hearts.

The decomposition N (p, q) = Nb(p, q) ∪̇ Nc(p, q) is a disjoint union due to
Remark 3.2.

Now we are interested in the geometric relation of M(p, q), M(q, r) and N (p, r)
for µ(p, q) = 1 = µ(q, r). Drawing one element of M(p, q) and one of M(q, r)
under the condition µ(p, q) = 1 = µ(q, r) yields two possible configurations and
within each two possible choices for q, namely the left sketches in figure 3.4 (a)
and (b). The gluing procedure Theorem 3.14 will recognize them as elements of
Nb(p, r) resp. Nc(p, r). The intersection point q is labeled qi for i ∈ {0, 1} if it
arises as intersection point of the continuation of [p, r]i after passing the concave
vertex through the ‘interior’ of the heart.
Sometimes it is more convenient to draw the ‘heart-shaped’ configurations in the
left part of figure 3.4 (a) and (b) with one edge mapped to the horizontal axis as
it is exemplarily done in the right part of figure 3.4 (a) and (b). We summarize
our considerations to

Remark 3.5. Consider p, q, r ∈ H with [p] = [q] = [r] and µ(p, q) = 1 = µ(q, r)
and let u ∈ M(p, q) and v ∈ M(q, r). Geometrically this configuration can be
realized only by the left sketches in figure 3.4 (a) and (b) with q ∈ {q0, q1}.
In the following we will briefly use immersion or more explicitly immersion of
(relative) index 1 resp. 2 for immersed di-gon or immersed heart and anal-
ogously for embedding. Remark 3.2 justifies to call a vertex of an immersion
convex (concave) if it is the image of a convex (concave) vertex of the di-gon
or heart.

2. The winding number

If we work with the spaces M(p, q) and N (p, r) we always implicitly assume p,
q, r ∈ H with [p] = [q], [p] = [r], µ(p, q) = 1 and µ(p, r) = 2.
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Consider the universal cover τ : M̃ → M with induced orientation as topo-
logical manifold. For all z̃ ∈ M̃ the orientation induces an isomorphism
H2(M̃, M̃\{z̃}) ≃ Z and the contractibility of M̃ ≃ R2 implies H1(M̃\{z̃}) ≃
H2(M̃, M̃\{z̃}). Denote by [S1] the fundamental class of S1.
Now consider a continuous path γ̃ : S1 → M̃ and z̃ ∈ M̃\ Im(γ̃). We define the
winding number of γ̃ w.r.t. z̃ by Indγ̃(z̃) := γ̃∗([S

1]) ∈ H1(M\{z̃}) ≃ Z.

Identifying M̃ with R2 by an orientation preserving diffeomorphism the winding

number also can be seen as mapping degree of S1 → S1, t 7→ γ̃(t)−z̃
|γ̃(t)−z̃| .

For the concrete computation of the winding number the following observation
is very helpful.

Remark 3.6. Let γ̃ : S1 → M̃ , z̃ ∈ M̃\ Im(γ̃) and ρ : R+
0 → M̃ ≃ R2 be smooth

and regular with ρ(0) = z̃ and such that ρ escapes to infinity for t → ∞ and is
transverse to γ̃. Then

Indγ̃(z̃) =
∑

t∈S1

γ̃(t)∈Im(ρ)

sign(det(ρ̇(st), ˙̃γ(t)))

where ρ(st) = γ̃(t).

Since the di-gon D and the hearts Db and Dc are contractible a continuous map
u from the di-gon or a heart to M can be lifted to M̃ . If p is a vertex and
p̃ ∈ τ−1(p) then there is a unique lift ũ with ũ(−1, 0) = p̃.

Definition 3.7. Let A stand for D, Db or Dc and consider u : A → M and a
lift ũ : A→ M̃ of u.
The winding number Indũ(z̃) of ũ w.r.t. z̃ ∈ M̃\ũ(∂A) is defined as the
winding number of the path ũ|∂A w.r.t. z̃ with ∂A parametrized counterclockwise.
The winding number of u w.r.t. z ∈M\u(∂A) is defined as

Indu(z) :=
∑

z̃∈τ−1(z)

Indũ(z̃)

Indu does not depend on the choice of the lift ũ and the sum is finite since Indũ
vanishes for all z̃ lying in the unbounded component of M̃\ũ(∂A).

Apart from Remark 3.6 there is another way to compute the winding number
of a continuous map ũ : A → M̃ where A again stands for D, Db or Dc. For
z̃ ∈ M̃\ũ(∂A) let B̃ be a small ball around z̃ and similarly consider small balls Bi

around the zi ∈ τ−1(z̃). Identify ∂B ≃ S1 ≃ ∂Bi and set Â := A\(⋃zi∈τ−1(z̃)Bi).
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Then using some kind of ‘local degree’ (see Bredon [Br]) we obtain

Indũ(z̃) = deg(∂A → ∂B̃)

= deg(∂Â → ∂B̃) + deg(
⋃

zi∈τ−1(z̃)

∂Bi → ∂B̃).

Now recall the following fact from topology (see for example Milnor [Mi]): If Nn

and P n are compact orientable manifolds of dimension n without boundary and
if a smooth α : Nn → P n can be extended smoothly to some (n+1)-dimensional
manifold Qn+1 with ∂Qn+1 = Nn then deg(α) = 0.

Recognizing Â as Qn+1 and (
⋃
zi∈τ−1(z̃) ∂Bi) ∪ ∂A as Nn we deduce deg(∂Â →

∂B̃) = 0 whereas the term deg(
⋃
zi∈τ−1(z̃) ∂Bi → ∂B̃) yields for orientation

preserving immersions the following:

Remark 3.8. For u ∈ M(p, q) and z ∈ M\u(∂D) we have

Indu(z) = #u−1(z)

and therefore in particular Indu ≥ 0. The analogous result is true for v ∈ N (p, r).

Remark 3.8 yields a simple criterion if a given u might be an immersion or not:

Corollary 3.9 (Criterion). Let A stand for D, Db or Dc and consider a smooth
u : A → M . If there is a component of M\u(∂A) with Indu < 0 then u is no
immersion.

This criterion easily yields the following result:

Remark 3.10. Since in dimension two the Maslov index is twice the winding
number of the tangent vector the shapes of figure 3.5 (a) are the only schematic
sketches of relative index 0. From Corollary 3.9 follows that there cannot be
immersions between points of relative index 0 since there are components with
Ind < 0. Note that for immersions from p to q with µ(p, q) = 1 there might exist
p′ ∈ ]p, q[0 ⋔ ]p, q[1 with µ(p, p′) = 0, see figure 3.5 (b).

Now we want to express in terms of the winding number if a points lies in the
image of the immersion or not.

Definition 3.11. Let u ∈ M(p, q). The union of those components of M\u(∂D)
with Indu > 0 is called the interior Int(u) of u. The union of the others is called
the exterior Ext(u) of u (their winding number vanishes). And similarly for
v ∈ N (p, r).

Now consider the universal covering τ : (M̃, ω̃) → (M,ω) with τ ∗ω = ω̃ and
observe

Lemma 3.12. Let p, q ∈ H and [p] = [q] and denote by [p̃, q̃]i the lift of [p, q]i
starting in p̃ ∈ τ−1(p) to the universal cover (M̃, ω̃). Then µ(p, q) = µ(p̃, q̃).
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Figure 3.5. Shapes for relative index 0

Proof : Let u and the trivialization Φ : u∗TM → [0, 1]2 × R2n be as needed
for Definition 2.10 and denote by ũ the lift of u starting in p̃ and by q̃ the
accordingly lifted q. Then Φ̃ : ũ∗TM̃ → [0, 1]2 × R2n, Φ̃(z, v) := Φ(z,Dτ(v))) is
an analogous trivialization for ũ. Since Dτ(Tũ[p̃, q̃]i) = TuLi for i ∈ {0, 1} the
loops Λu and Λũ coincide and thus µ(p, q) = µ(Λu) = µ(Λũ) = µ(p̃, q̃).

The next statement will be needed among others for the existence of the ‘cutting
points’ in the cutting construction Theorem 3.16. There we will need to know
that the vertices of an immersion are not multiply covered. Now choose a metric
on M . Since the image of our immersions stays in a compact region the following
does not depend on the choice of the metric.

Proposition 3.13. Let u ∈ M(p, q). Then there is ε > 0 such that Up :=
u−1(Bε(p)) is a connected neighbourhood of (−1, 0) ∈ D with u|Up injective.
As a consequence Indu = 1 on Bε(p)∩u(D) and u(Up) is the wedge-shaped piece
of Bε(p) bounded by ([p, q]0 ∪ [p, q]1) ∩ Bε(p) with angle < π.
An analogous statement is true for q. For v ∈ N (p, r) with vertices p and r the
only change is > π for the concave vertex.

Here the lack of self-intersections of L0 and L1 plays an important role — oth-
erwise the lemma is not true, see figure 3.6 (a).

Proof : There is ε > 0 such that Bε(p) ∩ ([p, q]0 ∪ [p, q]1) consists of two
segments [p, pε0]0 and [p, pε1]1. Denote the wedge-shaped region of Bε(p)\([p, pε0]0∪
[p, pε1]1) with angle < π by W := W (p) and the other one by W c := W c(p).
Consider a path ρ transverse to [p, q]0∪ [p, q]1 starting in W and passing through
W c to the exterior of u ∈ M(p, q). Remark 3.6 implies Indu(W ) = Indu(W

c)+1,
i.e. points in W have one pre-image more than those in W c according to Remark
3.8.
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Self-intersection(a)

(d) No overlapping on R2

No self-intersection; negative winding number(b)

(c) Overlapping on T 2 = R2/Z2
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Figure 3.6. Behaviour near vertices

We want to prove Indu(W
c) = 0 via contradiction. Therefore assume (w.l.o.g.)

Indu(W
c) = 1.

Consider the lift ũ of u starting in p̃ ∈ τ−1(p) and denote the lifts of Bε(p), W
and W c containing p̃ resp. having p̃ as vertex by Bε(p̃), W̃ and W̃ c. Assume
for simplicity that the lift [p̃, q̃]0 of [p, q]0 is a straight line segment and all
intersections with [p̃, q̃]1 are orthogonal. The Maslov index stays the same under
lifting according to Lemma 3.12.
There are two cases: Either #ũ−1(z̃) = 1 for z̃ ∈ W̃ c as indicated in figure 3.6
(b) or #ũ−1(z̃) = 0 as sketched in figure 3.6 (b) and (c).
Case #ũ−1(z̃) = 1 (figure 3.6 (b)): Consider a parametrized line l : R → M̃

parallel to [p̃, q̃]0 and passing sufficiently close. Let the tangent vector ~l and
∂sũ(·, 0) point in the same direction. Since [p̃, q̃] is a straight line segment the
Maslov index of ũ equals twice the tangent winding number of [p̃, q̃]1 which

therefore equals 1
2
. This implies

∑
ũ(s,0)∈Im(l) det(~l, ∂su(s, 1)) = 0. For ζ ∈ [p̃, q̃]0

denote by lζ the point in Im(l) closest to ζ and set l≥ζ := l([l−1(lζ),∞[).

Then
∑

ũ(s,0)∈l≥p̃ det(~l, ∂su(s, 1)) = 1. Thus there is z̃′ ∈ l≥p̃ such that
∑

ũ(s,0)∈l≥z̃′ det(~l, ∂su(s, 1)) = −1. But then Indũ(z̃
′) = −1 and ũ is no immersion

by Corollary 3.9.
Case #ũ−1(z̃) = 0 (figure 3.6 (c), (d)): we demonstrate the proof for M = T 2 =
R2/Z2. For surfaces with higher genus it is similar. Denote by Γ ≃ Z2 the group
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Figure 3.7. Gluing in 2 dimensions

of deck transformations of τ : R2 → R2/Z2. Since #ũ−1(z̃) = 0 for z̃ ∈ W̃ c, but
#u−1(τ(z̃)) = 1 there is γ ∈ Γ such that #ũ−1(γ.z̃) = 1 resp. Indũ(γ.z̃) = 1, see
figure 3.6 (c) and (d). Therefore the segment [p̃, q̃]1 has to pass γ.z̃ on the left
and above before reaching q̃. Now consider this situation after applying τ : As
sketched in figure 3.6 (c) we obtain a self-intersection of [p, q]1, but L1 is free of
self-intersections — contradiction.
Therefore Indu(W

c) = 0 and Indu(W ) = 1 and Up := u−1(Bε(p)) = u−1(W ) is
the desired neighbourhood for ε > 0 small enough.
The proof for the other vertex q proceeds similarly and so does the proof for
v ∈ N (p, r).

3. Gluing and cutting

In this section we will define and prove the gluing and cutting procedure which
is the crucial technic in order to show that the square of the Floer differential
vanishes.

Briefly, gluing of two immersed di-gons u ∈ M̂(p, q) and v ∈ M̂(q, r) with
µ(p, q) = 1 = µ(q, r) (and therefore µ(p, r) = 2) is the construction which

recognizes the tupel (u, v) as an element of N̂ (p, r).

Cutting is the ‘inverse’ construction which starts with w ∈ N̂ (p, r) and finds
two significant points q0, q1 ∈ H such that w can be seen either as tupel (u, v) ∈
M̂(p, q0) × M̂(q0, r) or as tupel (u′, v′) ∈ M̂(p, q1) × M̂(q1, r).

First consider the gluing construction.

Theorem 3.14 (Gluing). Let p, q, r ∈ H with [p] = [q] = [r] and µ(p, q) = 1 =

µ(q, r). Let u ∈ M̂(p, q) and v ∈ M̂(q, r). Then the gluing procedure # for

u and v yields an immersed heart w := v#u ∈ N̂ (p, r).

Proof : Recall from Remark 3.5 and figure 3.4 the geometric positions of p,
q and r forced by the index and the existence of u and v. Exemplarily consider
the configuration of figure 3.4 (a) for q = q0 which is resketched on the left of
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figure 3.7. The gluing construction glues u ∈ M(p, q0) and v ∈ M(q0, r) along
the common boundary segment [p, q0]0. After adjusting the domain of definition
this yields w := v#u ∈ N (p, r) as sketched in figure 3.7. For technical details we
refer to Chekanov [Che], de Silva [dS], Gautschi & Robbin & Salamon [GauRS]
or Robbin [R].

Now we turn to the cutting procedure. The proof of the cutting construction
differs considerably from the one for compact Lagrangian submanifolds which
can be found in Chekanov [Che], de Silva [dS], Gautschi & Robbin & Salamon
[GauRS] or Robbin [R].

For the existence of the ‘cutting points’ we need the existence of certain homo-
clinic points, more precisely we define

Definition 3.15. We call L0 and L1 strongly intersecting (w.r.t. x) if each
branch of L0 intersects each branch of L1, i.e. L+

i ∩ L+
j 6= ∅ 6= L−

i ∩ L+
j for

i, j ∈ {0, 1} and i 6= j.

We call a set generic (in the sense of Baire) if it is a countable intersection of
open and dense sets. A property is called generic if it holds on a generic set.

Generically homoclinic points are transverse. If M is an orientable closed surface
and if Diffω(M) carries the C1-topology then to be strongly intersecting w.r.t a
fixed point is a generic property of a symplectomorphism (see Takens [Ta] for
dimension two and Xia [Xia1] for higher dimensional compact manifolds). For
Cr-topology with 1 ≤ r ≤ ∞ there are results by Robinson, Pixton and Oliveira
on S2 and T 2 (cf. Xia [Xia4]). If the action of the symplectomorphism on the
first homology group is irreducible then Oliveira [Ol] proved Cr-genericity for
closed surfaces with genus g ≥ 2. This hypothesis is not fulfilled by symplecto-
morphisms isotopic to the identity, for example Hamiltonian diffeomorphisms.
For symplectomorphisms isotopic to the identity on closed surfaces Xia [Xia3]
proved strongly intersecting to be Cr-generic.

Now we can formulate the cutting theorem which describes the ‘inverse’ proce-
dure to the gluing construction.

Theorem 3.16 (Cutting). Let L0 and L1 be strongly intersecting and transverse.
Let p, r ∈ H with [p] = [r] and µ(p, r) = 2 and w ∈ N (p, r). Then there are
unique q0, q1 ∈ H with µ(p, qi) = 1 = µ(qi, r) and ui ∈ M(p, qi), vi ∈ M(qi, r)
such that vi#ui = w for i ∈ {0, 1}.
Before we turn to the proof of Theorem 3.16 we need to know in which way
a symplectomorphism can act on its (un)stable manifolds. The following two
classical theorems can be found for instance in Arrowsmith & Place [ArP].
First recall
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Theorem 3.17 (Hartman-Grobman). Let x be a hyperbolic fixed point of ϕ ∈
Diff(M). Then there is a neighbourhood U ⊂ M of x and a neighbourhood V ⊂
TxM of 0x ∈ TxM such that ϕ|U is topologically conjugate to Dϕ(x)|V .

This is wrong for non-hyperbolic fixed points since in that case also the higher
derivatives are important for the behaviour near x.

Theorem 3.17 relates the local behaviour of ϕ around x to the linearization
Dϕ(x). If we want to distinguish the behaviour of our systems near x we have
to ask how many linear systems with ‘different’ behaviour exist.

Theorem 3.18. Let A and B be two hyperbolic real matrices (i.e. no eigen-
values of modulus 1) and see them as linear diffeomorphisms of Rn and denote
by Ei

A and Ei
B for i ∈ {u, s} their (un)stable eigenspaces. Then A and B are

topologically conjugate if and only if:

(1) dimEs
A = dimEs

B (or equivalently dimEu
A = dimEu

B).
(2) For i ∈ {s, u} the restrictions A|Ei

A
and B|Ei

B
are either both orientation

preserving or both orientation reversing.

If we count now the possible combinations for different behaviour we notice 4n
topological types of hyperbolic linear diffeomorphisms on Rn. Thus there are
4n types of local behaviour of a diffeomorphism on a n-dimensional manifold
around a hyperbolic fixed point.

In this work we are mostly interested in symplectic diffeomorphisms which sim-
plifies the situation considerably:

Corollary 3.19. There are only 2 types of local behaviour of a symplecto-
morphism ϕ on an 2n-dimensional manifold around a hyperbolic fixed point x:
Either ϕ is orientation preserving on W s(x, ϕ) and W u(x, ϕ) or ϕ is orientation
reversing on both.

Proof : Let ϕ be a symplectomorphism with hyperbolic fixed point x. If λ is an
eigenvalue of Dϕ(x) so are λ̄, 1

λ
and 1

λ̄
. Since |λ| 6= 1 we get w.l.o.g. |λ| = |λ̄| > 1

and | 1
λ
| = | 1

λ̄
| < 1 and therefore always dimW s(x, ϕ) = dimW u(x, ϕ) = n.

From detDϕ(x) = 1 follows Dϕ(x) orientation preserving and therefore either
orientation preserving on the stable and unstable eigenspace or orientation re-
versing on both. Using Theorem 3.17 and Theorem 3.18 this leaves exactly two
possibilities.

In accordance to our convention L0 = W u(x, ϕ) and L1 := W s(x, ϕ) we define

Definition 3.20. ϕ is called L-orientation preserving (reversing) if ϕ is
orientation preserving (reversing) on L0 and L1.



38 Immersions, gluing and cutting
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Figure 3.8. Motivation for the definition of q0

The next statement will provide us with information of the oscillation behaviour
of the (un)stable manifolds near the fixed point under the assumption of trans-
verse intersection points.

Let N1 and N1 be two submanifolds of the manifold M and i1 : N1 → M
and i2 : N2 → M their inclusions. Then N2 is ε-Ck-close to N1 if there is a
diffeomorphism ψ : N1 → N2 such that ‖i1 − i2 ◦ ψ‖Ck < ε.

Theorem 3.21 (λ-lemma [Pa]). Let M be a compact m-dimensional manifold
or Rm and ϕ : M → M a Ck-diffeomorphism with hyperbolic fixed point x.
Let dimW u(x, ϕ) = mu and let Du ⊂ W u(x, ϕ) be a small mu-dimensional
disk centered around x. Let p ∈ W s(x, ϕ) and let D be a mu-dimensional disk
around p intersecting W s(x, ϕ) transversely. Then

⋃
n≥0 ϕ

n(D) contains an mu-

disk arbitrarily Ck-close to Du.

After these preparations we are able to turn to the proof of Theorem 3.16.

Proof of Theorem 3.16: According to Corollary 3.19 ϕ is either L-orientation
preserving or L-orientation reversing. Let us start with the L-orientation pre-
serving case and assume p to be the concave vertex of w ∈ N (p, r). Thus the
domain of definition of w is the standard heart Db.
Fix parametrizations γi : R → Li for i ∈ {0, 1} satisfying w.l.o.g. γ−1

i (r) <
γ−1
i (p) and thus inducing an ordering <i according to Notation 2.3 with r <i p.

According to Theorem 3.17 (Hartman-Grobman) the stable and unstable mani-
folds look locally around the fixed point x like the transverse intersection of the
according eigenspaces in the linearization.
Given any small disk neighbourhood D(x) of x in L0 there is n ∈ N large
enough such that ϕ−n(p) and ϕ−n(r) lie in D(x). If we can prove the existence
of ‘cutting points’ q0 and q1 for ϕ−n(p), ϕ−n(r) and ϕ−n ◦ w then ϕn(q0) and
ϕn(q1) are cutting points for p, r and w.
Now choose D(x) to be the ‘convergence disk’ Du ⊂ L0 of Theorem 3.21 (λ-
lemma) and assume from now on w.l.o.g. p, r ∈ Du.
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Figure 3.9. Constructions for q0

The idea to find the cutting point q0 is to follow the segment [p,∞[0. For a
certain time after p it stays in the interior of w. We claim that at some point it
passes w(∂Db) to the exterior of w and the first such point will be our desired
q0. If w would be an embedding we could define

q0 := min{q ∈ L0 | p <0 q, q ∈ ]r, p[1},
but unfortunately for not globally injective immersions this might not yield the
desired result, see figure 3.8. In order to avoid this difficulty we define formally

q0 := min{q ∈ L0 | p <0 q, q ∈ ]r, p[1, [q, q + ε[0 ∩ w(Db)
c 6= ∅ for ε > 0}.

Now we prove that such a minimum always exists. We use the notation for the
branches L±

0 and L±
1 as sketched in figure 3.9 (a).
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Let us start with case p = x 6= r: For the relative positions of p and r see
figure 3.9(b). As sketched in figure 3.9 (b) L+

0 is the branch of L0 containing
r. L+

1 is the branch of L1 which starts in the local picture on the same side of
L0 as [r, r + ε]1 for ε > 0 small. Since L0 and L1 are strongly intersecting and
transverse L−

0 ⋔ L+
1 6= ∅ and there is q ∈ L−

0 ⋔ L+
1 with p <0 q. Let tqi := γ−1

i (q)
and consider a small neighbourhood of q in L−

0 . If sign(det(γ̇0(t
q
0), γ̇1(t

q
1))) is

negative we denote the neighbourhood by U0 and otherwise by V0.
Since L0 ⋔ L1 these neighbourhoods meet L1 transversely in q. Now Theorem
3.21 (λ-lemma) implies the Ck-convergence of disks Dn ⊂ ϕn(U0) resp. Dn ⊂
ϕn(V0) to Du for n → ∞. Recall r ∈ Du and that [r, p]1 intersects L0 in r
transversely. Thus for given ε > 0 there is n0 large enough such that Dn and
[r, r + ε]1 intersect for n ≥ n0, see the extra bold long segments in figure 3.9
(b). Proposition 3.13 states that for ε > 0 small enough the ball Bε(r) splits
into two wedge-shaped regions Wint ⊂ Int(w) and Wext ⊂ Ext(w) with common
boundary ([r, p]0 ∪ [r, p]1) ∩Bε(r).
Thus for n large enough Dn meets Wext before or after passing ]r, r + ε[1 de-
pending on if Dn lies in an iterate of U0 or V0. Therefore the segment [p,∞[0
leaves Int(w) and meets Ext(w) such that points as claimed in the definition of
q0 exist and so does the minimum q0.

Now consider the case p 6= x. Here we do not need the (un)stable manifolds to
be strongly intersecting as it was necessary in case p = x. The sketches in figure
3.9 are schematical and it is unimportant if x lies in the exterior of w or not.
Again we use the conventions for the branches from figure 3.9 (a) and assume
p ∈ L−

0 as sketched in figure 3.9 (c), (d). We have to distinguish two subcases,
namely if p ∈ L−

0 ⋔ L+
1 as in (c) or if p ∈ L−

0 ⋔ L−
1 as in (d).

We start with p ∈ L−
0 ⋔ L+

1 and consider a small neighbourhood around p in
L−

0 . If sign(det(γ̇0(t
p
0), γ̇1(t

p
1))) is negative we denote as above the small neigh-

bourhood by U0 and otherwise by V0. Since p ∈ L+
1 the disks Dn ⊂ ϕn(U0) resp.

Dn ⊂ ϕn(V0) from Theorem 3.21 (λ-lemma) approach the ‘convergence disk’ Du

centered at x from the L+
1 -side for n → ∞, see the extra bold long segments in

figure 3.9 (c). As in the proof of case p = x we consider the special neighbour-
hood sectors Wint ⊂ Int(w) and Wext ⊂ Ext(w) of r provided by Proposition
3.13 and conclude that ]p,∞[0 passes somewhere through Wext and therefore
meets the exterior of w. Thus points as claimed in the definition of q0 exist and
so does the minimum q0.
The case p ∈ L−

0 ⋔ L−
1 as sketched in figure 3.9 (d) proceeds analogously to case

p ∈ L−
0 ⋔ L+

1 except from the following fact: Now the disks Dn ⊂ ϕn(U0) resp.
Dn ⊂ ϕn(V0) from Theorem 3.21 (λ-lemma) approach the ‘convergence disk’ Du

from the L−
1 -side for n→ ∞, see the extra bold long segments in figure 3.9 (d).
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Figure 3.10. Cutting

Therefore we have to use the sectors Wint ⊂ Int(w) and Wext ⊂ Ext(w) of p
instead of those of r and then proceed as above.

Since we only need the oscillation behaviour predicted by Theorem 3.21 (λ-
lemma) and those special neighbourhood sectors around the vertices the proof
carries over to all possible relative positions of x, p and r within L0 and L1 in
case p 6= x.
Under exchanging the roles of L0 and L1 the constructions for q1 are similar to
those for q0. If r is the concave vertex the proof proceeds similarily.

Now we will describe the cutting procedure from p to q0. The cut from p to q1
is performed analogously.
Recall from Proposition 3.13 that w is injective on a small neighbourhood of p.
If we consider w−1([p, q0]0) then there is a unique segment in Db denoted by I
whose start point is w−1(p) = −1. By definition of q0 the segment [p, q0 + ε]0
leaves w(Db) through q0 for ε > 0. Thus there is q̃ ∈ w−1(q0) which has to be
the endpoint of I. In fact, since q0 lies per definitionem on a boundary segment
parting the interior from the exterior of w we deduce from Remark 3.6 that w
is injective in a neighbourhood of q0 such that {q̃} = w−1(q0) is even unique.
We now cut Db along I into Du

b and Dv
b like in figure 3.10. The boundary

conditions of Du
b are Bu

0 = I and Bu
1 is the segment from −1 to q̃ in B1. And for

Dv
b we have Bv

0 = I ∪ B0 and Bv
1 is the segment from q̃ to 1 in B1. Identify Du

b

and Dv
b with the di-gon D via hu : Du

b → D with hu(Bu
i ) = BD

i and hv : Dv
b → D

with hv(bvi ) = BD
i for i ∈ {0, 1} and define

u : D →M, u(z) := w((hu)−1(z)),

v : D →M, v(z) := w((hv)−1(z)).

Since our techniques considered the branches of the (un)stable manifolds sepa-
rately the L-orientation reversing case is reduced to the L-orientation preserving
case by considering the L-orientation preserving ϕ2 instead of ϕ.
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4. Coherent orientations of immersed di-gons and hearts

The gluing and cutting construction impplies that with Z2 := Z/2Z-coefficients
the square of the Floer boundary operator vanishes.
But we are in fact able to assign a gluing compatible sign to each immersion
which makes Z-coefficients possible for the desired homology if the symplecto-
morphism ϕ is L-orientation preserving. If ϕ is L-orientation reversing we still
can define and state in the following Definition 3.22, Definition 3.23 and Lemma
3.24. But we will not be able to divide by the Z-action as explained more detailed
when defining the Floer homology.

In classical Floer theory this procedure is know as ‘coherent orientations’ and
they arise in the Fredholm set-up from the determinant bundle. Fortunately in
the two dimensional situation here we can give a brief and purely geometrical
definition of this phenomenon.

If we want to assign a sign to each immersion in M(p, q) we need something to
which we can ‘compare’ the immersions. This will be done by comparing the pa-
rameter direction on the L0-boundary of the immersion with a fixed orientation
on L0.

Thus first of all, we fix an orientation on L0. We will discuss later if our
definitions depend on this choice.

Definition 3.22. Let p, q ∈ H with µ(p, q) = 1 and u ∈ M(p, q). Provide
u(B0) = [p, q]0 with the orientation induced by the parametrization from p to q
and define

m(p, q, u) :=





+1

if the orientation induced on L0 by u(B0)
and the fixed one coincide,

−1 otherwise.

The image of an immersion between two homoclinic points is determined by
the unique connecting stable and unstable segments between them. Thus we
can neglect the immersion in the definition and assign a ‘relative’ sign to the
two homoclinic points in question depending on if there are immersions between
them or not.

Definition 3.23. Since #M̂(p, q) ∈ {0, 1} for p, q ∈ H with µ(p, q) = 1 we
can set

m(p, q) :=

{
m(p, q, u) if u ∈ M(p, q) 6= ∅,
0 if M(p, q) = ∅.

And setting Z2 := Z/2Z we define m2(p, q) ∈ Z2 via m2(p, q) := m(p, q) mod 2.

Now we show the skew-symmetry for the individual signs of the endpoints of ui
and vi involved in the cutting and gluing construction.
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Figure 3.11. Coherent orientations

Lemma 3.24. Let p, r ∈ H with µ(p, r) = 2 and w ∈ N (p, r). For i ∈ {0, 1}
consider qi ∈ H with µ(p, qi) = 1 = µ(qi, r) and ui ∈ M(p, qi) and vi ∈ M(qi, r)
such that vi#ui = w. Then

m(p, q0) ·m(q0, r) = −m(p, q1) ·m(q1, r)

and this relation also is true for m2.

Proof : In figure 3.11 the two possible cuts of w ∈ N (p, r) and the signs w.r.t.
a chosen orientation on L0 are sketched. We calculate

m(p, q0) ·m(q0, r) = (−1) · 1 = −1 = −(−1) · (−1) = −m(p, q1) ·m(q1, r),

m(p, q0) ·m(q0, r) = (−1) · (−1) = 1 = −(1 · (−1)) = −m(p, q1) ·m(q1, r).

If in the figure the other orientation on L0 is chosen all signs swap and the
relation remains true.

The coefficients of the Floer differential will be defined using the signs defined
in Definition 3.23. The vanishing of the square of the Floer differential will be
due to Lemma 3.24.

Now we discuss if Definition 3.22, Definition 3.23 and Lemma 3.24 depend on
the choice of the orientation. If we choose in the beginning the other orientation
of L0 all signs in m(p, q) etc. swap and therefore Lemma 3.24 remains true. If we
take L1 as reference instead of L0 the definition of the signs proceeds analogously
and Lemma 3.24 is valid.
Now consider Li for i ∈ {0, 1} simultanously and recall Hn

[x] = {p ∈ H | µ(p, x) =

n, [p] = [x]}. Choose parametrizations γi : R → Li with γi(0) = x and provide Li
with the orientation induced by γ̇i. Let σ01 := sign(det(γ̇0(0), γ̇1(0))) and denote
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the signs defined by means of the orientation on Li by m(p, q, Li). Then

(3.25)
m(p, q, L0) = σ01m(p, q, L1) for p ∈ H2n

[x],

m(p, q, L0) = −σ01m(p, q, L1) for p ∈ H2n+1
[x]

for all q ∈ H[x] and n ∈ Z.



CHAPTER 4

Primary homoclinic Floer homology

In this chapter we give the definition of primary homoclinic points and discuss
some properties of immersions of relative index one and two between them. We
show that the gluing and cutting procedure is compatible with the restriction to
primary homoclinic points. This enables us to define a Floer homology generated
by the primary homoclinic points, called primary homoclinic Floer homology.

Within this chapter the symplectic manifold (M,ω) is either a closed surface with
genus g ≥ 1 or (R2, ω). ϕ : M → M is a symplectomorphism with hyperbolic
fixed point x with (un)stable manifolds L0 := W u(x, ϕ), L1 := W s(x, ϕ) and
H := L0 ∩L1. The connected components of Li\{x} are denoted by L+

i and L−
i

for i ∈ {0, 1} and are called the branches of the (un)stable manifolds.
There is a Z-action of ϕ on H given by Z × H → H, (n, p) 7→ ϕn(p) which is
free on H\{x}. Usually we abbreviate pn := ϕn(p) etc. for homoclinic points p
and n ∈ Z. If not stated otherwise we assume all appearing homoclinic points
to be contractible. Our convention for the Maslov index is µ(p) := µ(p, x) and
therefore

µ(p, q) = µ(p, x) + µ(x, q) = µ(p, x) − µ(q, x) = µ(p) − µ(q).

1. Primary homoclinic points

Poincaré [Po1, Po2] discovered the existence of transverse homoclinic points.
He pointed out the complicated structure of the (un)stable manifolds and the
existence of many, many further homoclinic points due to the oscillation and
resulting overlap of the stable and unstable manifold. Nevertheless there is a
subset which will turn out to be finite modulo Z-action and admit the definition
of Lagrangian Floer theory. Recall H[x] := {p ∈ H | [p] = [x]}.
Definition 4.1. p ∈ H\{x} is called semi-primary if ]x, p[0 ∩ ]x, p[1 = ∅.
p ∈ H[x]\{x} is primary if ]x, p[0 ∩ ]x, p[1 ∩ H[x] = ∅. Nonprimary points are
called secondary.

In figure 5.2 and 5.3 the extra bold intersection points of L0 and L1 different
from the fixed point x are primary.

Semi-primary points play a crucial role in the literature around the Melnikov
method (see Appendix A and for example Rom-Kedar [RK1, RK2]).
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Clearly iterates of a (semi-)primary point are again (semi-)primary. We require
[p] = [x] in the definition of primary points, since this condition was already
necessary for the invariance of the Maslov index and the homotopy classes of
homoclinic points under the Z-action of ϕ. The condition ‘. . .∩ H[x]’ will be
necessary in the invariance discussion.

For L0 ∩ L1 6= ∅ semi-primary points always exist, but they are not necessarily
contractible, compare the example beginning on page 76.

Lemma 4.2. (1) Let ϕ be L-orientation preserving, consider p ∈ H semi-
primary and denote the branches containing p by Lp0 and Lp1. Then for
every semi-primary q ∈ (Lp0 ∩Lp1)\{pn | n ∈ Z} there is a unique n ∈ Z

such that qn ∈ ]p, p1[0 ∩ ]p, p1[1.
If ϕ is L-orientation reversing then p1 has to be replaced by p2 and

n by 2n.
(2) For primary points the analogon of the above item also is true.
(3) Let p be semi-primary and q primary within the same pair of branches.

If q ∈ ]p, p1[0 then q /∈ ]x, p1[1 and if q ∈ ]p, p1[1 then q /∈ ]x, p[0.

Proof : First item: Let ϕ be L-orientation preserving and consider a semi-
primary q ∈ Lp0 ∩ Lp1 with q /∈ {pn | n ∈ Z}. There is a unique n ∈ Z such that
qn ∈ ]p, p1[1 and w.l.o.g. n = 0. We want to know where q lies in Lp0.
Keep in mind that ]p, x[1= ]p1, x[1 ∪ {p1} ∪ ]p, p1[1 and that p semi-primary
means ]p, x[0 ∩ ]p, x[1 = ∅ and therefore q /∈ ]p, x[0. Now assume q ∈ Lp0\ ]p1, x[0.
This implies p1 ∈ ]q, x[0 and since also p1 in ]q, x[1 the point q cannot be semi-
primary – contradiction. This leaves q ∈ ]p, p1[0 as only possibility.
If ϕ is L-orientation reversing then ϕ2 is L-orientation preserving and the claim
follows from the L-orientation preserving case.
The proofs of the second and third item proceed analogously.

Remark 4.3. Let p be semi-primary and q primary within the same pair
of intersecting branches. Then there is k ∈ N0, n ∈ Z such that q ∈
]pn, pn+1[0 ∩ ]pn+k, pn+k+1[1. There are schematic tangles with k > 0.

Now consider the universal covering τ : (M̃, ω̃) → (M,ω) with ω̃ = τ ∗ω. For
x̃ ∈ τ−1(x) denote by L̃i(x̃) the lift of Li passing through x̃ for i ∈ {0, 1} and

let x̃0, x̃1 ∈ τ−1(x). p̃ ∈ L̃0(x̃0) ∩ L̃1(x̃1) is called homoclinic if x̃0 = x̃1 and
otherwise heteroclinic.
The lift of the segment [p, q]i starting in p̃ ∈ τ−1(p) and ending in q̃ ∈ τ−1(q) we
denote by [p̃, q̃]i.

Let p ∈ H and p̃ ∈ τ−1(p). If [p] = [x] then the lifts of [p, x]0 and [p, x]]1 starting
at p̃ end at the same point x̃ ∈ τ−1(x). Thus p̃ ∈ L̃0(x̃)∩ L̃1(x̃), i.e. contractible
homoclinic points lift to homoclinic points.
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If [p] 6= [x] then the lifts of [p, x]0 and [p, x]1 starting at p̃ end at two different
points x̃0, x̃1 ∈ τ−1(x). Thus p̃ ∈ L̃0(x̃0)∩L̃1(x̃1), i.e. noncontractible homoclinic
points lift to heteroclinic points.

Definition 4.4. p̃ ∈ L̃0(x̃) ∩ L̃1(x̃) is primary if ]p̃, x̃[0 ∩ ]p̃, x̃[1 = ∅.
Note that there are no noncontractible points in L̃0(x̃) ∩ L̃1(x̃).

Notation 4.5. Now fix some x̃ ∈ τ−1(x) and consider the tangle generated by L0

and L1. Lifting the tangle (to x̃) means that we consider the tangle generated

by L̃i := L̃i(x̃) for i ∈ {0, 1} on M̃ . To contractible p ∈ L0 ∩ L1 we associate
p̃ ∈ τ−1(p) such that the lift of [p, x]i starting in p̃ ends in x̃. To noncontractible
p we associate p̃ such that the lift of [p, x]0 starting in p̃ ends in x̃ = x̃0.

Let p̃, q̃ ∈ L̃0 ∩ L̃1. If µ(p̃, q̃) = 1 we define analogously M(p̃, q̃) and M̂(p̃, q̃)

and if µ(p̃, q̃) = 2 then N (p̃, q̃) and N̂ (p̃, q̃).

For the following constructions consider the tangle lifted to x̃ ∈ τ−1(x). The
results are independent of the chosen reference point x̃.

Since primary points in L0 ∩ L1 are contractible they lift to homoclinic points.
Moreover we notice

Remark 4.6. p ∈ L0 ∩ L1 is primary if and only if p̃ ∈ L̃0 ∩ L̃1 is primary.
Moreover Lemma 4.2 holds also for the primary points in L̃0 ∩ L̃1.

The property ‘primary’ has the following geometric implications:

Lemma 4.7. Let p̃ ∈ L̃0 ∩ L̃1 be primary. Then µ(p̃) := µ(p̃, x̃) ∈ {±1,±2,±3}.
There is either an embedded digon or an embedded heart or an embedded 2-gons
with two concave vertices from p̃ to x̃ (resp. from x̃ to p̃ depending on the sign
of the index). For the primary p := τ(p̃) follows µ(p) := µ(p, x) ∈ {±1,±2,±3}.
Proof : Since [p̃] = [x̃] the two points can be connected by a path in P(L0, L1).
Since ]p̃, x[0 ∩ ]p̃, x[1 = ∅ the region enclosed by [p̃, x̃]0 and [p̃, x̃]1 is an embedded
polygon with two vertices. Assume the intersections in p̃ and x̃ to be orthogonal
and parametrize the segment [p̃, x̃]0 from p̃ to x̃ and [p̃, x̃]1 from x̃ to p̃. Then the
Maslov index is twice the winding number of the tangent vector of the segments.
Thus only µ(p̃, x̃) ∈ {±1,±2,±3} can be realized without violating the boundary
condition ]p̃, x̃[0 ∩ ]p̃, x̃[1 = ∅. Due to Lemma 3.12 we have µ(p) ∈ {±1,±2,±3}
also for p = τ(p̃).

Since primary p ∈ L0 ∩ L1 might have noncontractible points in ]x, p[0 ∩ ]x, p[1
the immersion between p and x needs not to be globally injective.

Now we investigate the geometric positions of primary points on M̃ w.r.t. each
other.
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x̃

L̃1

p̃1 p̃− p̃ p̃+ p̃−1

L̃0

x̃

Figure 4.1. Adjacent primary points

Lemma 4.8. p̃ ∈ L̃0∩L̃1 be primary and p := τ(p̃). For i ∈ {0, 1} let γi : R → Li
be a parametrization with γ−1

i (p) < γ−1
i (ϕ(p)) (for L-orientation reversing ϕ use

γ−1
i (p) < γ−1

i (ϕ2(p)). Parametrize γ̃i : R → L̃i such that τ ◦ γ̃i = γi and obtain

the ordering <i on L̃i. Then

p̃+ := max{q̃ ∈ L̃1 | q̃ <1 p̃, q̃ ∈ ]x̃, p̃[0},
p̃− := min{q̃ ∈ L̃0 | p̃ <0 q̃, q̃ ∈ ]x̃, p̃[1}

are primary and p̃± is called adjacent to p̃.

Proof : Primary means ]x̃, p̃[0 ∩ ]p̃, x̃[1 = ∅ and by definition of p̃+

we have ]p̃+, x̃[1 = ]p̃+, p̃[1 ∪ [p̃, x̃[1 and ]x̃, p̃[0 = ]x̃, p̃+[0 ∪ [p̃+, p̃[0. Thus
]p̃+, x̃[1 ∩ ]x̃, p̃+[0 = ]p̃+, p̃[1 ∩ ]x̃, p̃+[0 = ∅ due to the maximality of p̃+. The
proof for p̃− is similar.

An example is sketched in figure 4.1 where we ‘splitted’ the fixed point into two
copies in favour of a smaller sketch. Primary points are printed extra bold and
{p̃n} = L̃0 ∩ L̃1 ∩ τ−1(pn). We deduce

Corollary 4.9. (1) Let p̃ be primary and q̃ = p̃±. Then ]p̃, q̃[0 ∩ ]p̃, q̃[1 =
∅. If moreover p̃ and q̃ are transverse then µ(p̃, q̃) ∈ {1,−1} and there
is an embedded di-gon between them.

(2) Let p̃ be primary and order the primary points in [p̃, p̃−1]0 ∩ [p̃, p̃−1]1 via
p̃, p̃+, (p̃+)+, . . . , p̃

−1 and assume them transverse. Then their relative
Maslov index alternates between +1 and −1.

(3) Let all primary points p ∈ L0∩L1 be transverse. Then there are modulo
Z-action only finitely many primary points. The same is true for the
primary points in L̃0 ∩ L̃1.

Proof : First item: ]p̃, q̃[0 ∩ ]p̃, q̃[1 = ∅ is clear. Now assume p̃ and q̃ transverse
and consider the embedded 2-gon between p̃ and x̃. Only the vertex type at p̃
(convex or concave) is important for the relative index between p̃ and p̃+ and
it can only be ±1. Since ]p̃+, p̃[0 ∩ ]p̃+, p̃[1 = ∅ there is an embedded di-gon
between them.
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Second item: Follows from the first item and Lemma 4.8.
Third item: Let p 6= q be primary. Every orbit (qn)n∈Z has exactly one repre-
sentant in [p, p1]0 ∩ [p, p1]1 according to Lemma 4.2. Since all primary points are
transverse the second item and the compactness of [p, p1]0 and [p, p1]1 imply the
claim.

2. Primary homoclinic Floer homology

In this section we will define the primary homoclinic Floer homology: We will
take the primary homoclinic points graded by µ(·) := µ(·, x) as generators of
the Floer complex. The differential will count immersions only to other primary
homoclinic points. Then we will divide by the Z-action in order to obtain finite
rank over Z resp. Z2 := Z/2Z. The proofs are postponed to the following sections
in order to gain better readability.

From now on we assume all primary points to be transverse.

If not stated otherwise all appearing homoclinic points (except from x itself) are
primary within this section.

Definition 4.10. We define

Hpr := {p ∈ H | p primary},
p ∼ q for p, q ∈ Hpr if and only if ∃ n ∈ Z : qn = p,

H̃pr := Hpr/∼

an denote by 〈p〉 the equivalence class of p w.r.t. the equivalence relation ∼.

H̃pr is finite as was shown in Lemma 4.9.

Using Lemma 2.7 and Proposition 2.11 we can establish a well-defined homotopy
class and a Maslov index for the equivalence class.

Definition 4.11. Setting

[〈p〉] := [p], µ(〈p〉, 〈q〉) := µ(p, q) and µ(〈p〉) := µ(p, x)

is well-defined.

Before we define the chain complex we have to think about the coefficients.
As already mentioned before defining and stating Definition 3.22, Definition
3.23 and Lemma 3.24 we have to distinguish if ϕ is L-orientation preserving or
reversing. Now fix an orientation on L0.

First assume ϕ to be L-orientation preserving and recall the signs defined in
Definition 3.23.
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Definition 4.12. Let ϕ be L-orientation preserving. We define

Cm := Cm(x, ϕ; Z) :=
⊕

p∈Hpr

µ(p)=m

Zp,

dm : Cm → Cm−1, d(p) =
∑

q∈Hpr

µ(q)=µ(p)−1

m(p, q)q

on a generator p and extend d by linearity. ϕ induces ϕ∗ : C∗ → C∗ satisfying

ϕ∗ ◦ d = d ◦ ϕ∗.

The sum is finite since H̃pr is finite due to Lemma 4.9 and #{n ∈ Z | M(p, qn) 6=
∅} <∞ due to Proposition 4.27 as we will see later on.

Unfortunately µ(p) = µ(pn) for n ∈ Z implies that the chain groups have infinite
rank over Z. But since µ(p) := µ(p, x) ∈ {±1,±2,±3} for p ∈ Hpr due to Lemma
4.7 there are at most six nonvanishing chain groups.

The next theorem enables us to pass to the homology since

Theorem 4.13. Let ϕ be L-orientation preserving. Then d ◦ d = 0, i.e. (C∗, d∗)
is a chain complex.

The proof of Theorem 4.13 is postponed to the following sections. Now we define
the homology of (C∗, d) via

Definition 4.14. Let ϕ be L-orientation preserving and define

Hm := Hm(x, ϕ; Z) :=
ker dm

Im dm+1
.

H∗ does not depend on the choice of the orientation for the definition of the signs
in m(p, q) from Definition 3.23.

Proof : We recall from the discussion after Lemma 3.24 that changing the
orientation of L0 changes the sign of the m(p, q). This means that d transforms
into −d which has by linearity the same kernel and image as d. (3.25) implies that
the differential obtained by using an orientation on L1 instead of L0 equals for
fixed Maslov index ±1 times the L0-induced differential. Thus ker dL0

k = ker dL1

k

and Im dL0

k = Im dL1

k for all k such that the homologies coincide.

Since the chain groups have infinite rank over Z this might also happen for the
homology groups. In order to get rid of this unconvenience we will now divide
by the Z-action of ϕ.

Definition 4.15. Let ϕ be L-orientation preserving. For 〈p〉, 〈q〉 ∈ H̃pr set

m(〈p〉, 〈q〉) :=
∑

n∈Z

m(p, qn)
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and define

Cm := Cm(x, ϕ; Z) :=
⊕

〈p〉∈H̃pr

µ(〈p〉)=m

Z〈p〉,

∂m : Cm → Cm−1, ∂〈p〉 :=
∑

〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉

on a generator 〈p〉 and extend ∂ by linearity. The compatibility with the Maslov
index and the homotopy classes implies that ∂ is well-defined.

Since H̃pr is finite so is the rank of Cm over Z, more precisely rkZ(Cm) = #{〈p〉 ∈
H̃pr | µ(〈p〉) = m}. Furthermore due to Lemma 4.7 at most C±1, C±2 and C±3

are nonzero. And Lemma 4.9 implies rkZC±2 = rkZ C±1 + rkZC±3.
If we generalize the notion of equivalence classes to finite sums via 〈p + q〉 =
〈p〉 + 〈q〉 the differential can also be written as

∂〈p〉 = 〈dp〉 =
∑

q∈Hpr

µ(q)=µ(p)−1

m(p, q)〈q〉.

Therefore d2 = 0 implies immediately

Theorem 4.16. Let ϕ be L-orientation preserving. Then

∂ ◦ ∂ = 0,

i.e. (C∗, ∂∗) is a chain complex.

And we can proceed to the homology groups:

Definition 4.17. Let ϕ be L-orientation preserving. We define the primary
homoclinic Floer homology of ϕ in x as

Hm := Hm(x, ϕ; Z) :=
ker ∂m

Im ∂m+1
.

Hm does not depend on the choice of the orientation for the same reasons as
Hm.

Since already the Cm have finite rank over Z so hasHm and at most the homology
groups H±1, H±2 and H±3 are nonzero.

Now we consider symplectomorphisms ϕ which are L-orientation reversing.

In order to define the signs m(p, q) in Definition 3.23 we compare the ori-
entation of u(B0) induced on L0 to the fixed one of L0. Since ϕ is orienta-
tion reversing on L0 the positions of p and q relative to each other are ex-
changed under ϕ. Therefore the orientation induced by the parametrization of
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ϕ(u(B0)) on L0 does not coincide with the one induced by u(B0). Since we
keep the orientation which was fixed in the beginning on L0 unchanged we
obtain m(p, q) = −m(ϕ(p), ϕ(q)). Considering dp =

∑
µ(q)=µ(p)−1 µ(p, q)q and

dϕ(p) =
∑

µ(q)=µ(p)−1 µ(ϕ(p), ϕ(q))ϕ(q) such that we cannot pass to the equiva-
lence classes as in the orientation preserving case. However, using the Z2-signs
m2 from Definition 3.23 we can proceed as in the L-orientation preserving case.

Definition 4.18. If ϕ is L-orientation reversing we define

Cm := Cm(x, ϕ; Z2) :=
⊕

p∈Hpr

µ(p)=m

Z2p,

dm : Cm → Cm−1, d(p) =
∑

q∈Hpr

µ(q)=µ(p)−1

m2(p, q)q

on a generator p and extend d by linearity. ϕ induces ϕ∗ : C∗ → C∗ satisfying

ϕ∗ ◦ d = d ◦ ϕ∗.

The well-definedness carries over from the L-orientation preserving case. Anal-
ogously to Theorem 4.13 follows

Theorem 4.19. Let ϕ be L-orientation reversing. Then d ◦ d = 0, i.e. (C∗, d∗)
is a chain complex.

Now we define the homology of (C∗, d) via

Definition 4.20. Let ϕ be L-orientation reversing. We define

Hm := Hm(x, ϕ,Z2) :=
ker dm

Im dm+1
.

As discussed above the Z2-coefficients allow us to divide by the Z-action:

Definition 4.21. If ϕ is L-orientation reversing we set for 〈p〉, 〈q〉 ∈ H̃pr

m2(〈p〉, 〈q〉) :=
∑

q∈〈q〉

n∈Z

m2(p, q
n) mod 2

and define

Cm := Cm(x, ϕ; Z2) :=
⊕

〈p〉∈H̃pr

µ(〈p〉)=m

Z2〈p〉,

∂m : Cm → Cm−1, ∂〈p〉 :=
∑

〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m2(〈p〉, 〈q〉)〈q〉
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on a generator 〈p〉 and extend ∂ by linearity. The compatibility with the Maslov
index and the homotopy classes implies that ∂ is well-defined.

We deduce as in the L-orientation preserving case

Theorem 4.22. Let ϕ be L-orientation reversing. Then

∂ ◦ ∂ = 0.

And we can proceed to the homology groups:

Definition 4.23. Let ϕ be L-orientation reversing. We define the primary
homoclinic Floer homology of ϕ in x as

Hm := Hm(x, ϕ,Z2) :=
ker ∂m

Im ∂m+1
.

When working with primary homoclinic Floer homology groups H∗ we always
mean H∗(x, ϕ,Z) for L-orientation preserving ϕ and H∗(x, ϕ,Z2) in the L-
orientation reversing case.

One important point is that the primary homoclinic Floer homology is already
determined by the intersection behaviour of two fixed large compact segments of
L0 and L1: We have defined ∂ on the equivalence classes via representatives and
their differential d. There are only finitely many equivalence classes and d yields
a finite sum. Thus we can choose compact segments in L0 and L1 large enough
to contain a representative system and the points appearing when applying d to
the representatives. Therefore the primary homoclinic Floer homology is already
encoded in a compact subset of the tangle.

3. Primary homoclinic Floer cohomology

After defining H∗(x, ϕ) it is natural to ask if or how it might be related to
H∗(x, ϕ

−1). In order to answer this question we consider for L-orientation pre-
serving ϕ

Cm(x, ϕ; Z) :=
⊕

〈p〉∈H̃pr

µ(〈p〉)=m

Z〈p〉

with differential δ : Cm(x, ϕ; Z) → Cm+1(x, ϕ; Z) defined on the generators by

δ(〈p〉) :=
∑

q∈Hpr

µ(q)=m+1

m(q, p)〈q〉.

Then δ ◦ δ = 0 is proven analogously to ∂ ◦ ∂ = 0 and

H∗(x, ϕ; Z) :=
ker δ

Im δ
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is called primary homoclinic Floer cohomology of ϕ in x. For L-orientation
reversing ϕ we set

Cm(x, ϕ; Z2) :=
⊕

〈p〉∈H̃pr

µ(〈p〉)=m

Z2〈p〉

with differential δ : Cm(x, ϕ; Z2) → Cm+1(x, ϕ; Z2) defined on the generators by

δ(〈p〉) :=
∑

q∈Hpr

µ(q)=m+1

m2(q, p)〈q〉.

δ ◦ δ = 0 in the L-orientation reversing case follows as in the L-orientation
preserving case and

H∗(x, ϕ; Z2) :=
ker δ

Im δ
is called primary homoclinic Floer cohomology of ϕ in x. If there is no
need to distinguish between L-orientation preserving and L-orientation reversing
ϕ we simply write H∗(x, ϕ) or even shorter H∗.

Changing from ϕ to ϕ−1 transforms L0 into L1 and vice versa, but apart from
this leaves the homoclinic tangle untouched. Therefore the sign of the Maslov
index of a homoclinic point p = pϕ in the tangle generated by ϕ changes when
considered as homoclinic point p = pϕ−1 in the tangle corresponding to ϕ−1, i.e.
µ(pϕ) = −µ(pϕ−1). This implies

Theorem 4.24. H∗(x, ϕ) = H−∗(x, ϕ
−1).

4. Immersions between primary points

Recall the lifting procedure of a homoclinic tangle from Notation 4.5 and fix
some x̃ ∈ τ−1(x). The Maslov index stays invariant under the lifting procedure
due to Lemma 3.12. Given primary p, q ∈ L0 ∩ L1 with associated primary p̃,
q̃ ∈ L̃0∩L̃1 the immersions in M(p, q) resp. N (p, q) lift exactly to the immersions
in M(p̃, q̃) resp. N (p̃, q̃).
Therefore the combinatorial data needed for primary homoclinic Floer
(co)homology stay untouched when lifting the tangle. Thus primary homoclinic
Floer (co)homology is well-defined for (ϕ, x) on M if and only if it is well-defined
for the lifted homoclinic tangle generated by L̃0 and L̃1 on M̃ .
Thus it is enough to prove the primary cutting and gluing procedure for the
lifted tangle L̃0 ∩ L̃1 on M̃ .
This simplifies the proofs considerably since immersions between primary ho-
moclinic points of L̃0 ∩ L̃1 turn out to be in fact embeddings. Thus most of the
proofs in the following sections are worked out for L̃0 ∩ L̃1 on M̃ ≃ R2.
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Figure 4.2. Immersion, but no embedding

In this section we will prove that for p, q ∈ Hpr the set {n ∈ Z | M(p, qn) 6= ∅}
is finite. This is together with the finiteness of H̃pr (see Lemma 4.9) crucial for
the well-definedness of the differentials in Definition 4.12 and Definition 4.15.

The first step will be to generalize Lemma 4.7 and recognize immersions between
primary homoclinic points on M̃ as embeddings.

Lemma 4.25 (Classification for index difference 1). Let p, q ∈ H be primary

with µ(p, q) = 1 and let p̃ and q̃ the associated primary points in L̃0 ∩ L̃1. Then
either M(p̃, q̃) = ∅ or u ∈ M(p̃, q̃) is in fact an embedding.

The elements of M(p, q) do not need to be embeddings, see figure 4.2 (a). Nor is
it true for noncontractible semi-primary points, see figure 4.2 (b). The immersion
overlaps after wrapping once around resp. through the hole of the torus.

Proof : In the following we work with the lifted tangle on M̃ . For sake of
better readability we drop the tilde associated to symbols on M̃ . Thus identify
p = p̃ and q = q̃ etc.
The proof is tedious, but simple. [p] = [q] = [x] allows us to write 1 = µ(p, q) =
µ(p, x) + µ(x, q) and Lemma 4.7 provides the four cases (µ(p, x), µ(x, q)) ∈
{(−2, 3), (−1, 2), (2,−1), (3,−2)}. Since there are always two possibilities to
place the concave vertex of a standard heart the number of cases multi-
plies by two. Moreover we will distinguish ]x, p[i ∩ ]x, q[i = ∅ or 6= ∅ for
i ∈ {0, 1}. Since Li is self-intersection free and one-dimensional we conclude
in case ]x, p[i ∩ ]x, q[i 6= ∅ either [x, p]i ⊂ [x, q]i or [x, q]i ⊂ [x, p]i. This yields a
lot of cases, but fortunately some of them are symmetric.
We recall from Lemma 4.7 that there is modulo parametrization exactly one
embedding between p and x and q and x. Since embeddings do not overlap
themselves there is — together with the boundary conditions — almost no degree
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of freedom in sketching them and we are able to give the complete list in the
relevant cases in figure 4.3 and 4.4.
There are different reasons why there are no immersions in some cases. We
will explain figure 4.3 and figure 4.4 by analysing representative sketches and
classifying which other sketches belong to the same type. References like (a).(-
2,3).(i) refer to item (a) with (µ(p, x), µ(x, q)) = (−2, 3), subcase (i) in figure
4.3 or figure 4.4. Dashed lines in sketches mean that this sketch cannot occur
within a homoclinic tangle or that it contradicts the conditions of the (sub)case
in question.

Case I: Consider (a).(-2,3).(i) in figure 4.3. The boundary conditions are
fine, but there is no immersion since there are nonremovable components of
M\([p, q]0 ∪ [p, q]1) with Ind < 0 which contradicts Corollary 3.9. Nonremovable
means that their existence is forced by the geometric position of [p, x]i and [x, q]i
caused by the index prescription for µ(p, x) and µ(x, q) and that there is no way
to get rid of them while fulfilling the demands of the (sub)case.
For the same reason there are no immersions in (a).(-1,2).(i), (a).(1,-2).(ii),
(a).(3,-2).(ii), (b).(-2,3).(ii), (b).(2,-1).(i) and (c).(-2,3).(i).
Case II: Consider (a).(-2,3).(ii) in figure 4.3. The index together with the choice

x as concave vertex for the immersion in N̂ (q, x) forces the branches of the
(un)stable manifolds to emanate from x in an unnatural way, i.e. in contradiction
to the behaviour predicted by Theorem 3.17 (Hartman-Grobman). So this case
does not occur.
For analogous reasons the cases (a).(-1,2).(ii), (a).(2,-1).(i), (a).(3,-2).(i), (c).(-
2,3).(ii), (c).(2,-1).(ii), (c).(-1,2).(iii) and (c).(3.-2).(iii) do not occur.
Case III: Consider (b).(-2,3).(i) in figure 4.3. Here the index together with the

choice of the concave vertex for the immersion in N̂ (x, p) forces the branches of
the (un)stable manifolds to contradict the conditions of the (sub)case. So this
case actually does not appear.
The same holds for (b).(2,-1).(ii), (b).(-1,2).(iii), (b).(3,-2).(iii), (c).(2,-1).(i),
(d).(-2,3).(iii), (d).(-1,2).(iii), (d).(2,-1).(iii) and (d).(3,-2).(iii).
Case IV: Consider (b).(-1,2).(i) and (ii) in figure 4.3. There is an immersion u ∈
M̂(p, q) in (b).(-1,2).(i) which is in fact an embedding since ]p, q[0 ⋔ ]p, q[1 = ∅.
But there is a certain degree of freedom in sketching [p, q]1 such that a different
behaviour of [p, q]1 as sketched in (b).(-1,2).(ii) can prevent an immersion by
producing components of M\([p, q]0 ∪ [p, q]1) with Indu < 0, compare Corollary
3.9.
The same phenomenon is found in (b).(3,-2).(i) and (ii), (c).(-1,2).(i) and (ii),
(c).(3,-2).(i) and (ii), (d).(-2,3).(i) and (ii), (d).(-1,2).(i) and (ii), (d).(2.-1).(i)
and (ii) and (d).(3,-2).(i) and (ii).
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Figure 4.3. Geometric realization of primary points of index 1
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Figure 4.4. Continuation of figure 4.3
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Considering the case ]x, p[0 ∩ ]x, q[0 = ∅ 6= ]x, p[1 ∩ ]x, q[1 we have not treated
the subcase ]x, q[1 ⊂ ]x, p[1 in figure 4.3 (b). But the geometric positions of [x, p]i
and [x, q]i correspond to the treated subcase if we change the sign of the tupel
(µ(p, x), µ(x, q)), exchange p and q and reflect everything on the L0-segment
lying in the horizontal axis.
The same holds for the not sketched subcase ]x, q[0 ⊂ ]x, p[0 and ]x, p[1 ⊂ ]x, q[1
of case ]x, p[0 ∩ ]x, q[0 6= ∅ 6= ]x, p[1 ∩ ]x, q[1 w.r.t. the subcase ]x, p[0 ⊂ ]x, q[0
and ]x, q[1 ⊂ ]x, p[1 sketched in figure 4.4 (d).
The not sketched subcase ]x, q[0 ⊂ ]x, p[0 of case ]x, p[0 ∩ ]x, q[0 6= ∅ =
]x, p[1 ∩ ]x, q[1 goes over to the subcase ]x, p[0 ⊂ ]x, q[0 sketched in figure 4.4 (c)
if we change the sign of the tupel (µ(p, x), µ(x, q)), exchange p and q and reflect
everything on the (imagined) vertical axis.

Since according to Lemma 4.25 immersions between primary homoclinic points
p̃ and q̃ of L̃0∩ L̃1 are in fact embeddings it is enough to show ]p̃, q̃[0 ∩ ]p̃, q̃[1 6= ∅
to prevent their existence.

Lemma 4.26. Let p, q ∈ H[x]\{x} and pn := ϕn(p) etc. for n ∈ Z. Let p̃, q̃ and

p̃n etc. be the associated points in L̃0 ∩ L̃1. Then there is N ∈ N0 such that for
n ∈ Z with |n| ≥ N we have ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 6= ∅.
Proof : Let p̃ etc. be the point associated to p in the lifted tangle on M̃ . Let
ϕ be L-orientation preserving
Consider the case x /∈ ]p, q[0 and x /∈ ]p, q[1. Then there is N ∈ N0 such that
p̃1 ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for all n ≥ N and p̃−1 ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for all n ≤ −N .
If x ∈ ]p, q[0 ∩ ]p, q[1 then x̃ ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for all n ∈ Z.
Consider the case x ∈ ]p, q[0 and x /∈ ]p, q[1. Then there is N ∈ N0 such that
q̃N−1 ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for all n ≥ N and p̃−1 ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for all n ≤ −N .
In the case x /∈ ]p, q[0 and x ∈ ]p, q[1 conclude analogously.
Now consider L-orientation reversing ϕ. Here we have to distinguish between
even and odd n ∈ Z. Since ϕ2 is orientation preserving the above proof carries
over for even n if we replace p1 by 2 etc. Thus we only have to prove the claim
for odd n.
If x /∈ ]p, q[0, ]p, q[1 then x̃ ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for all odd n.
If x ∈ ]p, q[0 ∩ ]p, q[1 there is N ∈ N0 such that p̃2 ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for all odd
n ≥ N and p̃−2 ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for all odd n ≤ −N .
If x ∈ ]p, q[0 and x /∈ ]p, q[1 then there is an odd N ∈ N0 such that p̃2 ∈
]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for odd n ≥ N and q̃N+2 ∈ ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 for odd n ≤ −N .
If x /∈ ]p, q[0 and x ∈ ]p, q[1 conclude analogously.

Now we are able to prove that for p ∈ Hpr the differential

dp =
∑

q∈Hpr

µ(q)=µ(p)−1

m(p, q)q
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from Definition 4.12 does not contain infinitely many iterates m(p, qn)qn for
some q. This is crucial for ∂ in Definition 4.15 in order to pass from p to 〈p〉.
Proposition 4.27. Let p, q ∈ Hpr and M(p, q) 6= ∅ and set qn := ϕn(q) for
n ∈ Z. Then

#{n ∈ Z | M(p, qn) 6= ∅} <∞.

Proof : Denote by p̃, q̃, q̃n etc. the associated points in L̃0 ∩ L̃1 and recall
that u ∈ M(p, q) exists if and only its lift ũ ∈ M(p̃, q̃) exists.
Lemma 4.26 yields the existence of some N > 0 such that ]p̃, q̃n[0 ∩ ]p̃, q̃n[1 6= ∅
for all n ∈ Z with |n| ≥ N .
Assume ũn ∈ M(p̃, q̃n) 6= ∅ for some n with |n| ≥ N . Since [p̃, q̃n]0 = ũn(B0)
and [p̃, q̃n]1 = ũn(B1) there is z0 ∈ B0 and z1 ∈ B1 such that ũn(z0) = ũn(z1).

Since L̃0 and L̃1 don’t have self-intersections it follows z0, z1 /∈ {(−1, 0), (1, 0)}.
Therefore ũn is not globally injective and thus no embedding. The claim now
follows from Lemma 4.25.

Now the well-definedness of Definition 4.12 and Definition 4.15 is proven.

5. Gluing and cutting for primary homoclinic points

In this section we will show that the restriction to primary homoclinic points is
gluing and cutting compatible. As in the previous section we will mostly work
on the lifted tangle generated by L̃0 and L̃1 on M̃ . First we consider the gluing
construction.

Theorem 4.28 (Gluing for primary points). Let p, q, r ∈ Hpr with µ(p, q) =

1 = µ(q, r) and u ∈ M̂(p, q) and v ∈ M̂(q, r). Then gluing of u and v yields an

immersion v#u ∈ N̂ (p, r).

Proof : This is clearly a special case of the general gluing construction The-
orem 3.14.

The lift of the outcoming immersion v#u is in fact an embedding as we will see
in the discussion of the cutting procedure.

Starting with p and r primary with µ(p, r) = 2 and w ∈ N (p, r) we have to ask
if the ‘cutting points’ q0 and q1 delivered by the cutting procedure Theorem 3.16
are again primary. Therefore we investigate what kind of immersed hearts exist
between primary homoclinic points. We will see that the lifts of those immersed
hearts relevant for the cutting procedure are in fact embedded.

Lemma 4.29 (Classification for index difference 2). Let p, r ∈ Hpr with µ(p, r) =

2 and p̃ and r̃ the associated points in L̃0 ∩ L̃1. The possible immersed hearts

w ∈ N̂ (p̃, r̃) appear shadowed in figures 4.5 (b) and 4.6 (c). In both figures the
shadowed w is an embedding except from case (ii) of (µ(p̃, x̃), µ(x̃, r̃)) = (1, 1)
where it is not globally injective.
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Proof : In the following we work with the lifted tangle on M̃ . For sake of better
readability we drop the tilde associated to symbols on M̃ . Thus we identify p = p̃
and r = r̃ etc.
Since [p] = [r] = [x] we can write µ(p, r) = µ(p, x) + µ(x, r) = 2. Now we
proceed as in the proof of Lemma 4.25 and check the possible combinations for
(µ(p, x), µ(x, r)). Lemma 4.7 restricts the possibilities to

(µ(p, x), µ(x, r)) ∈ {(3,−1), (1, 1), (−1, 3)}
and we recall from 4.7 that the immersions of index µ(p, x) and µ(x, r) between
p and x and x and r are embeddings. As before we will consider the cases
]x, p[i ∩ ]x, r[i = ∅ or 6= ∅. If ]x, p[i ∩ ]x, r[i 6= ∅ this implies [x, p]i ⊂ [x, r]i
or [x, r]i ⊂ [x, p]i since Li is free of self-intersections and dimLi = 1. These
considerations yield the sketches of figure 4.5 and 4.6 which we will now discuss
in detail. Dashed segments in a sketch mean that this sketch cannot occur within
a homoclinic tangle or that it violates the conditions of the (sub)case in question.

(a) ]x, p[0 ∩ ]x, r[0 = ∅ = ]x, p[1 ∩ ]x, r[1: There are no possible immer-
sions since the indices prescribed by the combinations (µ(p, x), µ(x, r)) ∈
{(3,−1), (1, 1), (−1, 3)} force the two branches of L1 to emanate from x in an
unnatural way, compare figure 4.5 (a). So this case cannot happen.
(b) ]x, p[0 ∩ ]x, r[0 6= ∅ = ]x, p[1 ∩ ]x, r[1: For ]x, p[0 ⊂ ]x, r[0 compare the first
part of figure 4.5 (b): The case (1,1) yields an immersion (see (ii)) which might
be an embedding (see (i)). In the other two cases (3,-1) and (-1,3) there might
be an embedding as sketched in (i), but a different behaviour of the segment
[x, p]1 can destroy it as showed in (ii). There components with Ind < 0 appear
in contradiction to Corollary 3.9.
The subcase ]x, r[0 ⊂ ]x, p[0 is sketched in the second part of figure 4.5 (b) and
behaves similar.
(c) ]x, p[0 ∩ ]x, r[0 = ∅ 6= ]x, p[1 ∩ ]x, r[1: This is sketched in figure 4.6 (c).
As in case (b) the case (1,1) always yields an immersion (see (ii)) which might
be an embedding (see (i)). In the other cases there might — depending on the
intersection behaviour of [p, r]1 — be an embedding (see (i)) or not (see (ii)) due
to the same reason as in (b).
(d) ]x, p[0 ∩ ]x, r[0 6= ∅ 6= ]x, p[1 ∩ ]x, r[1: There are four cases:
]x, p[0 ⊂ ]x, r[0 and ]x, p[1 ⊂ ]x, r[1: This implies p ∈ ]x, r[0 ⋔ ]x, r[1, but r is
primary, so this is impossible.
]x, p[0 ⊂ ]x, r[0 and ]x, r[1 ⊂ ]x, p[1: Consider figure 4.6 (d) and notice that the
indices prescribed by (µ(p, x), µ(x, r)) force p and r to lie on different branches
of L1 in contradiction to the assumption ]x, p[0 ⊂ ]x, r[0 and ]x, r[1 ⊂ ]x, p[1. So
this case is not possible.
]x, r[0 ⊂ ]x, p[0 and ]x, p[1 ⊂ ]x, r[1: Similarily to the case before a look at
the second part of figure 4.6 (d) shows that due to the prescribed indices
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Figure 4.6. Continuation of figure 4.5
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(µ(p, x), µ(x, r)) the points p and r must lie on different branches of L1 in con-
tradiction to the subcase itself ]x, r[0 ⊂ ]x, p[0 and ]x, p[1 ⊂ ]x, r[1.
]x, r[0 ⊂ ]x, p[0 and ]x, r[1 ⊂ ]x, p[1: This implies r ∈ ]x, p[0 ⋔ ]x, p[1, but p is
primary, so this is impossible.

Now we are ready to approach the cutting construction for primary points. Recall
the cutting points q0 and q1 from the general cutting construction Theorem 3.16.
It will turn out that for p and r primary with µ(p, r) = 2 either q0 and q1 are
primary or none of both where the latter case corresponds to the ‘bad case’ (ii)
of (µ(p, x), µ(x, r)) = (1, 1) in figure 4.5 (b) and figure 4.6 (c).
A look at the proof of Theorem 3.16 tells us that strongly intersecting L0 and
L1 were only needed if the concave vertex of the heart was the fixed point. Since
x /∈ Hpr we can drop this assumption on L0 and L1 in the following theorem. In
Theorem 3.16 the λ-lemma Theorem 3.21 was only applied to the intersection at
the concave vertex of the immersion in question. Thus it is enough for the well-
definedness of primary homoclinic Floer homology to require only the primary
points to be transverse.

Theorem 4.30 (Cutting for primary points). Let p, r ∈ Hpr with µ(p, r) = 2
and w ∈ N (p, r). Then there are unique points q0 and q1 such that either both
qi are primary admitting ui ∈ M(p, qi) and vi ∈ M(qi, r) with vi#ui = w for
i ∈ {0, 1} or none of them is primary.

Proof : It is sufficient to show the claim for the lifted tangle generated by L̃0

and L̃1 on M̃ where we will work in the following. For sake of better readability
drop the tilde associated to symbols on M̃ and identify p̃ = p etc.
Let p and r be primary with µ(p, r) = 2. The general cutting procedure Theorem
3.16 requires all homoclinic points to be transverse in order to obtain transverse
qi ∈ H such that ui ∈ M(p, qi) and vi ∈ M(qi, r) for i ∈ {0, 1} with w = vi#ui
are well-defined. If we require only the primary points to be transverse the proof
of Theorem 3.16 nevertheless yields unique q0 and q1 since the vertices p and r
still are transverse. But q0 and q1 might be nontransverse. We will prove that q0
and q1 are either both primary or both not primary. If both are primary then
they are by assumption transverse and the claim follows from Theorem 3.16.
We proof this claim by checking all possible immersions between primary points
of index difference 2. Those were investigated in Lemma 4.29 and listed in figures
4.5 (b) and 4.6 (c). We resketch them in figure 4.7 together with the cuts to the
points q0 and q1.
We recall from the proof of the general cutting procedure Theorem 3.16 the
definition of qi. We choose a parametrization of Li from the convex vertex to
the concave one in order to obtain an ordering <i on Li for i ∈ {0, 1}. If p is
the concave vertex then the formula for the point q0 in the proof of the general
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cutting construction Theorem 3.16 was

q0 := min{q ∈ L0 | p <0 q, q ∈ [p, r]1, [q, q + ε[0 ∩ w(Db)
c 6= ∅ for ε > 0}.

Now consider the cuts to q0 and q1 in figure 4.7 and check if q0 and q1 are
primary. A priori the definition ‘primary’ does not care if the point is transverse
or not. Thus for simplicity we sketched the qi transverse.
Checking the shapes in figure 4.7 we find that for all cases (µ(p, x), µ(x, r)) ∈
{(3,−1), (−1, 3)} the immersion w is an embedding and that q0 and q1 are both
primary. In the case ]x, p[0 ∩ ]x, r[0 6= ∅ =]x, p[1 ∩ ]x, r[1 we only sketched the case
q0 ∈ [x, p]1, but also q0 ∈ [x, r]1 would be primary. In the case ]x, p[0 ∩ ]x, r[0 =
∅ 6=]x, p[1 ∩ ]x, r[1 we have to distinguish q1 ∈ [x, p]0 or q1 ∈ [x, r]0, but in both
cases q1 is primary.
Now consider the case (µ(p, x), µ(x, r)) = (1, 1). First we note that w is not nec-
essarily an embedding. Looking at figure 4.7 we realize that one of the cutting
points is the fixed point itself which is per definitionem not primary. But fortu-
nately always those segments which join the other cutting point to x overcross
in p or r such that this cutting point also is not primary.
As a consequence either both q0 and q1 are primary or none of them.

6. The proof of Theorem 4.13

After all these preparations we finally are able to to prove Theorem 4.13. Again
it is enough to prove the claim for the lifted tangle on M̃ .

Proof of Theorem 4.13: In the following we work with the lifted tangle on M̃ ,
but drop the tilde associated to symbols on M̃ and identify p = p̃ etc.
Due to the linearity of d it is sufficient to prove the claim on the generators. We
compute for p ∈ Hpr

dm−1(dm(p)) = dm−1




∑

q∈Hpr

µ(q)=µ(p)−1

m(p, q)q




=
∑

r∈Hpr

µ(r)=µ(p)−2

∑

q∈Hpr

µ(q)=µ(p)−1

m(p, q) ·m(q, r)r

=
∑

r∈Hpr

µ(r)=µ(p)−2




∑

q∈Hpr

µ(q)=µ(p)−1

m(p, q) ·m(q, r)


 r.
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Thus it is enough to show for p and fixed r
∑

q∈Hpr

µ(q)=µ(p)−1

m(p, q) ·m(q, r) = 0.

If all sign products vanish we are done. If m(p, q) ·m(q, r) 6= 0 both signs m(p, q)

and m(q, r) must be nonzero. In that case M̂(p, q) and M̂(q, r) are not empty

and by the gluing construction Theorem 4.28 we obtain N̂ (p, r) nonempty. The
cutting procedure Theorem 4.30 tells us that for fixed p and r there are either
exactly two primary cutting points q0 and q1 or none. We are in the first case
since our q in one of them. Since m(p, q) ·m(q, r) = 0 for all q 6= q0, q1 the sum
simplifies to

m(p, q0) ·m(q0, r) +m(p, q1) ·m(q1, r)

which vanishes since m(p, q0) ·m(q0, r) = −m(p, q1) ·m(q1, r) by Lemma 3.24.

The following statement shows that the proof of Theorem 4.13 implies the proof
of Theorem 4.19 where we use Z2-coefficients.

Remark 4.31. m(p, q0) ·m(q0, r) +m(p, q1) ·m(q1, r) = 0 over Z clearly implies
vanishing of m2(p, q0)·m2(q0, r)+m2(p, q1)·m2(q1, r) = 0 over Z2 for the Z2-signs
m2 from Definition 3.23.





CHAPTER 5

Examples

In this chapter we discuss the aptitude and accessibility for explicit computations
of primary homoclinic Floer homology. We compute the primary homoclinic
Floer homology of three important examples and give a rough classification
for tangles having exactly two primary equivalence classes w.r.t. each pair of
intersecting branches.

1. Intuition

If we want to compute the primary homoclinic Floer homology of an explicit
tangle we have to locate the primary points within the tangle. For simplicity
assume that there are only primary and no semi-primary points.

For a pair of intersecting branches we locate a primary point as follows: Start
at x and follow simultanously both branches until they intersect for the first
time. This intersection point p is primary. Lemma 4.2 now tells us that all other
primary points arising from this pair of branches have exactly one representant
in ]p, p1[0 ∩ ]p, p1[1. Since all primary points are transverse there is only a fi-
nite number of primary equivalence classes and we locate their representants in
]p, p1[0 ∩ ]p, p1[1 applying successively Lemma 4.8.
If we proceed in this way for all pairs of intersecting branches we obtain repre-
sentatves for all primary equivalence classes.

To discover for a given p all q with M(p, q) 6= ∅ is much more tricky. Unfortu-
nately there is no general recipe, but only some strategies.

Denote by Lp0 and Lp1 the branches containing p. A glance at the figures 4.3 and
4.4 shows that q with M(p, q) 6= ∅ lies at least on one of the branches Lp0 and
Lp1.
Embeddings from p to primary points in Lp0 ∩ Lp1 are easily found. Points q
with M(p, q) 6= ∅ have to lie in ]p−1, p1[0 ∩ ]p−1, p1[1 since otherwise p1 resp.
p−1 ∈ ]p, q[0 ∩ ]p, q[1 causing the lifted M(p̃, q̃) to be empty according to Lemma
4.25 and thus M(p, qn) = ∅.
Another strategy is to look out for embeddings of relative index two and try to
find the cutting points. Due to Theorem 4.30 either both are primary and yield
the desired embeddings or none of them is primary.
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(a) (b)

Figure 5.1. ‘Figure eight’ and ‘tilted figure eight’ saddle connections

Or we glue (if possible) two already found embeddings to one of index difference
two and cut it in order to locate the still unknown second cutting point.

As already discussed after Definition 4.23 primary homoclinic Floer homology is
already determined by the intersection behaviour of two fixed compact segments
of L0 and L1. They can be determined by choosing a representative system and
adding the points which appear when applying d to the representatives.

Moreover we can schematically iterate certain parts of the tangle without loosing
information as long as we do not change the primary points and the embeddings
between them. Since primary points are only a tiny part of the tangle this reduces
the expenditure for iterations considerably.

So far primary homoclinic Floer homology is only defined for homoclinic tangles
in two dimensions. We can also gain information of higher dimensional systems
whenever we can reduce them somehow to dimension two.
Consider for example a four dimensional integrable Hamiltonian system and a
3-dimensional energy hypersurface therein. If it contains a hyperbolic periodic
orbit we can consider the Poincaré map associated to a transverse 2-dimensional
section of the periodic orbit. The periodic orbit yields a hyperbolic fixed point of
the Poincaré map whose (un)stable manifolds lie in the intersecting surface. In
this way we have reduced the 4-dimensional problem to two dimensions where
we can apply primary homoclinic Floer homology.

2. ‘Figure eight’ example

Our first example is the schematically sketched homoclinic tangle of figure 5.2
to which we also refer as ‘figure eight’ tangle due to its shape.
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For instance a tangle looking more or less like the schematic ‘figure eight’ tangle
might appear when applying the Melnikov perturbation method (see Appendix
A) to an integrable system as in figure 5.1 (a). There are also concrete examples:

• The generalized cubic standard map

Gε : R2 → R2, (x, y) 7→ (x1, y1), y1 := y + εf(x), x1 := x+ y1

for ε > 0 and f(x) := x+ rx2 − x3 with r ∈ R as sketched in figure 8.2.
• The Hamiltonian

H(x1, x2, y1, y2) = 1
2
(ax2

1 + by2
1 + x2

2 + y2
2) − εx2

1y1

for certain a, b and ε: Reduce the two degree of freedom to one by
considering a energy hypersurface and the Poincaré map as done in
Contopoulos & Polymilis [CP]. Then we obtain a ‘figure eight’ tangle
in a two dimensional setting.

Now we calculate the primary homoclinic Floer homology of figure 5.2. Let the
tangle be associated to an L-orientation preserving symplectomorphism in R2.
All homoclinic points are contractible due to π1(R

2) = 0. The fixed points x, y
and ỹ and the primary homoclinic points are printed extra bold. Next to each
primary point its Maslov index µ(·) := µ(·, x) is given. Locate the primary point
p in figure 5.2 and fix an orientation of L0 by choosing a parametrization in
direction from x to p.
There are eight equivalence classes 〈p〉, 〈p̃〉, 〈q1〉, 〈q2〉, 〈q̃1〉, 〈q̃2〉, 〈r〉 and 〈r̃〉 with

µ(〈p〉) = µ(〈p̃〉) = −1,

µ(〈q1〉) = µ(〈q2〉) = µ(〈q̃1〉) = µ(〈q̃2〉) = −2,

µ(〈r〉) = µ(〈r̃〉) = −3.

We obtain as chain groups

C−1 = Z〈p〉 ⊕ Z〈p̃〉,
C−2 = Z〈q1〉 ⊕ Z〈q2〉 ⊕ Z〈q̃1〉 ⊕ Z〈q̃2〉,
C−3 = Z〈r〉 ⊕ Z〈r̃〉,
Cn = 0 for n ∈ Z\{−1,−2,−3}

and want to determine their differentials

0
∂0−→ C−1

∂−1−→ C−2
∂−2−→ C−3

∂−3−→ 0.

Recall 〈p〉 = 〈pn〉 etc. for all n ∈ Z and all homoclinic points. −〈q̃2〉 appears in
the differential of 〈p−2〉 and thus −〈q̃2

2〉 appears in the differential of 〈p〉. The
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analogous argument yields 〈q4
2〉 in the differential of 〈p̃〉 and altogether we find

∂〈p〉 = 〈q1〉 − 〈q−1
1 〉 + 〈q2〉 − 〈q̃2

2〉 = 〈q2〉 − 〈q̃2〉,
∂〈p̃〉 = 〈q̃1〉 − 〈q̃−1

1 〉 − 〈q̃2〉 + 〈q4
2〉 = 〈q2〉 − 〈q̃2〉,

∂〈q1〉 = −〈r〉 − 〈r̃3〉 = −〈r〉 − 〈r̃〉 = −(〈r〉 + 〈r̃〉),
∂〈q2〉 = 〈r〉 − 〈r−1〉 = 0,

∂〈q̃1〉 = 〈r3〉 + 〈r̃〉 = 〈r〉 + 〈r̃〉,
∂〈q̃2〉 = 〈r̃〉 − 〈r̃1〉 = 0,

∂〈r〉 = 0,

∂〈r̃〉 = 0.

Now we calculate

ker ∂−1 = Z(〈p〉 − 〈p̃〉), Im ∂−1 = Z(〈q2〉 − 〈q̃2〉),
ker ∂−2 = Z〈q2〉 ⊕ Z〈q̃2〉 ⊕ Z(〈q1〉 + 〈q̃1〉), Im ∂−2 = Z(〈r〉 + 〈r̃〉),
ker ∂−3 = Z〈r〉 ⊕ Z〈r̃〉, Im ∂−3 = 0.

This yields as nonvanishing homology groups

H−1 =
ker ∂−1

Im ∂0
= ker ∂−1 = Z(〈p〉 − 〈p̃〉),

H−2 =
ker ∂−2

Im ∂−1

=
Z〈q2〉 ⊕ Z〈q̃2〉 ⊕ Z(〈q1〉 + 〈q̃1〉)

Z(〈q2〉 − 〈q̃2〉)

H−3 =
ker ∂−3

Im ∂−2
=

Z〈r〉 ⊕ Z〈r̃〉
Z(〈r〉 + 〈r̃〉) .

3. ‘Tilted figure eight’ example

As second example we compute the primary homoclinic Floer homology of the
tangle in figure 5.3 lying in R2 associated to an L-orientation preserving sym-
plectomorphism. Heuristically it looks like shrinking the upper part of the tangle
in figure 5.2 and expanding the lower one and tilting the latter over the first one,
thus the name ‘tilted figure eight’. Compare also this ‘relation’ between figure
5.1 (a) and 5.1 (b).

This kind of homoclinic tangle might arise if we apply Melnikov’s perturbation
method (see Appendix A) to the 2-dimensional integrable system sketched in
figure 5.1 (b). An explicit example for figure 5.1 (b) is the averaged Hamiltonian

εH̄(x, y) := − ε

4ω
(Ω(x2 + y2) +

3α

8
(x2 + y2)2 − 2γx

associated to the Duffing equation for certain values of the constants ε > 0, ω,
Ω, α and γ, see Guckenheimer & Holmes [GH].
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As above primary homoclinic points are printed extra bold and their Maslov
index µ(·) := µ(·, x) is given. We locate the primary point p and fix an orientation
of L0 via a parametrization in direction from x to p.
There are the eight equivalence classes 〈p̃〉, 〈q̃〉, 〈s〉, 〈s̃〉, 〈r〉, 〈r̃〉, 〈p〉 and 〈q〉
with following Maslov index and nontrivial chain groups

µ(〈p̃〉) = 3,

µ(〈q̃〉) = µ(〈s〉) = µ(〈s̃〉) = 2,

µ(〈r〉) = µ(〈r̃〉) = 1,

µ(〈p〉) = −1,

µ(〈q〉) = −2,

C3 = Z〈p̃〉,
C2 = Z〈q̃〉 ⊕ Z〈s〉 ⊕ Z〈s̃〉,
C1 = Z〈r〉 ⊕ Z〈r̃〉,
C−1 = Z〈p〉,
C−2 = Z〈q〉

We want to determine their differentials

0
∂4−→ C3

∂3−→ C2
∂2−→ C1

∂1−→ 0
∂0−→ C−1

∂−1−→ C−2
∂−2−→ 0.

We recall 〈p〉 = 〈pn〉 for all homoclinic points and all n ∈ Z. The appearance
of −〈s̃〉 in ∂〈p̃3〉 implies the appearance of −〈s̃−3〉 in ∂〈p̃〉. Analogously follows
〈r̃−3〉 in ∂〈q̃〉.
Moreover 〈r̃〉 cannot appear in ∂〈s〉 since they arise from the intersection of
distinct pairs of branches of L0 and L1. Every u ∈ M(s, r̃) would have x ∈
]s, r̃[0 ∩ ]s, r̃[1 such that its lift would not be an embedding in contradiction to
Lemma 4.25. The same is true for 〈r〉 and ∂〈s̃〉. Altogether we obtain

∂〈p̃〉 = 〈q̃〉 − 〈q̃1〉 + 〈s〉 − 〈s̃−3〉 = 〈s〉 − 〈s̃〉,
∂〈q̃〉 = 〈r−1〉 + 〈r̃−3〉 = 〈r〉 + 〈r̃〉,
∂〈s〉 = 〈r〉 − 〈r−1〉 = 0,

∂〈s̃〉 = 〈r̃〉 − 〈r̃1〉 = 0,

∂〈r〉 = 0,

∂〈r̃〉 = 0,

∂〈p〉 = 〈q〉 − 〈q−1〉 = 0,

∂〈q〉 = 0.

Now we calculate

ker ∂3 = 0, Im ∂3 = Z(〈s〉 − 〈s̃〉),
ker ∂2 = Z〈s〉 ⊕ Z〈s̃〉, Im ∂2 = Z(〈r〉 + 〈r̃〉),
ker ∂1 = Z〈r〉 ⊕ Z〈r̃〉, Im ∂1 = 0,

ker ∂−1 = Z〈p〉, Im ∂−1 = 0,

ker ∂−2 = Z〈q〉, Im ∂−2 = 0



3 ‘Tilted figure eight’ example 75

−1

23

y

−1

−2

3 2

3

2

1

2

1

1

1

2

1

q−3

x

p−3

−1

−1

p−2

p−1

−2

q

−1
p1

−2

p

q−1 −2q−2

q̃ 22
3

q̃−1
q̃5

q̃4

q̃3

3

2

q̃2

3

2q̃1

2
2 s1

p̃3

p̃2

p̃1

s

r

r1

r̃

1

r̃−1

r̃1

2

p̃4

p̃
p̃−1

1 r−2

1 r̃−2

2

s̃

s̃−1

s̃1

s−1

r−1

L1

L0
ỹ
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and obtain as homology

H3 =
ker ∂3

Im ∂4
= 0,

H2 =
ker ∂2

Im ∂3
=

Z〈s〉 ⊕ Z〈s̃〉
Z(〈s〉 − 〈s̃〉) ,

H1 =
ker ∂1

Im ∂2

=
Z〈r〉 ⊕ Z〈r̃〉
Z(〈r〉 + 〈r̃〉) ,

H−1 =
ker ∂−1

Im ∂0
= Z〈p〉,

H−2 =
ker ∂−2

Im ∂−1
= Z〈q〉,

Hn = 0 for n ∈ Z\{±1,±2, 3}.

4. Hyperbolic diffeomorphisms

Denote by τ : R2 → R2/Z2 =: T 2 the universal covering map. A diffeomorphism
ϕ : T 2 → T 2 is called hyperbolic if its covering map ϕ̃ : R2 → R2 is linear with
det(ϕ̃) = 1 and has no eigenvalue of modulus 1. In the literature they also appear
under the name Anosov automorphisms (with positive determinant).
Hyperbolic diffeomorphisms are symplectic.

Since ϕ comes from a linear diffeomorphism ϕ̃ all possible fixed points of ϕ have
the same eigen values and eigen vectors. If the eigen vectors are irrational direc-
tions the (un)stable manifolds of the considered fixed point of ϕ wrap densely
around the torus. This is for instance the case for ϕ̃ =

(
1 1
1 2

)
. Especially none of

their intersection points (different from the fixed point itself) is contractible to
the fixed point!

Since primary homoclinic Floer homology is generated by contractible points
the homology groups vanish completely for fixed points with irrational eigen
directions of hyperbolic diffeomorphisms.

If we lift the tangle according to Notation 4.5 the lifted (un)stable manifolds
can be identified with the linear (un)stable eigenspaces which only intersect in
the origin.

5. Classification

We will give a rough classification of possible chain complexes under the as-
sumption that each pair of intersecting branches gives rise to exactly two pri-
mary equivalence classes. Unfortunately this yields a priori not much information
about the boundary operator.
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Figure 5.4. Intersection of the branches

There are four cases: No primary points at all or one, two, three or four pairs of
intersecting branches and thus to 0, 2, 4, 6 or 8 primary homoclinic equivalence
classes.

Proposition 5.1. Let L0 and L1 be strongly intersecting. Let each pair of in-
tersecting branches give rise to exactly two primary equivalence classes. Then
up to symmetry there are ten distinct tupels (C3, . . . , C−3), compare table 5.2.

Proof : Let the four branches of the (un)stable manifolds be L±
0 and L±

1

emanating from x as sketched in figure 5.4 (a). The primary equivalence classes
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µ(·, ·) = (3,2) (2,1) (-1, -2) (-2,-3)

(p, q) y n y n
(r, s) n y n y
(r′, s′) n y n y
(p′, q′) y n y n

Table 5.1

C3 C2 C1 C−1 C−2 C−3

(1) p, p′ q, r, r′, q′ s, s′

(2) p q, r, r′ s, s′ p′ q′ = (9′)
(3) p, p′ q, r, q′ s r′ s′ = (5′)
(4) p q, r s p′ r′, q′ s′ = (13′)
(5) p, p′ q, r′, q′ s′ r s = (3′)
(6) p q, r′ s′ p′ r, q′ s = (11′)
(7) p, p′ q, q′ r, r′ s, s′

(8) p q p′ r, r′, q′ s, s′ = (15′)
(9) p′ r, r′, q′ s, s′ p q = (2′)
(10) r, r′ s, s′ p, p′ q, q′

(11) p′ r, q′ s p q, r′ s′ = (6′)
(12) r s p, p′ q, r′q′ s′ = (14′)
(13) p′ r′, q′ s′ p q, r s = (4′)
(14) r′ s′ p, p′ q, r, q′ s = (12′)
(15) p′ q′ p q, r, r′ s, s′ = (8′)
(16) p, p′ q, r, r′, q′ s, s′

Table 5.2

are

〈p〉, 〈q〉 ∈ L+
0 ∩ L+

1 , 〈r〉, 〈s〉 ∈ L−
0 ∩ L+

1 ,

〈p′〉, 〈q′〉 ∈ L−
0 ∩ L−

1 , 〈r′〉, 〈s′〉 ∈ L+
0 ∩ L−

1 .

The relative index between two distinct classes within one pair of branches equals
1. Due to figure 5.4 (b) – (e) this leaves exactly two choices for the index of each
pair of points: Table 5.1 gives an overview where ‘y’ stands for a possible index
combination and ‘n’ if the combination is not possible.
Now table 5.2 lists all possible choices for the generators of Cm, m = ±1,±2,±3
where we suppress the notion of equivalence class in favour of better readability.
Table 5.2 shows that modulo symmetry p ∼ p′ etc. there are ten cases.
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H3 H2 H1 H−1 H−2 H−3

(1) ∗ ∗ ∗ 0 0 0
(2), (9) ∗ ∗ ∗ C−1 C−2 0
(3), (5) ∗ ∗ ∗ 0 C−2 C−3

(4), (6), (11), (13) ∗ ∗ ∗ ∗ ∗ ∗
(7) ∗ ∗ 0 0 ∗ ∗
(8), (15) C3 C2 0 ∗ ∗ ∗
(10) 0 ∗ ∗ ∗ ∗ 0
(12), (14) 0 C2 C1 ∗ ∗ ∗
(16) 0 0 0 ∗ ∗ ∗

Table 5.3

For example the homoclinic tangle of figure 5.2 corresponds to table 5.2 row 16
and the one of figure 5.3 corresponds to table 5.2 row 9.

Nevertheless table 5.2 also contains information about the associated homology.

Corollary 5.2. Let (k) in table 5.3 denote the kth row of table 5.2. Then table
5.3 presents the homology information we can deduce from Proposition 5.1 and
table 5.2.

Proof : The symbol ‘∗’ in table 5.3 stands for no additional information about
the homology group in question. If there are no generators clearly the homology
vanishes as for instance in the last three entries of the first row of table 5.3.
Now consider exemplarily the second row: Since always C0 = 0 the homology in
positive (negative) degrees only depends on the positive (negative) chain groups.
If C−3 = 0 and C−1 and C−2 have exactly one generator coming from a pair of
adjacent points then ∂ ≡ 0 in negative degrees and therefore Hn = Cn for
n ∈ {−1,−2,−3}.
If there are less than four pairs of intersecting branches the associated behaviour
can be deduced from Proposition 5.1 by neglecting the missing primary equiva-
lence classes except if two pairs of intersecting branches imply the existence of
further pairs of intersecting branches by means of the λ-lemma Theorem 3.21.

Consider H∗(x, ϕ) obtained from C∗(x, ϕ) and choose a pair of intersecting
branches. Then the combinatorial technics used in Chapter 6 imply the exis-
tence of a chain complex C∗ with H∗(C∗) = H∗(x, ϕ) such that the choosen pair
of intersecting branches delivers only two generators for C. If this can be done
simultanously for all pairs of intersecting branches is an open problem.





CHAPTER 6

Invariance

We would very much like to imitate the modern approach to invariance of Floer
homology using a homotopy argument as displayed for example in Schwarz
[Sch1, Sch2]. But unfortunately exactly the abstractness of this argument
makes it impossible for us since our methods need exact knowledge of the con-
necting immersions. Therefore our invariance proof here is inspired by Floer’s
original proof in [Fl3] who constructed explicit chain homotopies in order to
show coinciding homologies.

In figures primary points are printed extra bold. In order to obtain smaller
sketches we sometimes draw the hyperbolic fixed point x ‘splitted’ into two
copies which have to be identified.

1. Main results

Let (M,ω) be a closed symplectic two-dimensional manifold with genus g ≥ 1 or
(R2, dx∧dy). Denote by Diff(M) the group of smooth diffeomorphisms with the
Whitney topology (which coincides on compact manifolds with the Cr-topology).
Let Diffω(M) ⊂ Diff(M) be the group of symplectomorphisms. ϕ ∈ Diffω(M) is
Hamiltonian if it is the time-1 map of a time dependent Hamiltonian vector
field. Recall the following perturbation result.

Theorem 6.1 ([PaT2]). Consider ϕ ∈ Diffk(M) with k ≥ 1 and x ∈ Fix(ϕ)
and let ψ ∈ Diffk(M) be sufficiently Ck-near to ϕ. Then ψ has a hyperbolic
fixed point y near x and W i(y, ψ) is Ck-near W i(x, ϕ) for i ∈ {u, s}, at least
if we restrict ourselves to compact neighbourhoods of y and x in W i(y, ψ) and
W i(x, ϕ). y is called the continuation of x and the signs of the corresponding
eigenvalues coincide.

Now we give the definition of isotopies in our sense.

Definition 6.2. Let ϕ, ψ ∈ Diffω(M) and x ∈ Fix(ϕ) and y ∈ Fix(ψ) both
hyperbolic. An isotopy (between (x, ϕ) and (y, ψ)) is a smooth path Φ :
[0, 1] → Diffω(M), τ 7→ Φ(τ) =: Φτ with Φ0 = ϕ, Φ1 = ψ, x0 = x and x1 = y
and xτ ∈ Fix(Φτ ) as continuation for all τ ∈ [0, 1] between x and y. Φ is called
Hamiltonian if Φτ is Hamiltonian for all τ ∈ [0, 1].
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Attaching τ to a symbol associates it to (xτ ,Φτ ), i.e. Hτ
pr denotes the set of

primary points of (xτ ,Φτ ) etc.

Definition 6.3. Let ϕ ∈ Diffω(M) and x ∈ Fix(ϕ) hyperbolic. (x, ϕ) is called
contractibly strongly intersecting (csi) if L0 and L1 are strongly intersect-
ing and if each pair of branches has contractible homoclinic points. An isotopy
Φ is csi if (xτ ,Φτ ) is csi for all τ ∈ [0, 1].

Theorem 6.4 (Invariance). Let (M,ω) be a closed symplectic two-dimensional
manifold with genus g ≥ 1. Let ϕ, ψ ∈ Diffω(M) with hyperbolic fixed points
x ∈ Fix(ϕ) and y ∈ Fix(ψ). Let (x, ϕ) and (y, ψ) be csi and let all primary
points of ϕ and ψ be transverse. Assume there is a csi isotopy Φ from (x, ϕ) to
(y, ψ). Then

H∗(x, ϕ) ≃ H∗(y, ψ).

For the genericity of ‘strongly intersecting’ compare the discussion before Theo-
rem 3.16. We will prove Theorem 6.4 in the following sections. The proof carries
over to compactly supported symplectomorphisms on R2:

Theorem 6.5 (Invariance). Let ϕ, ψ ∈ Diffdx∧dy(R
2) be compactly supported

with hyperbolic fixed points x ∈ Fix(ϕ) and y ∈ Fix(ψ). Let (x, ϕ) and (y, ψ)
be strongly intersecting and let all primary points of ϕ and ψ be transverse. Let
Φ be a compactly supported strongly intersecting isotopy from (x, ϕ) to (y, ψ).
Then

H∗(x, ϕ) ≃ H∗(y, ψ).

‘Csi’ and ‘compactly supported’ are crucial since

Remark 6.6. There are ϕ, ψ ∈ Diffdx∧dy(R
2) with hyperbolic fixed points x ∈

Fix(ϕ) and y ∈ Fix(ψ) and

(1) different number of pairs of intersecting branches,
(2) H∗(x, ϕ) 6= H∗(y, ψ)

which can be joint by a symplectic isotopy.

Proof : Let ε > 0 be small and consider the path (Φε
τ )τ∈[0,1] : R2 → R2 given

by

Φε
τ (x, y) := (x+ y + εfτ (x), y + εfτ (x))

with fτ (x) := −τx3−(1−τ)x2+x for τ ∈ [0, 1]. (Φε
τ )

−1(ξ, η) = (ξ−η, η−εfτ(ξ−
η)) is its inverse and (Φε

τ )
∗(dx ∧ dy) = dx ∧ dy, thus Φε

τ ∈ Diffdx∧dy(R
2) for all

τ ∈ [0, 1]. We have Φε
τ (0, 0) = (0, 0) with DΦε

τ (0, 0) =
(

1+ε
ε

1
1

)
as hyperbolic fixed

point with positive eigenvalues for all τ . Now set ϕ := Φε
0 and ψ := Φε

1. ϕ is
the volume preserving Hénon map and its homoclinic tangle is sketched in figure
8.2 (a): ϕ has one pair of intersecting branches. The tangle of ψ is a symmetric
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version of figure 8.2 (b) and admits four pairs of intersecting branches. Both are
L-orientation preserving and we compute similarly to Chapter 5

H2((0, 0), ϕ) ≃ Z, H1((0, 0), ϕ) ≃ Z, Hn((0, 0), ϕ) = 0 otherwise.

But ψ has H3((0, 0), ψ) 6= 0, thus H∗((0, 0), ϕ) 6= H∗((0, 0), ψ).

Thus intersecting branches can be torn apart during an isotopy which satisfies
no further conditions. This phenomenon prevents invariance of homology.

We note the following properties of primary homoclinic Floer homology.

Remark 6.7. (1) Whereas primary homoclinic Floer homology can be de-
fined even for nonsymplectic diffeomorphisms (see Theorem 7.1) invari-
ance only is natural within the class of symplectomorphisms. Thus pri-
mary homoclinic Floer homology is a symplectic invariant.

(2) In Conjecture 9.1 we motivate a stronger invariance result for Hamil-
tonian diffeomorphisms.

(3) In contrast to classical Lagrangian Floer theory invariance of primary
homoclinic Floer homology relies on the nontrivial result of (generical)
existence of intersection points of the Lagrangians.

There are certain cases where the combinatorial results of the proof of Theorem
6.4 are valid, but the genericity discussion is difficult or impossible. Most generic
properties only make sense for compact manifolds. Few is known about genericity
of diffeomorphisms or paths of diffeomorphisms on noncompact manifolds apart
from Robinson [Ro]. For these cases we formulate a combinatorial version of
Theorem 6.4.

Definition 6.8. We call an isotopy Φ from (x, ϕ) to (y, ψ) good if p ∈ Lτ0 ∩Lτ1
is either transverse or a simple tangency (defined before Remark 6.13) for τ ∈
[0, 1] and if a pair of branches admits primary points either for all τ or for
none. Moreover in the first case we require for all τ the existence of a transverse
primary point.

We deduce from the proof of Theorem 6.4

Theorem 6.9. Let (M,ω) be a closed symplectic two-dimensional manifold with
genus g ≥ 1 or (R2, dx ∧ dy). Let ϕ, ψ ∈ Diffω(R

2) with x ∈ Fix(ϕ) and y ∈
Fix(ψ) both hyperbolic. Assume all primary points of ϕ and ψ to be transverse.
Let Φ be a good isotopy from (ϕ, x) to (ψ, y). Then

H∗(x, ϕ) ≃ H∗(y, ψ).

As application we obtain the following existence and bifurcation criterion.

Corollary 6.10 (existence and bifurcation criterion). Assume the conditions
of Theorem 6.4 resp. Theorem 6.5 for (M,ω), (x, ϕ) and (y, ψ), but H∗(x, ϕ) 6=
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H∗(y, ψ). Then (x, ϕ) and (y, ψ) cannot be joint by a csi (resp. compactly sup-
ported) isotopy.
Thus if there is a path (Φτ )τ∈[0,1] ∈ Diffω(M) between ϕ and ψ then

(1) either Φ is no isotopy, i.e. there is τ0 ∈ [0, 1] where xτ0 vanishes or
undergoes a bifurcation,

(2) or if Φ is a (compactly supported) isotopy there has to be a pair of
branches and some τ0 ∈ [0, 1] where all contractible homoclinic points
vanish, i.e. there are homoclinic bifurcations.

(3) or Φ is no compactly supported isotopy.

In the combinatorial situation we deduce

Corollary 6.11. Theorem 6.9 implies analogous conclusions to Corollary 6.10.

2. Generic isotopies and their local picture

From now on let (M,ω) be compact and denote by τ : (M̃, ω̃) → (M,ω) with
τ ∗ω = ω̃ its universal cover. A set is called generic if it is of second caregory of
Baire.

The idea is the following: Recall that primary homoclinic Floer homology is
already determined by compact segments centered around the fixed point.
Given (x, ϕ), (y, ψ) and Φ as in Theorem 6.4 we will perturb Φ slightly in order
to obtain an isotopy whose affect on the chain complex can be modeled by a
sequence of ‘moves’ as in knot theory.

First we have to discuss if the conditions on (x, ϕ) and (y, ψ) in Theorem 6.4
are compatible with this approach.
In Theorem 6.4 we impose the transversality condition only on the primary
points of (x, ϕ) and (y, ψ). This is convenient for applications since it can be
checked easily using Lemma 4.2 and Lemma 4.8. But our proof strategy requires
perturbations of Φ. Thus we have to show that slight perturbations of the start
and endpoint preserve their primary homoclinic Floer homologies.

Proposition 6.12. Let (M,ω) be a closed two-dimensional symplectic manifold
with genus g ≥ 1. Let ϕ ∈ Diffω(M) and x ∈ Fix(ϕ) hyperbolic. Let (x, ϕ) be csi
and all primary points transverse. Then for all ϕ̂ ∈ Diffω(M) sufficiently close
to ϕ holds

H∗(x, ϕ) = H∗(x̂, ϕ̂).

where x̂ ∈ Fix(ϕ̂) is the continuation of x.

The proof is postponed to Section 7.

A fixed point of a symplectomorphism is called elliptic if the modulus of the eigen
values equals one, but the eigenvalues are not +1 or −1. Generically the periodic
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Figure 6.1. The local picture of a generic bifurcation

points of symplectomorphisms on 2-dimensional manifolds (also noncompact)
are elliptic or hyperbolic with transversely intersecting (un)stable manifolds, see
Robinson [Ro].

Now we ask for the generic properties of isotopies. A homoclinic tangency
is a nontransverse intersection point of the stable and unstable manifold. A
simple tangency is a homoclinic tangency where the (un)stable manifolds are
tangent to each other, but do not have the same curvature. If an isotopy Φ has
for τ0 ∈ ]0, 1[ a homoclinic tangency p := pτ0 ∈ Lτ00 ∩ Lτ01 we call passing from
τ < τ0 to τ > τ0 the unfolding of the homoclinic tangency. A bifurcation is
an unfolding of the homoclinic tangency p where p vanishes for τ ∈ ]τ0 − ε, τ0[
and splits into two points pτl and pτr for τ ∈ ]τ0, τ0 + ε[ for ε > 0 small or vice
versa.

The results of Newhouse & Palis & Takens [NePT] § 2.6 and the birth-death
discussion of critical points in Laudenbach [Lau] and Sullivan [Su] or the discus-
sion of singularities of Lagrangian maps in Arnold & Gusein-Zade & Varchenko
[ArGZV] state

Remark 6.13. Generically unfoldings are bifurcations associated to simple tan-
gencies. In this case there exists for Lτ0 and Lτ1 having a bifurcation at p for
τ = τ0 the following local symplectic coordinate transformation around p for
τ near τ0 (see figure 6.1): p is mapped to the origin and a small unstable seg-
ment around p into {y = 0} and a small stable segment around p into the graph
of f(x) ± C(τ − τ0) where f is homogeneous, quadratic and nondegenerate and
C > 0.

Definition 6.14. Let p be primary. [p, p1]0 ∪ [p, p1]1 together with the positions
of [p, p1]0 ∩ [p, p1]1 and the immersions (embeddings on M̃) between adjacent
points is called the frame induced by p.

Let p be primary. Then every primary equivalence class different from p has
according to Lemma 4.2 exactly one representative in the frame induced by p.
As long as p persist as primary point under a perturbation its frame is ideal for
observing the other primary points during this perturbation.

Lemma 6.15. Csi is an open property in Diffω(M).
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Proof : Consider a csi ϕ ∈ Diffω(M) with hyperbolic fixed point x. We work
now with the lifted tangle on the universal cover and drop the ‘tilde’ for sake of
readability. Let p be primary. Since ϕ is csi there are no homoclinic loops, i.e.
coinciding branches of the (un)stable manifolds. Since ϕ is symplectic the area
enclosed by [p, x]0 ∪ [p, x]1 equals the one enclosed by [p1, x]0 ∪ [p1, x]1. Since the
area swept in resp. out is nonzero ]p, p1[0 ∩ ]p, p1[1 6= ∅ and for small enough
perturbations intersection points survive due to Theorem 6.1.

Thus we can perturb (x, ϕ) and (y, ψ) joint by Φ to (x̂, ϕ̂), (ŷ, ψ̂) and Φ̂ where

(x̂, ϕ̂), (ŷ, ψ̂) are perturbations in the sense of Proposition 6.12 and Φ̂ is a csi
generic (in the sense of Remark 6.13) isotopy between them, i.e. all tangencies
are simple.

Now consider for each pair of branches of the generic Φ̂ the open set

E := {τ ∈ [0, 1] | ∃ transverse primary points}
and its complement Ec. Ec is discrete and thus finite. For τ ∈ Ec perturb Φ̂
again slightly in order to obtain a transverse primary point within each pair of
branches.

Now at all time τ ∈ [0, 1] there exists a transverse primary point in each pair of
branches. Since this point is transverse it persists for a small parameter interval
and we can cover [0, 1] by a finite number of overlapping intervals associated to
persistent primary points. Thus there is a finite number of frames within which
we can observe the behaviour of the other primary points during the isotopy.
Since frames are compact and since primary points only can arise in certain
distinguished parts of the frame (compare Lemma 4.8, later also Lemma 6.35)
there are only finitely many τ ∈ [0, 1] where primary points can arise or vanish
as intersection points.
Since primary homoclinic Floer homology lives within compact segments cen-
tered around the fixed point we can model the relevant part of the isotopy by a
sequence of moves as in knot theory.
A look at the proof of Proposition 6.12, more precisely Lemma 6.42 shows that as
long as no primary point arises or vanishes the homology stays in fact untouched
for purely combinatorial reasons.

3. Combinatorics of primary points

A primary tangency is a nontransverse primary point. Inspired by the sec-
ond Reidemeister move in knot theory and the local picture of a bifurcation of
Remark 6.13 we define

Definition 6.16. Let the isotopy Φ have a bifurcation at τ = τ0 in p := pτ0. For
small ε > 0 and τ ∈ ]τ0 − ε, τ0 + ε[ near p as sketched in figure 6.1 we call the
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local picture of an isotopy a move omitting the isotopy parameter τ . By abuse
of notation we speak of an (r, s)-move if the arising points are called r and s. In
fact we have a family of (rn, sn)n∈Z-moves.

Due to the lack of self-intersections of the (un)stable manifolds the other Rei-
demeister moves do not have an equivalent in our framework.
Given an (r, s)-move there is always an embedded di-gon between r and s since
]r, s[0 ∩ ]r, s[1 = ∅. If they are primary they are adjacent to each other. Moreover
x /∈ [r, s]0 ∪ [r, s]1 and therefore r and s always lie on the same branches.

W.l.o.g. we will assume from now on that in case of a bifurcation in p at time
τ0 the tangency p unfolds into two points for τ > τ0 and vanishes for τ < τ0.
This we briefly call after resp. before the bifurcation or move. We call a point
involved in a move if it is either the homoclinic tangency at time τ0 or one of
the arising transverse homoclinic points. Persistent transverse primary points p
and q are called combinatorically affected by a move if the value ofm(p, q) is
changed by the move. By abuse of notation we call in this case also the elements
of M(p, q) affected by the move.

Taking the discussion above into consideration generic isotopies are equivalent
to a sequence of moves.

Nonprimary points are called secondary. Considering the definition of primary
points there are different possibilities to generate (analogously destroy) a pri-
mary point p by a move:

(1) p arises as intersection point.
(2) p was secondary and becomes primary. This phenomenon we call a

primary-secondary flip, briefly a flip.

Note that in the latter case the point needs not necessarily to be involved in the
move itself, see figure 6.6. Primary points cannot switch to nontrivial homotopy
classes or vice versa due to ‘· · · ∩ H[x]’ in the definition of ‘primary’.

Since there are always two points involved in a bifurcation the following types
of moves are possible:

(1) If both arising points are primary the move is called primary.
(2) If one of the arising points is primary and the other one secondary the

move is called mixed.
(3) If both arising points are secondary the move is called secondary.

We note

Lemma 6.17. Let p be not involved itself in a given move, but let p undergo a
primary-secondary flip. Then the move is a mixed one.

Proof : Consider p primary before the move and the embedding between p and
x as sketched in figure 6.2 (i) for µ(p, x) = −1. In order to switch p secondary
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Figure 6.2. Causes for a primary-secondary flip

]p, x[0 and ]p, x[1 have to intersect after the move. If we denote the intersection
points produced by the move by r and s then ]r, s[i ⊂ ]x, p[i for i ∈ {0, 1} which
leaves up to (symplectic) diffeomorphism exactly the three possibilities of figure
6.2 (ii) – (iv). We see that in (ii) s is primary, but r secondary and that in (iii)
and (iv) r is primary, but s secondary. We conclude that the primary-secondary
flip of p only can be realized by a mixed (r, s)-move.

Having Lemma 6.17 and figure 6.2 in mind we conclude the following changes
of the set of primary points under the different types of moves.

Corollary 6.18. (1) A primary move generates two primary points and
does not flip any.

(2) A mixed move generates one primary point, but flips a certain number
of primary points secondary.

(3) A secondary move neither generates primary points nor can flip some
of them secondary, i.e. the set of primary points stays untouched.

Thus the above specification characterizes how the different types of moves affect
the generator set of the primary homoclinic Floer chain groups. We will inquire
about the potential changes of the boundary operator in the next sections.

4. Invariance under secondary moves

In this section we show the invariance of primary homoclinic Floer homology
under secondary moves. We work with the lifted homoclinic tangle on the uni-
versal cover. We already realized in Corollary 6.18 that the generator set of the
chain complex stays unchanged under secondary moves and we will show now
that this is also true for the boundary operator. Both implies the invariance of
primary homoclinic Floer homology under secondary moves.

Proposition 6.19. Secondary moves do not affect embeddings between primary
points.

Proof : We argue by contradiction: Let u be an embedding between primary
points p and q with µ(p, q) = 1. Consider an (r, s)-move such that {r, s} =
]p, q[0 ⋔ ]p, q[1. We show: If r and s are secondary then the (r, s)-move already
flipped either p or q secondary before r and s can arise.
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Figure 6.3. The effect of moves on an embedding between pri-
mary points p and q

The proof is tedious, but elementary. We just have to check for the embed-
dings between primary p and q of figure 4.3 and figure 4.4 all combinato-
rial possibilities of (r, s)-moves affecting the boundary [p, q]0 ∪ [p, q]1 such that
{r, s} = ]p, q[0 ∩ ]p, q[1.
We only prove the assertion exemplarily in the case of figure 4.3 (b).(-1,2).(i)
which is resketched in figure 6.3 (i). The strategy and result for the other cases
in figure 4.3 and figure 4.4 is the same.
Consider figure 6.3 (i) and the boundary [p, q]0∪[p, q]1 of the embedding between
p and q. ]p, q[0\{x} consists of the two connected components ]p, x[0 and ]q, x[0.
Since r and s always lie in the same branch we have to distinguish the cases r,
s ∈ ]p, x[0 (see figure 6.3 (ii), (vi), (vii)) and r, s ∈ ]q, x[0 (see figure 6.3 (iii),
(iv), (v)). Moreover we have to distinguish if p is connected within L1 first to s
(see figure 6.3 (ii), (iii)) or to r (see figure 6.3 (iv) – (vii)). The cases (iv) and
(v) on the one hand and (vi) and (vii) on the other hand are basically the same.
We deduce that (ii) is a primary move and that (iii), (iv) and (v) are mixed
ones. In (vi) and (vii) the points r and s are both secondary. But before the
move starting in the situation of sketch (i) generates the intersection points r
and s in (vi) and (vii) it has to pass through ]p, x[1 generating the intersection
points r′ and s′ which yields a mixed (r′, s′)-move flipping p secondary.

We conclude

Corollary 6.20. Proposition 6.19 and Corollary 6.18 imply the invariance of
primary homoclinic Floer homology under secondary moves.
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We note

Remark 6.21. According to the proof of Proposition 6.19 a mixed move affecting
an embedding between two primary points always flips one of them secondary.

5. Invariance under primary moves

In this section we prove the invariance of primary homoclinic Floer homology
under primary moves. First we analyse where primary moves can take place and
then we construct inspired by Floer’s original proof in [Fl3] explicit chain maps
and chain homotopies between the chain complexes before and after the move in
order to obtain invariance of the homology. We work with the lifted homoclinic
tangles on the universal cover.

Recall the notion of adjacent points from Lemma 4.8 and their properties in
Lemma 4.9 and note that in a primary (r, s)-move the points r and s are adjacent
to each other.
Now we have to inquire if embeddings between primary points can be affected
by more than one member of the family of the primary move in question.

Lemma 6.22. Let p and q be primary with µ(p, q) = 1 and u ∈ M(p, q). Consider
a primary (r, s)-move causing [rm, sm]i ⊂ ]p, q[i for i ∈ {0, 1} after the move
(compare figure 6.5) for some m ∈ Z. Then there is no n ∈ Z6=m such that
[rn, sn]i ⊆ ]p, q[i for i ∈ {0, 1}, i.e. an embedding of relative Maslov index 1
between primary points is combinatorically affected by at most one member of
the primary move family.

Proof : Let Φ be orientation preserving. Recall that r and s lie in the same
branches. Since x /∈ [p, q]0 ∩ [p, q]1 at least one of the points p, q lies in the
same branch as r and s and w.l.o.g. let it be p.
Now we argue by contradiction: Assume w.l.o.g. m = 0 and that there is n 6= 0
with [rn, sn]i ⊂ ]p, q[i for i ∈ {0, 1}. Then there is an iterate pk with pk ∈
[r, rn]0 ∩ [r, rn]1 ⊂ ]p, q[0 ∩ ]p, q[1. But then already pk ∈ ]p, q[0 ∩ ]p, q[1 before
the primary (r, s)-move took place implying that u is no embedding.
In case of L-orientation reversing Φ consider Φ2.

Lemma 6.22 carries over to mixed moves as well.

We now investigate how and where primary moves can take place.

Lemma 6.23. Let p and q be primary with µ(p, q) = 1 and M(p, q) 6= ∅. Consider
a primary (r, s)-move such that after the move ]p, q[0 ∩ ]p, q[1= {r, s}. Then p
and q remain primary and the geometric positions of p, q, r and s are as in
figure 6.4.

Proof : If x /∈ [p, q]0 ∪ [p, q]1 then p and q lie on the same branches and the
claim follows from Lemma 4.8 and Lemma 4.9, compare figure 6.4 (i).
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Figure 6.4. The primary (r, s)-move

If x ∈ [p, q]0 ∪ [p, q]1 then x lies only in one of the segments. Now we have to
check the embeddings from figure 4.3 and 4.4 as in the proof of Proposition
6.19. Figure 6.3 sketches all possible moves exemplarily for the case of figure 4.3
(b).(-1,2).(i) which is resketched in figure 6.4 (ii). The only sketch satisfying our
hypothesis is figure 6.3 (ii). And analogously the other cases follow.

We denote by

<·, ·> : Hpr ×Hpr → {0, 1}, <p, q> :=

{
1, if p = q,

0, otherwise

the Kronecker symbol and extend it by linearity to the chain complex.

We perform the following constructions on the chain complexes which still carry
the Z-action. We will divide by the Z-action at the very end of this section.
For an isotopy Φ which has a primary tangency at τ0 and displays a primary
(r, s)-move for τ ∈ [τ0 − ε, τ1 + ε] we abbreviate Hpr := Hpr(Φτ0−ε, xτ0−ε) and
identify H′

pr := Hpr(Φτ0+ε, xτ0+ε) = Hpr ∪ {rn, sn | n ∈ Z}. Moreover set

(C∗, d) := (C∗(xτ0−ε,Φτ0−ε), dxτ0−ε,Φτ0−ε
),

(C′
∗, d

′) := (C∗(xτ0+ε,Φτ0+ε), dxτ0+ε,Φτ0+ε
)

and signs after the move are marked by a prime as m′(·, ·). Given a primary
(r, s)-move we define the projection

π : C′
∗ → C∗, π(p) = p−

∑

n∈Z

<p, rn>rn −<p, sn>sn

and the inclusion Hpr →֒ H′
pr induces the homomorphism

i : C∗ → C′
∗.

Remark 6.24. π and i commute with the Z-action on the chain complexes.
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UU

q ppq
rn sn

Figure 6.5. Behaviour of embeddings under primary (r, s)-moves

For Z2-coefficients and intersection points of compact Lagrangians L0 and L1

(satisfying certain additional conditions) an analogon of the following formula
appears already in Floer [Fl3] and de Silva [dS]. We generalize it to our frame-
work of noncompact Lagrangians whose intersection set carries a Z-action and
which admits Z-coefficients in case of L-orientation preserving symplectomor-
phisms. The constructions in the proofs of the following statements for Z-
coefficients carry over to the case of Z2-coefficients in case of L-orientation re-
versing symplectomorphisms.

W.l.o.g. assume for the remaining section that for a primary (r, s)-move µ(r, s) =
1 holds as sketched in figure 6.5.

Theorem 6.25. For all primary p, q ∈ Hpr and all primary (r, s)-moves holds

m(p, q) = m′(i(p), i(q)) −
∑

n∈Z

m′(i(p), sn)m′(rn, sn)m′(rn, i(q))

where in fact at most one summand is nonzero.

Proof : We know that the primary (r, s)-move changes Hpr to H′
pr = Hpr ∪

{rn, sn | n ∈ Z}. Lemma 6.23 yields the possible geometric positions of p, q, r, s.
Lemma 6.22 ensures that for primary points p and q an embedding u ∈ M(p, q)
is combinatorically affected by the primary (r, s)-move if and only if there is
exactly one n ∈ Z such that ]p, q[0 ⋔ ]p, q[1= {rn, sn} after the move as sketched
in figure 6.5.
If the embedding is combinatorically affected by rn and sn then it cor-
responds under the move to three embeddings between rn and q, rn and
sn and p and sn. Using some gluing construction within a small neigh-
bourhood U containing the move as sketched in figure 6.5 we obtain

M̂(p, q) ≃ M̂(rn, q) × M̂(rn, s) × M̂(p, sn). Counting with orientation we
find m(p, q) = m′(i(p), sn) = m′(rn, i(q)) = −m′(rn, sn) and thus m(p, q) =
−m′(i(p), sn)m′(rn, sn)m′(rn, i(q)). For k ∈ Z6=n the embedding u ∈ M(p, q)
stays unchanged and m′(i(p), sk)m′(rk, sk)m′(rk, i(q)) = 0.

If u is not combinatorically affected by the move then either M̂(p, sl) =

∅ or M̂(rl, q) = ∅ for all l ∈ Z. In this case we have
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−m′(i(p), sl)m′(rl, sl)m′(rl, i(q)) = 0 and m(p, q) = m′(i(p), i(q)), thus alto-
gether m(p, q) = m′(i(p), i(q)) −∑n∈Z

m′(i(p), sn)m′(rn, sn)m′(rn, i(q)).

In the remaining section we adjust Floer’s [Fl3] original idea to our framework
having Z-coefficients and a Z-action on the generator set performing a primary
move. First we express the boundary operator d in terms of d′.

Proposition 6.26.

dp = π(d′i(p) −
∑

n∈Z

m′(i(p), sn)m′(rn, sn)d′rn) for µ(i(p), r) = 0,

dp = π(d′i(p)) otherwise.

Proof : We compute formally

d′i(p) =
∑

µ(i(p),q̃)=1

q̃ /∈{rn,sn|n∈Z}

m′(i(p), q̃)q̃ +
∑

n∈Z

m′(i(p), rn)rn +
∑

n∈Z

m′(i(p), sn)sn,

d′rm =
∑

µ(rm,q̃)=1

q̃ /∈{sn|n∈Z}

m′(i(p), q̃)q̃ +
∑

n∈Z

m′(rm, sn)sn

and making use of the Kronecker symbol via <∂p, q> = m(p, q) etc. we rewrite
Theorem 6.25 as

(6.27) <dp, q> = <d′i(p) −
∑

n∈Z

m′(i(p), sn)m′(rn, sn)d′rn, i(q)>.

Applying π to d′i(p) and d′rm kills all rn- and sn-terms and we end up ex-
actly with those terms which occur (maybe multiplied by m′(i(p), sn)m′(rn, sn))
in (6.27). So we obtain dp = π(d′i(p) − ∑

n∈Z
m′(i(p), sn)m′(rn, sn)d′rn) for

µ(i(p), r) = 0 and dp = π(d′i(p)) otherwise.

Now note the following technical statement:

Lemma 6.28. Consider a primary (r, s)-move. Then for k, l ∈ Z holds
m′(rk, sl) = 0 for k 6= l.

Proof : For fixed m the points rm and sm are adjacent, but not rm and
sm−1 and sm and rm+1 since otherwise 〈r〉 and 〈l〉 would be the only primary
equivalence classes of their pair of intersecting branches implying nonintersecting
branches before the move in contradiction the assumption on the isotopy. From
Lemma 4.8 and Lemma 4.9 we deduce ]rm, sn[0 ∩ ]rm, sn[1 6= ∅ for |m− n| ≥ 1
and thus M(rm, sn) = ∅ and m′(rm, sn) = 0.

For the following proofs keep in mind that

m(p, q)m(p, q) =

{
1 if m(p, q) 6= 0

0 otherwise.

On the following chain maps the chain equivalence will base.



94 Invariance

Lemma 6.29. We define on the generators

f : (C′
∗, d

′) → (C∗, d), f(p) := π(p−
∑

n∈Z

m′(rn, sn)<p, sn>d′rn),

g : (C∗, d) → (C′
∗, d

′), g(p) := i(p) −
∑

n∈Z

m′(rn, sn)m′(i(p), sn)rn

and extend them by linearity. Then f and g are chain maps. Moreover they
commute with the Z-action on the chain complexes.

Proof : For m ∈ Z we compute

f(rm) = 0, f(sm) = −m′(rm, sm)πd′rm, f(p) = π(p) for p 6= rm, sm.

Recall µ(rm, sm) = 1 and M̂(rm, sm) 6= ∅ such that m′(rm, sm) = ±1 and keep
the equations

dp = π(d′i(p) −
∑

n∈Z

m′(p, sn)m′(rn, sn)d′rn) for µ(i(p), r) = 0,

dp = π(d′i(p)) otherwise

from Proposition 6.26 in mind. For f we obtain

f(d′rm) = f(iπd′rm +
∑

n∈Z

m′(rm, sn)sn)
6.28
= f(iπd′rm +m′(rm, sm)sm)

= πiπd′rm − 0 + 0 −m′(rm, sm)m′(rm, sm)π(d′rm)

= πd′rm − πd′rm = 0 = d0

= df(rm),

df(sm) = d(−m′(rm, sm)πd′rm)
6.26
= πd′(−m′(rm, sm)iπd′rm)

= −m′(rm, sm)πd′iπd′rm

= −m′(rm, sm)πd′(d′rm −
∑

n∈Z

m′(rm, sn)sn)

6.28
= −m′(rm, sm)(πd′d′rm −m′(rm, sm)πd′sm)

= πd′sm

= f(d′sm).



5 Invariance under primary moves 95

For p 6= rm, sm for m ∈ Z we obtain

f(d′p) = f(iπd′p+
∑

n∈Z

m′(p, rn)rn +m′(p, sn)sn)

= πiπd′p− π

(
∑

l∈Z

m′(rl, sl)<iπd′p, sl>d′rl

)

+ π

(
∑

n∈Z

m′(p, rn)rn

)
− π

(
∑

l∈Z

m′(rl, sl)<
∑

n∈Z

m′(p, rn)rn, sl>d′rl

)

+ π

(
∑

n∈Z

m′(p, sn)sn

)
− π

(
∑

l∈Z

m′(rl, sl)<
∑

n∈Z

m′(p, sn)sn, sl>d′rl

)

= πiπd′p− 0 + 0 − 0 + 0 −
∑

l∈Z

m′(p, sl)m′(rl, sl)πd′rl

= πd′p−
∑

l∈Z

m′(p, sl)m′(rl, sl)πd′rl

= πd′iπp−
∑

l∈Z

m′(p, sl)m′(rl, sl)πd′rl

6.26
= dπp

= df(p).

Now we extend the definition of m′(p, q) etc. by linearity from primary points
to elements of C′

∗, i.e. m′(
∑

j pj , q) :=
∑

jm
′(pj , q) and consider g:

Case µ(i(p), r) = 0: We first show

(6.30) iπd′g(p) = d′g(p)

which follows from <d′g(p), rm> = 0 due to µ(i(p), rm) = 0 for m ∈ Z and

<d′g(p), sm> = m′(g(p), sm) = m′(i(p) −
∑

n∈Z

m′(rn, sn)m′(i(p), sn)rn, sm)

= m′(i(p), sm) −
∑

n∈Z

m′(rn, sn)m′(i(p), sn)m′(rn, sm)

6.28
= m′(i(p), sm) −m′(rm, sm)m′(i(p), sm)m′(rm, sm)

= m′(i(p), sm) −m′(i(p), sm)

= 0.
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Now we obtain

g(dp)
µ(i(p),r)=0

= i(dp)
6.26
= iπd′(i(p) −

∑

n∈Z

m′(i(p), sn)m′(rn, sn)rn)

= iπd′g(p)
6.30
= d′g(p).

Case µ(i(p), r) 6= 0: First note

(6.31) m′(d′i(p), sm) = <d′(d′i(p)), sm> = 0

and then compute

g(dp)
6.26
= g(πd′i(p))

= iπd′i(p) −
∑

n∈Z

m′(rn, sn)m′(iπd′i(p), sn)rn

= iπd′i(p) −
∑

n∈Z

m′(rn, sn)m′(d′i(p) −
∑

l∈Z

m′(i(p), rl)rl −m′(i(p), sl)sl, sn)rn

= iπd′i(p) −
∑

n∈Z

m′(rn, sn)(m′(d′i(p), sn) −
∑

l∈Z

m′(i(p), rl)m′(rl, sn) − 0)rn

(6.31)
= iπd′i(p) +

∑

n∈Z

m′(rn, sn)m′(i(p), rn)m′(rn, sn)rn

= iπd′i(p) +
∑

n∈Z

m′(i(p), rn)rn

µ(i(p),r)6=0
= d′i(p)

µ(i(p),r)6=0
= d′(g(p)).

That f and g commute with the Z-action on the complexes relies on Remark
6.24.

Now we show that f and g induce isomorphisms between the homologies of
(C′

∗, d
′) and (C∗, d).

Theorem 6.32. The homologies of (C′
∗, d

′) and (C∗, d) are isomorphic.

Proof : For f and g from Lemma 6.29 we show that f∗ : H(C′
∗, d

′) → H(C∗, d)
and g∗ : H(C∗, d) → H(C′

∗, d
′) are inverse to each other. For that it is enough to

show f ◦ g ≃ IdC∗ and g ◦ f ≃ IdC′
∗

where ≃ stands for homotopic by a chain
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homotopy. f ◦ g : (C∗, d) → (C∗, d) is even the identity:

f(g(p)) = f(i(p)) −
∑

n∈Z

m′(rn, sn)m′(i(p), sn)f(rn) = f(i(p))

= πi(p) − π

(
∑

n∈Z

m′(rn, sn)<i(p), sn>d′rn

)
= πi(p)

= IdC∗(p).

Unfortunately, this is not true for g ◦ f . But we can find a chain homotopy
h : (C′

∗, d
′) → (C′

∗+1, d
′) satisfying g ◦ f − IdC′

∗
= h ◦ d′ + d′ ◦ h. Choose

h(p) := −
∑

n∈Z

<sn, p>m′(rn, sn)rn

and compute for m ∈ Z

(h ◦ d′ + d′ ◦ h)(rm) = −
∑

n∈Z

<sn, d′rm>m′(rn, sn)rn − d′

(
∑

n∈Z

<sn, rm>m′(rn, sn)rn

)

= −
∑

n∈Z

m′(rm, sn)m′(rn, sn)rn

6.28
= −m′(rm, sm)m′(rm, sm)rm

= −rm,
(h ◦ d′ + d′ ◦ h)(sm) = −

∑

n∈Z

<sn, d′sm>m′(rn, sn)rn −
∑

n∈Z

<sn, sm>m′(rn, sn)d′rn

= −m′(rm, sm)d′rm

and for p 6= rm, sm for m ∈ Z

(h ◦ d′ + d′ ◦ h)(p) = −
∑

n∈Z

<sn, d′p>m′(rn, sn)rn − d′

(
∑

n∈Z

<sn, p>m′(rn, sn)rn

)

= −
∑

n∈Z

m′(p, sn)m′(rn, sn)rn.
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On the other hand we obtain

(g ◦ f − IdC′
∗
)(rm) = g(f(rm)) − rm = −rm,

(g ◦ f − IdC′
∗
)(sm) = g(π(sm) − π

(
∑

n∈Z

m′(rn, sn)<sm, sn>d′rn

)
) − sm

= g(−m′(rm, sm)πd′rm) − sm

= −m′(rm, sm)g(πd′rm) − sm

= −m′(rm, sm)(iπd′rm −
∑

n∈Z

m′(rn, sn)m′(iπd′rm, sn)rn) − sm

= −m′(rm, sm)iπd′rm − sm

= −m′(rm, sm)(d′rm −
∑

n∈Z

m′(rm, sn)sn) − sm

6.28
= −m′(rm, sm)d′rm +m′(rm, sm)m′(rm, sm)sm − sm

= −m′(rm, sm)d′rm

and for p 6= rm, sm for m ∈ Z

(g ◦ f − IdC′
∗
)(p) = g(π(p) −

∑

n∈Z

m′(rn, sn)<p, sn>πd′rn) − p

= g(π(p)) − p = iπ(p) −
∑

n∈Z

m′(rn, sn)m′(iπ(p), sn)rn − p

= −
∑

n∈Z

m′(rn, sn)m′(p, sn)rn.

Comparing the results yields g◦f−IdC′
∗

= h◦d′+d′◦h which proves the claim.

Moreover note

Remark 6.33. The chain homotopy h defined in the proof of Theorem 6.32
commutes with the Z-action on the chain complexes.

Now we get rid of the Z-action. Define C∗ and C ′
∗ analogously to C∗ and C′

∗.
Since f , g and h commute with the Z-action on the chain complexes they pass
to C∗ and C ′

∗. Thus we obtain

Theorem 6.34. The homologies of (C∗, ∂) and (C ′
∗, ∂

′) are isomorphic, i.e. pri-
mary moves leave the primary homoclinic Floer homology invariant.

6. Invariance under mixed moves

In this section we will show the invariance of primary homoclinic Floer homology
under mixed moves. This will be done by recognizing them as concatenation of
primary and secondary moves which leave the homology invariant as already
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Figure 6.6. Mixed (r, s)-moves with one flip in (i) and 2n+1
flips in (ii)

proved in the previous sections. We will work with the lifted tangles on the
universal cover.

Now we want to investigate how mixed moves look like. If a (r, s)-move flips
a primary points p secondary the segments ]p, x[0 and ]p, x[1 have to intersect
after the move. In particular, r, s and p have to lie in the same pair of branches.
Recall the properties of adjacent points from Lemma 4.8 and Lemma 4.9 and
the notion of a frame.

Lemma 6.35. Let p be a primary points and consider the frame [p, p−1]0 ∩
[p, p−1]1 and denote the primary points p, p+, (p+)+, . . . , p−1 by p0, . . . , pn.
Let k be the smallest and l the largest index whose associated points pk
and pl undergo a primary-secondary flip during the mixed (r, s)-move. Then
]pl, pl+1[0 ∩ ]pk−1, pk[1 = {r, s}.
Proof : (Compare figure 6.6:) Let w.l.o.g. r be secondary and s primary. The
primary s has two adjacent points s± connected to s by an embedding of relative
index 1. Since there is also an embedding of relative index 1 between s and r
the latter has to lie on ]s−, s[0 since it is secondary by assumption. We find
s− = pk−1 and s+ = pl+1 and all pj with k ≤ j ≤ l perform a primary-secondary
flip. For k = 1 the situation is sketched in figure 6.6 (i) with l = 1 (and thus one
flip) and in (ii) with l = 2n+ 1 (and thus 2n+1 flips).

Since the (un)stable manifolds are free of self-intersections a mixed move al-
ways takes place within a fixed frame, i.e. the mixed move cannot ‘overlap’ into
another iterate of the frame.
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Figure 6.7. Arising of nontrivial homotopy classes

Definition 6.36. Mixed (r, s)-moves with exactly one primary-secondary flip
are called simple.

Before we show the invariance of primary homoclinic Floer homology under
mixed moves we motivate the condition ‘· · · ∩ H[x]’ in the definition of primary
points since it enters here crucially for invariance.

Proposition 6.37. Without the condition ‘· · · ∩ H[x]’ in the definition of ‘pri-
mary’ the primary homoclinic Floer homology would not be invariant.

Proof : Consider the situation of figure 6.7 where a move circles around the
hole of the torus. Assume for sake of simplicity that only the branches containing
p intersect.
First case: We start with p and q primary and obtain r and s secondary. q
remains primary since s is not contractible. We have before and after the move
µ(p) = −1 and µ(q) = −2, C−1 = Z〈p〉 and C−2 = Z〈q〉 with ∂〈p〉 = 〈q〉−〈q〉 = 0
and ∂〈q〉 = 0 such that

H−1 = Z〈p〉 and H−2 = Z〈q〉
and all other homology classes vanish.
Second case: Dropping ‘· · · ∩ H[x]’ is equivalent to using the contractible semi-
primary points as generators of the chain complex. Before the move p and q are
contractible and semi-primary, but after the move q is no longer semi-primary.
The generated r is secondary and s semi-primary, but not contractible. Thus it is
excluded as generator. Before the move we obtain H−1 = Z〈p〉 and H−2 = Z〈q〉
and H∗ = 0 for n 6= −1,−2. But after the move there is only p left as generator.
Thus H−1 = Z〈p〉 and zero otherwise.

We now consider invariance under simple mixed moves.
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Figure 6.8. Invariance under simple mixed moves

Proposition 6.38. Primary homoclinic Floer homology stays invariant under
simple mixed moves.

Proof : There is a direct and an indirect proof which we will give both.
Indirect proof: As displayed in figure 6.8 the simple mixed (r, s)-move can be
recognized as an identification followed by the secondary (p1, r)-move. Since
both leave the homology invariant so does the simple mixed move.
Direct proof: We construct an explicit chain complex isomorphism keeping the
notation from figure 6.6 (i). Figure 6.9 indicates the potential embeddings with
flipping vertex p1 and their correspondence to the new primary point s: Consider
the four sectors at p arising from the intersection of the (un)stable manifolds.
Now check clockwise the sectors and the change of the associated embedding(s).
Since there are no embeddings between iterates of p1 we can at once divide by
the Z-action and set on the generating equivalence classes

f : (C∗, ∂) −→ (C ′
∗, ∂

′),

{
〈p1〉 7→ 〈s〉,
a 7→ a for a ∈ H̃pr\{〈p1〉}

which is a chain map yielding the desired isomorphism between the chain com-
plexes and thus between the homologies.

Now we consider the invariance under arbitrary mixed moves.

Theorem 6.39. Primary homoclinic Floer homology is invariant under mixed
moves.
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Figure 6.9. Corresponding embeddings induced by a simple
mixed move

Proof : For simple mixed moves the claim was already proven in Proposition
6.38. Now consider the case of 2n+ 1 flips for n ≥ 1. The procedure is sketched
in figure 6.10 using the conventions of figure 6.6. In the left upper corner the
situation before the mixed move is sketched and on the right the situation af-
terwards where the move has flipped p1, . . . , p2n+1 secondary and generated the
new primary point s. The mixed move can be composed by n primary moves
applied successively to (p2, p3), . . . , (p2n−2, p2n−1) as sketched downwards on the
left side of figure 6.10 followed by the now simple mixed (r, s)-move and finally
by n secondary moves restoring p2, . . . , p2n+1. Since we can identify the sketch in
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the right upper and lower corner of figure 6.10 and since we know from previous
sections that secondary, primary and simple mixed moves leave the homology
invariant the same is true for arbitrary mixed moves.

7. The proof of Proposition 6.12

Let ϕ ∈ Diffω(M) with hyperbolic x ∈ Fix(ϕ). Let (x, ϕ) be csi and let all
primary points be transverse.

Fix a primary point within each pair of branches and consider its frame. The
relative positions of primary and secondary points within the frame are of com-
binatorial nature, compare Lemma 4.8 and Lemma 4.9. Thus the results for
moves can be generalized to perturbations as long as the primary reference point
persists: The combinatorial picture where in the frame primary resp. secondary
points can arise and where primary-secondary flips might take place is the same.

First we generalize Lemma 6.17.

Lemma 6.40. Let ϕ̂ ∈ Diffω(M) a small perturbation of ϕ. Let x̂ be the continua-
tion of x. Let pϕ ∈ Hpr(ϕ) be primary and let pϕ persist as transverse homoclinic
points pϕ̂, but nonprimary. Then there is q ∈ Hpr(ϕ̂) which is no continuation
of any primary point of ϕ.

Proof : We work with the lifted tangles of ϕ and ϕ̂, but we drop the tilde for
sake of readability.
According to Theorem 6.1 the segments [x, pϕ]i and [x̂, pϕ̂]i are close. Since pϕ
is primary ]x, pϕ[0 ∩ ]x, pϕ[1 = ∅, see figure 6.11 (i). But pϕ̂ is nonprimary thus
]x̂, pϕ̂[0 ∩ ]x̂, pϕ̂[1 6= ∅. x̂ and pϕ̂ remain transverse. Figure 6.11 (ii) – (iv) lists
the three basic perturbation types which prevent pϕ̂ to be primary. In all three
cases there is a primary q ∈ ]x̂, pϕ̂[0 ∩ ]x̂, pϕ̂[1 which has no corresponding point
in ]x, pϕ[0 ∩ ]x, pϕ[1 and thus in Hpr(ϕ).

Thus also in this generalized situation a primary-secondary flip is coupled with
the rise of a new primary point.

Lemma 6.41. Consider ϕ ∈ Diffω(M) with hyperbolic x ∈ Fix(ϕ). Let (x, ϕ) be
csi and let all primary points be transverse. Then for sufficiently small pertur-
bations ϕ̂ ∈ Diffω(M) of ϕ all primary points remain transverse.

Proof : Since all primary points of ϕ are transverse they persist at least as
transverse intersection points for small perturbations. Any primary-secondary
flip would require the rise of a new primary point. But the discussion before
Lemma 6.40 and the compactness of the frame prevents this for sufficiently
small perturbations due to Theorem 6.1.

Now we generalize Proposition 6.19.
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Figure 6.11. Causes for primary-secondary flips

Lemma 6.42. Let ϕ ∈ Diffω(M) be csi with x ∈ Fix(ϕ) hyperbolic and all
primary points transverse. Let ϕ̂ ∈ Diffω(M) be small perturbation of ϕ such
that all primary points persist transverse. Consider primary pϕ and qϕ with
µ(pϕ, qϕ) = 1 and denote their continuation by pϕ̂ and qϕ̂. Then m(pϕ, qϕ) =
m(pϕ̂, qϕ̂).

Proof : For simplicity abbreviate p := pϕ̂ and q := qϕ̂ Clearly µ(pϕ, qϕ) =
µ(p, q) and if m(pϕ, qϕ) 6= 0 6= m(p, q) then their signs coincide. Thus it is
enough to show M(pϕ, qϕ) 6= ∅ if and only if M(p, q) 6= ∅. We will work on the
universal cover with the lifted tangles.
We have to check if the proof of Proposition 6.19 carries over to our more general
situation. Let M(pϕ, qϕ) 6= ∅ and assume M(p, q) = ∅, i.e. ]p, q[0 ∩ ]p, q[1 6= ∅.
We just have to check for pϕ and qϕ of figure 4.3 and figure 4.4 all schematic
types causing the boundary [p, q]0 and [p, q]1 to intersect apart from p and q.
We only prove the assertion exemplarily in the case of figure 4.3 (b).(-1,2).(i)
which is resketched in figure 6.12 (i). The strategy and result for the other cases
in figure 4.3 and figure 4.4 are the same.
Consider figure 6.12 (i) and the boundary [p, q]0 ∪ [p, q]1 of the embedding be-
tween p and q. We note [p, q]0 = [p, x]0 ∪ [x, q]0 and check how [p, x]0, [x, q]0 and
[p, q]1 can intersect each other. It turns out that Proposition 6.19 generalizes:
In figure 6.12 (ii) at least two primary points arise and in (iii), (iv) and (v) at
least one. Before the [p, q]0 starting from the situation of sketch (i) can intersect
[p, q]1 in (vi) and (vii) it has to pass through ]p, x[1. There it generates a primary
point in ]p, x[0 ∩ ]p, x[1 and flips p secondary.
Thus in all cases new primary points arise. But this violates the persistence
assumption on the primary points — contradiction.

Now we turn to the proof of Proposition 6.12.
Proof of Proposition 6.12: For sufficiently small perturbations the primary
points persist by Corollary 6.41. Thus the generator set of primary homoclinic
chain complex stays unchanged. Moreover the boundary operator persists due
to Lemma 6.42. Thus the homology remains unchained.
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CHAPTER 7

Applications and extensions

In this chapter we extend primary homoclinic Floer homology to non-volume
preserving diffeomorphisms. Then we investigate invariance under conjugacy
and compare H∗(x, ϕ) and H∗(x, ϕ

n). Moreover we define chaotic primary ho-
moclinic Floer homology. We give an alternative sign definition restricted to pri-
mary points which allows Z-coefficients also in the L-orientation reversing case..
Then we discuss the possibility of differential graded algebras and A∞-structures
generated by (primary) homoclinic points.

1. Non-volume preserving systems

In this section we will deduce a version of primary homoclinic Floer homology
for non-volume preserving diffeomorphisms having a homoclinic tangle.

Let M be R2 or a compact two-dimensional manifold with genus g ≥ 1 and
consider ϕ ∈ Diff(M) having a hyperbolic fixed point x. In order to have stable
and unstable manifolds we have to require Dϕ(x) to have real eigen values λ1,
λ2 satisfying |λ1| < 1 < |λ2|.
Theorem 7.1. Let ϕ ∈ Diff(M) and x ∈ Fix(ϕ) hyperbolic with real eigenvalues
λ1 and λ2 satisfying |λ1| < 1 < |λ2|.

(1) If λ1λ2 > 0 then for L-orientation preserving resp. reversing ϕ the
homology H∗(x, ϕ,Z) resp. H∗(x, ϕ,Z2) is defined analogously to Defi-
nition 4.17 and Definition 4.23.

(2) Let λ1λ2 < 0 and use Maslov grading in Z2 and Z2-coefficients. Then
primary homoclinic Floer homology associated to (x, ϕ) is defined anal-
ogously to Definition 4.17.

Proof : Since dim(M) = 2 and |λ1| < 1 < |λ2| the (un)stable manifolds
are one-dimensional due to Theorem 2.1 and therefore Lagrangian. Thus the
definition of the Maslov index is still valid, but we have to be careful about
invariance w.r.t. the action of ϕ.
The λ-lemma Theorem 3.21 is the crucial ingredient in the cutting procedure
Theorem 3.16. It also holds for nonsymplectic diffeomorphisms such that we
only have to worry about Theorem 3.18 and Corollary 3.19. They yield for
λ1λ2 > 0 the L-orientation perserving and reversing cases depending on the
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Figure 7.1. Volume contracting system

signs of the eigenvalues. For λ1λ2 < 0 we obtain the mixed cases L0-orientation
preserving and L1-orientation reversing and vice versa. In all cases the gluing
and cutting constructions carry over since the constructions always only consider
single branches.
Now consider the case λ1λ2 > 0. As for symplectic ϕ we define the Z- resp. Z2-
signs m(p, q) resp. m2(p, q), the chain complexes and the boundary operators.
Since the Maslov index coincides in the two dimensional situation with the tan-
gent winding number the invariance under the action of ϕ still is valid although
ϕ is not symplectic. Proposition 4.27 is proven analogously and we can divide
by the Z-action.
Now turn to the case λ1λ2 < 0. Proposition 4.27 can be proven analogously such
that {n ∈ Z | M(p, qn) 6= ∅} < ∞ for primary p and q. But note µ(p, q) =
−µ(ϕ(p), ϕ(q)) such that we have to assume Z2-values for µ if dividing by the
action should be well-defined. For the same reason we have to use the m2(p, q)-
signs.

Thus the combinatorial picture of the volume preserving and non-volume pre-
serving situation for λ1λ2 > 0 is so far identical. Distinction becomes apparent
when we turn to the invariance properties of the homology.

Non-volume preserving systems are much less rigid than volume preserving ones.
In partucular Lemma 6.15 does not hold for Diff(M): There is no ‘area balance
condition’ as in the volume preserving case. Branches can easily be torn apart
by a perturbation, no matter how small (see figure 7.1). We summarize

Remark 7.2. For non-volume preserving ϕ Lemma 6.15 fails to be true. If for-
merly intersecting branches are separated during an isotopy τ 7→ Φτ ∈ Diff(M)
then the homology might change.

Proof : For simplicity assume in figure 7.1 ϕ to be L-orientation preserving
and only the branches containing p and q to intersect. For the picture on the
very left we obtain as chain groups C2 = Z〈q〉 and C1 = Z〈p〉 with ∂ ≡ 0 such
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that
H2 = C2 = Z〈q〉 and H1 = C1 = Z〈p〉.

But when p and q collaps into each other and vanish as sketched in the middle
and on the right then there are no generators of the chain complex left implying
H∗ = 0.

Since Lemma 6.15 fails a perturbation strategy as in the proof of Theorem 6.4
is not at our disposal. But the combinatorial part still is valid.

Theorem 7.3. Primary homoclinic Floer homology as defined in Theorem 7.1
is invariant under good isotopies (Φτ )τ∈[0,1] ∈ Diff(M).

Proof : The local picture of a bifurcation is the same as in the volume preserv-
ing case, see Newhouse & Palis & Takens [NePT] § 2.6, such that the reduction
to moves is also valid. For good isotopies thus the combinatorial constructions
from Chapter 6 carry over.

2. Invariance under conjugacy

It is natural to inquire the behaviour of primary homoclinic Floer homology
under conjugacy. Since we consider purely combinatorial as well as symplec-
tic aspects of primary homoclinic Floer homology within this work we have to
distinguish which properties the conjugacy should preserve.
We say that ϕ, ψ ∈ Diff(M) are topologically resp. smoothly resp. sym-
plectically conjugate if there is a homeomorphism resp. diffeomorphism resp.
symplectomorphism h : M →M satisfying ϕ ◦ h = h ◦ ψ. We note

Lemma 7.4. Let ϕ, ψ ∈ Diff(M) be topologically conjugate by the homeomor-
phism h and x ∈ Fix(ψ) hyperbolic. Then h(x) ∈ Fix(ϕ) and h(W s(x, ψ)) =
W s(h(x), ϕ) and h(W u(x, ψ)) = W u(h(x), ϕ).

Proof : ϕ(h(x)) = h(ψ(x)) = h(x) and thus h(x) ∈ Fix(ϕ). Moreover due to
the continuity of h we get limn→±∞ ϕn(h(p)) = limn→±∞ h(ψn(p)) and therefore
h(W s(x, ψ)) = W s(h(x), ϕ) and h(W u(x, ψ)) = W u(h(x), ϕ).

Now we investigate the behaviour of primary homoclinic Floer homology under
topological conjugacy.

Proposition 7.5. Let ϕ, ψ ∈ Diff(M) be conjugate by the homeomorphism h
and x ∈ Fix(ψ) hyperbolic. If ϕ and ψ are not symplectic assume the conditions
from Theorem 7.1. Then H∗(x, ψ) = H∗(h(x), ϕ).
In particular for ϕ = ψ we obtain H∗(x, ϕ) = H∗(h(x), h ◦ ϕ ◦ h−1).

Proof : By attaching ‘ϕ’ to a symbol we mark it as associated to ϕ like Lϕ0 :=
W u(h(x), ϕ) and [p, q]ϕ0 ⊂ Lϕ0 and analogously for ψ. Now fix an orientation on

Lψ0 and on Lϕ0 . Since the (un)stable manifolds are injectively immersed real lines
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h maps segments to segments, i.e. h([p, q]ψi ) = [h(p), h(q)]ϕi for i ∈ {0, 1}. Thus
we obtain either mψ(p, q) = mϕ(h(p), h(q)) for all p, q ∈ Hpr or mψ(p, q) =
−mϕ(h(p), h(q)) for all p, q ∈ Hpr. h induces an isomorphism h

h : C∗(x, ψ) → C∗(h(x), ϕ), 〈p〉 7→ 〈h(p)〉

defined on the generators and extended by linearity. We compute

∂ϕ(h(〈p〉)) = ∂ϕ(〈h(p)〉)
= ±

∑

〈h(q)〉∈H̃pr

µ(〈h(q)〉)=µ(〈h(p)〉)−1

mϕ(〈h(p)〉, 〈h(q)〉)〈h(q)〉

= ±h




∑

〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

mψ(〈p〉, 〈q〉)〈q〉




= ±h(∂(p))

which implies the claim.

The converse of Proposition 7.5 is not true:

Remark 7.6. Whereas primary homoclinic Floer homology is invariant under
primary, mixed and secondary moves described in Chapter 6 conjugacy is de-
stroyed by anyone of them.

Now what does change if h is a diffeomorphism instead of a homeomorphism?
We note

Remark 7.7. Let ϕ, ψ ∈ Diff(M) be conjugate by the diffeomorphism h. Let
x ∈ Fix(ψ) and λ an eigenvalue of Dψ|x with eigenvector v. Then Dh|x.v is an
eigenvector of Dϕ|h(x) with eigenvalue λ.

Therefore diffeomorphisms conjugate by a diffeomorphism are bound to have
the same eigenvalues which restricts the class of conjugate diffeomorphisms. If
we are only interested in the combinatorial aspect of primary homoclinic Floer
homology conjugation by homoemorphisms yields the more general result than
a smooth or even symplectic conjugacy which is without necessarity more re-
stricted.

The situation becomes different if we refine primary homoclinic Floer homology
by symplectic (alias volume preserving) aspects as it is done in Chapter 8 by
defining the action filtration. There the conjugacy h should leave the action
filtration invariant which requires h to be symplectic, see Proposition 8.13.
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3. H∗(x, ϕ) and H∗(x, ϕ
n)

In this section we compare the primary homoclinic Floer homology of a (sym-
plectic) diffeomorphism ϕ to the one of ϕn for n ∈ Z.

Let ϕ ∈ Diff(M) and x ∈ Fix(ϕ) hyperbolic satisfying the assumptions of Theo-
rem 7.1 if ϕ is not symplectic. Moreover require ϕ to be L-orientation preserving
or reversing.
Denote by 〈p1〉, . . . , 〈pk〉 the generators of C∗(x, ϕ) and set pji := ϕj(pi). For

n ∈ N0 we have Lϕi = Lϕ
n

i for i ∈ {0, 1} and Lϕi = Lϕ
−n

j for i 6= j ∈ {0, 1}.
Note that the number of equivalence classes multiplies: C∗(x, ϕ

n) is generated
by 〈p0

1〉, . . . , 〈p0
k〉, 〈p1

1〉, . . . , 〈pn−1
k 〉.

Abbreviate Zn := Z/nZ = {0̄, 1̄, . . . , n− 1} and set ϕl∗ = l̄. There is a Zn-action
on the generators via

Zn × C∗(x, ϕ
n) → C∗(x, ϕ

n), ϕl∗.〈pji 〉 := 〈pj+l mod ni 〉 = 〈ϕl(pji )〉
and extend it by linearity to the complex. We notice

ϕl∗.(∂〈pji 〉) = ∂〈ϕl(pji )〉
implying the Zn-action to descend to homology. For L-orientation preserving ϕ
let K = Q and n ∈ N0. In the orientation reversing case assume K = Z2 and
n = 2m+ 1 ∈ N odd. Then Theorem 4.24 allows us to treat simultanously also
negative exponents when we define

f : C∗(x, ϕ
n; K) ≃ C−∗(x, ϕ−n,K) → C∗(x, ϕ; K), f(〈pji 〉) := 〈pi〉,

g : C∗(x, ϕ; K) → C∗(x, ϕ
n; K) ≃ C−∗(x, ϕ−n; K), g(〈pi〉) :=

1

n

n−1∑

j=0

〈pji 〉

which are chain maps and we compute

f ◦ g = IdC∗(x,ϕ;K) .

Denote by g∗ and f∗ the induced maps on the (co)homology.

Theorem 7.8. Let ϕ ∈ Diff(M) and x ∈ Fix(ϕ) hyperbolic satisfy the conditions
of Theorem 7.1 if ϕ is not symplectic.

(1) Let ϕ be L-orientation preserving and n ∈ N0. Then g∗ is injective and
f∗ surjective. Thus

dimH∗(x, ϕ; Q) ≤ dimH∗(x, ϕ
n; Q) = dimH−∗(x, ϕ−n; Q)

and the difference is measured by the long exact sequence

· · · → Hl(ker f ; Q) → Hl(x, ϕ
n; Q) → Hl(x, ϕ; Q) → Hl−1(ker f,Q) → · · ·
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(2) Let ϕ be L-orientation reversing then ϕ2 is L-orientation preserving
and the first item applies for ϕ2 and ϕ2n = (ϕ2)n. For n ∈ N0 odd g∗ is
injective and f∗ surjective. Thus

dimH∗(x, ϕ; Z2) ≤ dimH∗(x, ϕ
n; Z2) = dimH−∗(x, ϕ−n; Z2)

and the difference is measured by the long exact sequence

· · · → Hl(ker f ; Z2) → Hl(x, ϕ
n; Z2) → Hl(x, ϕ; Z2) → Hl−1(ker f,Z2) → · · ·

Proof : First item: We drop the coefficient ring Q in the notation in favour of
better readability. f ◦g = IdC∗(x,ϕ) implies the injectivity of g∗ and surjectivity of
f∗ which yield the dimension estimates. The range of g are the invariants under
the Zn-action and the kernel of f the coinvariants which are both subcomplexes
of C∗(x, ϕ

n). We obtain the short exact sequence of chain complexes

(7.9) ((ker f)∗, ∂) →֒ (C∗(x, ϕ
n), ∂) ։

(
C∗(x, ϕ

n)

(ker f)∗
, ∂̄

)

where ∂̄ is induced by the projection. Moreover

h :

(
C∗(x, ϕ

n)

(ker f)∗
, ∂̄

)
→ (Im(g)∗, ∂), [c] 7→

n−1∑

ν=0

ϕl∗(c)

is an isomorphism and satisfies h◦ ∂̄ = ∂ ◦h, thus an isomorphism of chain com-
plexes. Since also g : C∗(x, ϕ) → Im(g)∗ is an isomorphism of chain complexes
we obtain by means of the long exact sequence of (7.9)

· · · → Hl(ker f) → Hl(x, ϕ
n) → Hl(x, ϕ) → Hl−1(ker f) → · · ·

The second item follows analogously by observing the exchange of the (un)stable
manifolds for negative exponents and Theorem 4.24.

In all explicitly calculated examples we obtain in fact dimH∗(x, ϕ) =
dimH∗(x, ϕ

n).

There have been various approaches coming from classical Floer theory and
trying to deal with higher iterates of the symplectomorphism in question or
with higher periodic orbits. For example Hutchings & Sullivan [HuS] attempt
to define a Floer homology generated by higher periodic orbits. Or Fel’shtyn [Fe]
who considers the Lefschetz and the symplectic zeta function where the latter
is defined by

χϕ(z) := exp

( ∞∑

n=1

χ(HF∗(ϕ
n))

n
zn

)
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where χ(HF∗(ϕ
n)) is the Euler characteristic of HF∗(ϕ

n). In our setting this
reads

χx,ϕ(z) := exp

( ∞∑

n=1

χ(H∗(x, ϕ
n; K))

n
zn

)

for the appropriate coefficient ring K from above.

This leads to the following questions:

(1) Can χ(x, ϕ) be rational? If yes, for which ϕ?
(2) Are there applications to Nielsen theory and Reidemeister torsion whose

relation to dynamical zeta functions is described in Fel’shtyn [Fe]?

4. Chaotic primary homoclinic Floer homology

In contrast to the horseshoe formalism or the notion of entropy who measure
the chaos of a dynamical system primary homoclinic Floer homology measures
in some way its order. The horseshoe formalism states the existence of periodic
points arbitrarily close to the homoclinic ones. In this section we will define a
version of primary homoclinic Floer homology who takes them into account. It
gathers more information than the homoclinic tangle alone provides and leads
to the definition of a symplectic zeta function.

Assume ϕ ∈ Diffω(M) and x ∈ Fix(x) hyperbolic. For simplicity assume ϕ
to be L-orientation preserving. The generalization to L-orientation reversing
symplectomorphisms (or even diffeomorphisms) is straightforward.

Let n ∈ Z. We define new signs for primary points p and q associated to ϕn and
x via

m(p, q) :=

{
m(p, q) if ∅ 6= M(p, q) ∋ u, Fix(ϕn) ∩ Im(u) = ∅
0 otherwise.

Set m(〈p〉, 〈q〉) :=
∑

l∈Z
m(p, ql) and define

Cnk := Ck(x, ϕ
n; Z) for k ∈ Z

D := Dn : Cn∗ → Cn∗−1

D(〈p〉) :=
∑

〈q〉∈H̃pr(ϕn)

µ(〈p〉,〈q〉)=1

m(〈p〉, 〈q〉)〈q〉

on a generator and extend D by linearity. The signs are cutting and gluing
compatible. Thus D ◦ D = 0 follows from the proof of ∂ ◦ ∂ = 0. We define
chaotic primary homoclinic Floer homology to be

HFix
∗ (x, ϕn) := HFix

∗ (x, ϕn; Z) :=
kerDn

∗
ImDn

∗+1
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Figure 7.2. Chaos near the homoclinic tangle

Remark 7.10. Chaotic primary homoclinic Floer homology is invariant under
conjugation. But invariance w.r.t. isotopies encounters problems similar to those
described in the proof Proposition 6.37.

Now we want to investigate the dynamics of n 7→ HFix
∗ (x, ϕn).

First consider the following example: Let ϕ ∈ Diffω(M) be L-orientation preserv-
ing with the homoclinic tangle sketched in figure 7.2 (i). Assume Fix(ϕ) = {x, y1}
and y0

2 and y1
2 to be the only 2-periodic points of ϕ with least period 2. There

are no 3-periodic points with least period 3. The homoclinic tangles of ϕ2 and
ϕ3 are drawn in figure 7.2 (ii) and (iii) where we have splitted x into two copies.
Assume the positions of y0

2 and y1
2 as in figure 7.2 (ii). On L0 fix the orientation

induced by the ‘jump direction’ of the branch containing the homoclinic points.
Set pj := p0

j and qj := q0
j for the points in the figures. Now we compute the

homology HFix
∗ (x, ϕn) for n ∈ {1, 2, 3}.

For n = 1 we obtain

C1
−1 = Z〈p〉, D〈p〉 = 〈q−1〉 − 〈q0〉 = 0,

C1
−2 = Z〈q〉, D〈q〉 = 0,

HFix
∗ (x, ϕ) = C1

∗ .

For n = 2 we obtain

C2
−1 = Z〈p1〉 ⊕ Z〈p2〉 and C2

−2 = Z〈q1〉 ⊕ Z〈q2〉
and as differential

D〈p1〉 = 〈q2〉, D〈q1〉 = 0,

D〈p2〉 = 〈q1〉, D〈q2〉 = 0

and thus
HFix

−1 (x, ϕ2) = 0 = HFix
−2 (x, ϕ2).
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For n = 3 we obtain

C3
−1 = Z〈p1〉 ⊕ Z〈p2〉 ⊕ Z〈p3〉 and C3

−2 = Z〈q1〉 ⊕ Z〈q2〉 ⊕ Z〈q3〉
and as differential

D〈p1〉 = 〈q3〉 − 〈q1〉, D〈q1〉 = 0,

D〈p2〉 = 〈q1〉 − 〈q2〉, D〈q2〉 = 0,

D〈p3〉 = 〈q2〉 − 〈q3〉, D〈q3〉 = 0

and thus
HF ix

−1 (x, ϕ3) ≃ Z ≃ HFix
−2 (x, ϕ3).

Note that in the above situation for all n ∈ N holds

(7.11) H−1(x, ϕ
n) ≃ Z and H−2(x, ϕ

n) ≃ Z.

This simple example demonstrates the properties of chaotic primary homoclinic
Floer homology very well. For the higher iterates we know

z ∈ Fix(ϕ) implies z ∈ Fix(ϕn),

z ∈ Fix(ϕl) ∩ Fix(ϕk) implies z ∈ Fix(ϕk·l),

but additionally new fixed points arise. This relates the homology to number the-
oretic problems. The dynamical behaviour of n 7→ HFix

∗ (x, ϕn) can be analysed
by means of the chaotic symplectic zeta function

ζx,ϕ(z) := exp

( ∞∑

n=1

χ(HFix
∗ (x, ϕn))

n
zn

)

where χ(HFix
∗ (x, ϕn)) denotes the Euler characteristic of HFix

∗ (x, ϕn).

As in the previous section this leads to

(1) Is there ϕ such that ζ(x, ϕ) is rational? If yes, which ϕ?
(2) Is there a relation to the classical (symplectic) zeta function?
(3) Are there applications to Nielsen theory and Reidemeister torsion whose

relation to dynamical zeta functions is described in Fel’shtyn [Fe]?

5. Alternative signs

For immersions between primary points there is another possible definition of
signs different from those in Definition 3.23. They arise from orientations associ-
ated to each single branch instead of the whole (un)stable manifold. They admit
in the L-orientation preserving case Z-coefficients, but cannot be generalized to
arbitrary homoclinic points.

For i ∈ {0, 1} denote the branches of Li by L+
i and L−

i and associate to each
branch its ‘jump direction’ as orientation and denote it by o(L+

i ) resp. o(L−
i ). Let
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p, q be primary with µ(p, q) = 1 and u ∈ M(p, q). Associate to u(Bi) = [p, q]i
the orientation induced by the parametrization from p to q and call it opq. Recall
from the classification Lemma 4.25 that x /∈ ]p, q[0 ∩ ]p, q[1 such that there is a
branch Lpq ∈ {L+

0 , L
−
0 , L

+
1 , L

−
1 } containing both p and q.

Definition 7.12. Let p, q be primary. We set

n(p, q) :=






1 if µ(p, q) = 1, M(p, q) 6= ∅, o(Lpq) = opq,

−1 if µ(p, q) = 1, M(p, q) 6= ∅, o(Lpq) 6= opq

0 otherwise.

If there are two branches Lpq0 and Lpq1 then p and q are adjacent and o(Lpq0 ) =
opq = o(Lpq1 ). Thus n(p, q) is well-defined.
There are nonprimary homoclinic points p and q with M(p, q) 6= ∅ and x ∈
]p, q[0 ∩ ]p, q[1. Thus the definition does not generalize to arbitrary homoclinic
points.

The analogon of Lemma 3.24 is true:

Lemma 7.13. Let p and r be primary with µ(p, r) = 2 and w ∈ N̂ (p, r). For i ∈
{0, 1} assume the existence of qi with µ(p, qi) = 1 = µ(qi, r) and ui ∈ M̂(p, qi)

and vi ∈ M̂(qi, r) such that vi#ui = w. Then

n(p, q0) · n(q0, r) = −n(p, q1) · n(q1, r).

Proof : Checking in figure 4.7 the eight possible w = vi#ui ∈ N̂ (p, r) sketched
in the left and right column yields the claim.

Thus the signs n(p, q) are gluing and cutting compatible. Moreover we do
not need to distinguish the cases L-orientation preserving and reversing. Z-
coefficients are possible in both cases since n(p, q) = n(pl, ql) for all l ∈ Z.
Analogously to C∗(x, ϕ; Z), ∂ and H∗(x, ϕ; Z) define

C̃∗ := C̃∗(x, ϕ; Z), ∂̃ and H̃∗ := H̃∗(x, ϕ; Z)

based on the signs n(p, q).

Theorem 7.14. The invariance theorems from Chapter 6 hold for H̃∗(x, ϕ; Z).

Proof : The formula from Theorem 6.25 is true with the new signs. Thus
the invariance under primary moves carries over. And since x never lies within a
frame the new signs are also compatible with mixed moves. For invariance under
secondary moves the signs were not relevant. Thus the invariance proof carries
over.
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If we compute H̃∗ for the ‘figure eight’ tangle from figure 5.2 we note H̃∗ ≃ H∗,
but the generators of the homology groups are different:

∂̃〈p〉 = 〈q1〉 − 〈q−1
1 〉 + 〈q2〉 − 〈q̃2

2〉 = 〈q2〉 − 〈q̃2〉,
∂̃〈p̃〉 = −〈q̃1〉 + 〈q̃−1

1 〉 + 〈q̃2〉 − 〈q4
2〉 = −〈q2〉 + 〈q̃2〉,

∂̃〈q1〉 = −〈r〉 + 〈r̃3〉 = −〈r〉 + 〈r̃〉,
∂̃〈q2〉 = 〈r〉 − 〈r−1〉 = 0,

∂̃〈q̃1〉 = 〈r3〉 − 〈r̃〉 = 〈r〉 − 〈r̃〉,
∂̃〈q̃2〉 = −〈r̃〉 + 〈r̃1〉 = 0,

∂̃〈r〉 = 0,

∂̃〈r̃〉 = 0.

and

H̃−1 = Z(〈p〉 + 〈p̃〉) ≃ Z(〈p〉 − 〈p̃〉) = H−1,

H̃−2 =
Z〈q2〉 ⊕ Z〈q̃2〉 ⊕ Z(〈q1〉 + 〈q̃1〉)

Z(〈q2〉 − 〈q̃2〉)
= H−2

H̃−3 =
Z〈r〉 ⊕ Z〈r̃〉
Z(〈r〉 − 〈r̃〉) ≃ Z〈r〉 ⊕ Z〈r̃〉

Z(〈r〉 + 〈r̃〉) = H−3.

We note the same phenomenon concerning the ‘tilted figure eight’. The homology
groups are isomorphic, but have different generators.

If for L-orientation preserving ϕ always H∗ ≃ H̃∗ is an open question.

6. DGAs and A∞-structures

We will show that DGA’s and A∞-structures are not well-defined using primary
points as generators since the cutting construction of polygons fails. For homo-
clinic points they are well-defined. Apart from that the Maslov index does not
yield the proper degree for a differential when polygons are involved which have
more than two vertices.

A differential graded algebra (DGA) (A, d) is a graded algebra A together
with a differential d of degree −1 satisfying d(ab) = d(a)b+(−1)− deg(a)ad(b). Its
homology H(A, d) is the graded algebra H(A, d) := ker d/ Im d.

How might a DGA arise in our framework? Therefore we briefly recall Chekanov’s
important work [Che]. Let π : R3 → R2, π(x, y, z) = (x, y) and let L be a
Legendrian knot. Assume π(L) to have only transverse double crossings which
are denoted by p1, . . . , pn where n ≥ 0. Denote by A := T (p1, . . . , pn) the free
associative unital algebra over Z2 with generators p1, . . . , pn. It is graded by the
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a3a4

a5

a6

Figure 7.3. Convex standard n-gons

monomials. Each pj divides π(L) into two closed curves whose tangent winding
number induces the degree deg(pj) of pj in Z/m(L)Z where m(L) is the Maslov
number of L.
Denote by Dn the convex standard n-gon sketched in figure 7.3. Let its ver-
tices be a1, . . . , an as sketched for the 6-gon. The edge between ai amd ai+1

is denoted by [ai, ai+1]. Let Wk := Wk(π(L)) be the set of smooth orienta-
tion preserving immersions u : Dk → R2 with u(∂Dk) ⊂ π(L) (which implies
u(aj) ∈ {p1, . . . , pn}). Denote by GK ⊂ Diff(Dk) the subgroup of orientation

preserving diffeomorphisms of Dk fixing the vertices. Then Ŵk := Wk/Gk is dis-
crete. Chekanov introduces some notion of positivity (negativity) of a vertex ai
w.r.t. u ∈ Ŵk and sets W+

k := {u ∈ Ŵk | a1 positive, a2, . . . , ak negative for u}
and W+

k (pj) := {u ∈W+
k | u(a1) = pj}.

Recall A =
⊕

i≥0Ai where A0 = Z2, A1 = {p1, . . . , pn} ⊗ Z2 and Ai = (A1)
⊗i

and define ∂ := (∂i)i≥0 with ∂k(Ai) ∈ Ak+i−1 by

(7.15) ∂k−1(pj) :=
∑

u∈W+
k

(pj)

u(a2) · · ·u(ak)

and extend it by linearity and the Leibniz rule. Chekanov shows that (7.15) is
well-defined and satisfies deg(∂) = −1. And by a gluing and cutting construction
for polygons he obtains ∂ ◦ ∂ = 0 which enables to pass to homology. By means
of the homology he deduces the existence of Legendrian knots which are not
Legendrian isotopic, but have the same classical invariants.

Now we try to adapt these notions to our framework. Let ϕ ∈ Diffω(M) with
hyperbolic fixed point x and (un)stable manifolds L0 and L1. Let the degree of
a homoclinic point be its Maslov index and replace π(L) by L0 ∪ L1 and the
crossings of π(L) by the (primary) homoclinic points. Redefine Wk := Wk(L0 ∪
L1) in the obvious way. We note

• Only immersed polygons with even number of vertices arise since L0

and L1 do not have self-intersections and the edges have to alternate
between L0 and L1.
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p̄1
p2

p4 p̄3

q20q10

q21 q11

Figure 7.4. Positive and negative vertices

• A vertex pi of u ∈ Ŵk is called positive if u([ai−1, ai]) = [pi−1, pi]0
and u([ai, ai+1]) = [pi, pi+1]1. Otherwise pi is called negative. We set
σ(p) = +1 if p is positive and σ(p) = −1 otherwise.

• Intuitively applying the Floer differential d to a positive resp. negative
vertex resembles a homology resp. cohomology boundary operator: In
figure 7.4 dp2 contains (among others) q20 and q21 and both satisfy
µ(p2, q20) = 1 = µ(p2, q21). But for the negative p1 we obtain in dp the
vertices q10 and q11 and µ(p1, q10) = −1 = µ(p1, q11).

Chekanov obtains for the degrees of the vertices of an immersed polygon P and
the number of its positive vertices (compare [Che], lemma 6.3)

(7.16)
∑

p∈V ertex(P )

p positive

deg(p)−
∑

p∈V ertex(P )

p negative

deg(p) = 2−#{p ∈ V ertex(P ) | p positive}.

By admitting only one positive vertex in a polygon (7.16) becomes

deg(p) − 1 =
∑

q∈V ertex(P )

q negative

deg(q)

which implies degree −1 for Chekanov’s differential.
The winding number of the standard polygon Dn is w(Dn) = 1 − n

4
. In our

framework (proven similarly to (7.16)) we obtain

(7.17)

2n∑

i=1

σ(pi)µ(pi) = ±2w(D2n) = ±(2 − n)

for the vertices p1, . . . , p2n of u ∈ Ŵ2n. But in our framework an element of Ŵ2n

always has exactly n positive and n negative vertices. Thus we obtain only for
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Figure 7.5. Gluing and cutting of polygons

the case n = 1 the relation
µ(p) − 1 = µ(q)

which we already used for primary homoclinic Floer homology. Therefore using
the Maslov index analogously to Chekanov does not admit the correct index
difference for a differential. In this sense Floer homology is sharp w.r.t. the
combinatorics of homoclinic tangles. Any DGA approach has to use another
index.

In order to prove ∂ ◦ ∂ = 0 Chekanov used a cutting and gluing construction of
polygons. The gluing construction is similar to Theorem 3.14 and carries over.
Now we turn to the cutting construction. Denote by D′

n the standard n-gon with
a1 as concave and a2, . . . , an as convex vertices. Based on u : D′

n → R2 define

Vn and V̂n analogously to Wn and Ŵn. The winding number Ind from Definition
3.7 with its property Remark 3.8 easily generalizes to immersed polygons.

Theorem 7.18 (cutting). Let L0 and L1 be strongly intersecting and w ∈ V2n

with vertices in H. Then there is m ∈ {1, . . . , n} and an immersed convex 2m-
gon u and an immersed convex 2(n −m)-gon v such that w = u#v. A convex
immersed 2(n + m − 2)-gon can be cutted into a convex 2n-gon and a convex
2m-gon (see figure 7.5).

Proof : The idea of the proof is similar to the one of Theorem 3.16 relying
on the λ-lemma 3.21. Unfortunately the ‘injectivity’ property near vertices as
described in Proposition 3.13 is not true for 2n-gons if n ≥ 2. So we have to
find other significant points where neighbourhood sectors lie in the exterior of
the polygon.
Denote by γ the curve starting in a1 of the standard 2n-gon D′

2n and running
counterclockwise through the edges back to a1. We locate segments of the curve
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Figure 7.6. Special points

w◦γ which separate components with Indw = 0 from those with Indw = 1. Since
L0 and L1 do not have self-intersections there are at least two points r, s joined
by such a segment and having the desired property as sketched in figure 7.6 (the
possible case of two concave vertices in r and s is omitted in the sketch).
A small ball around r and s consists of two sectors, one with Indw = 1 and one
with Indw = 0.
Now we proceed as in the proof of Theorem 3.16 moving r or s resp. via ϕ close
to x and use the λ-lemma Theorem 3.21 and the strong intersection property in
order to obtain the existence of the cutting points.

Unfortunately is the cutting construction of polygons not compatible with the
restriction to primary points:

Remark 7.19. If we require the vertices of the immersed polygons to be primary
the cutting construction fails.

Proof : Consider the shadowed concave 4-gon in figure 7.7 with vertices p̃−4,
q2, r and p̃−3 which are all primary. One cut is along [r, q̃−3]1 and yields the
4-gon with vertices p̃−4, q2, r, q̃

−3
1 and the 2-gon with vertices p̃−3 and q̃−3

1 . All
appearing vertices are primary.
The other cut is along [r, z]0 and yields the 4-gon with vertices p̃−4, z, r, p̃−3

and the 2-gon with vertices q2 and z. But z is not primary.

If we try to define a DGA admitting all homoclinic points as generators we
encounter similar problems as in Floer homology, see Chapter 1 or Chapter 9
§3.

A∞-structures are some kind of dualized DGAs, for the exact definition see
Seidel [Se1]. Thus we deduce

Remark 7.20. Defining A∞-structures for homoclinic tangles encounters prob-
lems which are analogous to those appearing in the DGA approach.
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ỹ

−2

−1

p̃−1−2

q̃1

−1

p̃
q̃1
1

−2

q̃−3
1

−1

−2p̃−4

q̃−4

1 −1

r
−3

−2

p̃−3

−2
−1

−2

q1
1

q1

p1

p−1

−2

q−1
1

−3r−1

−1
−3

q−2

1

r−2

−2

−1

−2
q̃2

p−2

q−3

1 −3

r̃

−2

q1
2

x

q−1
2

−2

L1

L0

Figure 7.7. Cutting of polygons is not well-defined within the
set of primary points



CHAPTER 8

Action spectrum and action filtration

In this chapter we define the action spectrum and the action filtration of primary
homoclinic Floer homology and discuss its isotopy properties. Since M̃ and Li
have vanishing homology there is no analogon to the constructions of Schwarz
[Sch3] and Leclercq [Le] for a continuous section of the action spectrum bundle
asigned to a given (co)homology class. As discussed in Chapter 6 the homotopy
argument for invariance is not at our disposal. Since moreover an isotopy Φτ is
not applied to the noncompact Lagrangians, but intrinsically related via Lτi =
W i(xτ ,Φτ ) analysing isotopies becomes much more difficult. Nevertheless for
Melnikov and Lazutkin systems we can analyse the action spectrum depending
on the isotopy parameter.

1. The action functional

Let ϕ ∈ Diffω(M) with x ∈ Fix(ϕ) hyperbolic inducing a homoclinic tangle.
See x as constant path in P(L0, L1) and denote by Px(L0, L1) the component
containing x.

Definition 8.1. Set Q := [0, 1]2 and define for v ∈ Px(L0, L1) the curve v̂ ∈
C∞([0, 1]2,M) satisfying v̂(s, ·) ∈ Px(L0, L1) for all s ∈ [0, 1] and v̂(0, ·) = v
and v̂(1, ·) = x. The action functional is defined by

A : Px(L0, L1) → R, A(v) := A(v, x) :=

∫

Q

v̂∗ω.

The components of P(L0, L1) apart from the one containing x are uninteresting
for us. A(v) is independent of the chosen path v̂ since π2(M) = 0 and π1(Li) = 0
for i ∈ {0, 1} w.r.t. the topology provided by the immersions R → Li. Given
v1, v2 ∈ Px(L0, L1) we define ŵ to be the concatenation of v̂1 and v̂2(1 − ·, ·)
reparametrized to Q as domain of definition. Then the relative action is given
by

(8.2) A(v1) −A(v2) = A(v1, v2) :=

∫

Q

ŵ∗ω

and does not depend on the chosen path ŵ. This implies A(v1, v2) = −A(v2, v1)
and corresponds to changing the reference path from x to v2, i.e. A(v1, x) =
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A(v1, v2) + A(v2, x). The (relative) action is invariant w.r.t. the Z-action of ϕ
on L0 ∩ L1, i.e.

A(ϕn(p)) = A(p) and A(ϕn(p), ϕn(q)) = A(p, q),

such that A can be defined for homoclinic equivalence classes via

A(〈p〉) := A(p) and A(〈p〉, 〈q〉) := A(〈p〉) −A(〈q〉).
The tangent space of Px(L0, L1) in v is

TvPx(L0, L1) = {ξ ∈ Γ∞(v∗TM) | ξ(0) ∈ Tv(0)L0, ξ(1) ∈ Tv(1)L1}
and we compute

dA(v).ξ =

1∫

0

ω(v̇(t), ξ(t))dt.

We note that v ∈ Crit(A) implies v constant and therefore v can be seen as
homoclinic point v ∈ L0 ∩ L1. And isolated homoclinic points can be seen as
critical points of A.

Given two transverse homoclinic points p, q with µ(p, q) = 1 and u ∈ M(p, q)
we can determine the sign of A(p, q): Choose a smooth h : Q → D with
h(0, ·) = (−1, 0), h(1, ·) = (1, 0) and h(·, i) = Bi for i ∈ {0, 1} mapping Int(Q)
diffeomorphically to Int(D). Since the relative action does not depend on the
chosen path between p and q we consider v̂ := u ◦ h and obtain

(8.3) A(p, q) =

∫

Q

v̂∗ω =

∫

Q

h∗(u∗ω) =

∫

D

u∗ω > 0

since u is orientation preserving. A(p, q) = A(p) −A(q) and (8.3) imply

(8.4) A(p) > A(q)

imitating the negative L2-gradient flow of the action functional along the pseudo-
holomorphic strips in classical Lagrangian Floer theory.

There is another possibility to express the action functional using the universal
cover τ : (M̃, ω̃) → (M,ω) with τ ∗ω = ω̃. Fix x̃ ∈ τ−1(x) and lift the tangle
according to Notation 4.5. For v ∈ Px(L0, L1) denote by ṽ the according lift and

by ˜̂v the one of v̂. We compute ˜̂v∗ω̃ = ˜̂v∗τ ∗ω = v̂∗ω and therefore

(8.5) A(v) =

∫

Q

v̂∗ω =

∫

Q

˜̂v∗ω̃ =: A(ṽ).

Analogously we define A(ṽ1, ṽ2) for v1, v2 ∈ Px(L0, L1) and deduce

A(v1, v2) = A(ṽ1, ṽ2).
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Since M̃ ≃ R2 is contractible the Poincaré lemma yields the existence of a 1-form
λ̃ such that ω̃ = dλ̃. A simple calculation proves

Lemma 8.6. For p̃i ∈ L̃i let γ̃p̃i
: [0, 1] → L̃i be smooth with γ̃p̃i

(0) = x̃ and
γ̃p̃i

(1) = p̃i for i ∈ {0, 1}. Then

Si : L̃i → R, Si(p̃i) :=

∫

γ̃p̃i

λ̃

is well-defined and satisfies dSi = λ̃|L̃i
. Si is called generating function of L̃i.

For c ∈ R also Si + c is a generating function; Si satisfies Si(x̃) = 0. Note
that in case of compact M the closed ω cannot be exact. Therefore the above
construction only works on M̃ .

Using Stokes we can express the relative action of homoclinic points by means
of the generating functions Si.

Lemma 8.7. Let p, q ∈ L0 ∩ L1 be contractible and isolated and see them as
constant paths p, q ∈ Px(L0, L1). Then

A(p, q) = S0(q̃) − S0(p̃) + S1(p̃) − S1(q̃)

= (S1 − S0)(p̃) − (S1 − S0)(q̃),

A(p) = (S1 − S0)(p̃).

2. Action spectrum and action filtration

For ϕ ∈ Diffω(M) and x ∈ Fix(ϕ) hyperbolic the primary action spectrum
of (x, ϕ) is defined by

Σx,ϕ := {A(〈p〉) | 〈p〉 ∈ H̃pr(x, ϕ)}
and since H̃pr is finite so is Σx,ϕ ⊂ R. Thus the difference of the action levels
is bounded from below by a small positive constant. Since Σ(x,ϕ) only depends
on x and ϕ different Hamiltonians generating the same time-1 map induce the
same spectrum.

Inspired by Leclercq [Le] we define a symplectic invariant estimating the differ-
ence of the action of adjacent primary points.

Given a transverse homoclinic point p then there is ε > 0 and an embedding
epε : Bε(0) ⊂ R2 →M such that

(8.8)






epε(0) = p and (epε)
∗ω = dx ∧ dy,

(epε)
−1(L0) = Bε(0) ∩ (R × {0}),

(epε)
−1(L1) = Bε(0) ∩ ({0} × R).
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Definition 8.9. The primary radius r(p) of p ∈ Hpr is the supremum over
ε > 0 such that





epε satisfying (8.8) is defined,

eqε satisfying (8.8) is defined for all q ∈ Hpr with m(p, q) = 1,

Im(epε) ∩ Im(eqε) = ∅ for all q ∈ Hpr with m(p, q) = 1.

Since ϕ is symplectic r(〈p〉) := r(p) is well-defined and we define the primary
radius of (L0, L1) to be

r := r(L0, L1) := min{r(〈p〉) | 〈p〉 ∈ H̃pr}.
We note

Corollary 8.10. Let p and q be primary with µ(p, q) = 1 and M(p, q) 6= ∅.
Then

A(p) −A(q) = A(p, q) ≥ 1
4
π(r2(p) + r2(q)) ≥ 1

2
πr2,

thus √
2
π
A(p, q) ≥ r.

Using
√

2
π
A(p, q) ≥ r Corollary 8.20 will give explicit upper estimates for r for

certain classes of dynamical systems.
Although H̃pr is finite and ϕ symplectic we cannot dispose of the condition
m(p, q) = 1: The oscillations assured by the λ-lemma Theorem 3.21 would render
r(p) = 0. Thus the action difference of two nonadjacent points only can be
estimated using r if there is a sequence of adjacent points in between.

Now we approach the action filtration of primary homoclinic Floer homology.
In case of L-orientation preserving ϕ we define for a ∈ R

Ca
k := Ca

k (x, ϕ,Z) :=
⊕

〈p〉 ∈ H̃pr

µ(p) = k
A(p) ≤ a

Z〈p〉

and analogously Ca
k := Ca

k (x, ϕ,Z2) for L-orientation reversing ϕ.

If p and q are primary with µ(p, q) = 1 and M(p, q) 6= ∅ then (8.4) states
A(p) > A(q). Therefore the boundary operator ∂ restricts to Ca

k and (Ca
∗ , ∂) is

a subcomplex of (C∗, ∂). As in Schwarz [Sch3] we define for a < b

C ]a,b]
∗ := Cb

∗/C
a
∗

and there is the short exact sequence of chain complexes

0 → Ca
∗

i−→ Cb
∗

j−→ C ]a,b]
∗ → 0 for a < b ≤ ∞.
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We identify C∞
∗ = C∗ and C

]−∞,a]
∗ = Ca

∗ and setting

H ]a,b]
∗ := H∗(C

]a,b]
∗ , ∂)

we obtain for −∞ ≤ a < b < c ≤ ∞ the long exact sequence

· · · → H
]b,c]
k+1 → H

]a,b]
k

i∗−→ H
]a,c]
k

j∗−→ H
]b,c]
k → H

]a,b]
k−1 → . . .

of filtered primary homoclinic Floer homology groups.

Remark 8.11. For a ∈ R small enough and for b ∈ R large enough holds

H ]−∞,a]
∗ = 0 and H ]b,∞]

∗ = 0.

Proof : Choose a < min{A(p) | 〈p〉 ∈ H̃pr} and b > max{A(p) | 〈p〉 ∈ H̃pr}.

For certain homology classes we know exactly their critical levels in the action
filtration.

Remark 8.12. Set I := {n ∈ {±1,±2,±3} | Cn−1 = 0} and for k ∈ I consider
c ∈ Ck with c =

∑
cl〈pl〉. Then c represents a homology class and lives in H ]a,b]

for a < minlA(〈pl〉) and maxlA(〈pl〉) ≤ b. In particular 1, −3 ∈ I.

If we consider cohomology the analogon is true for J := {n ∈ Z | Cn+1 = 0}, in
particular −1, 3 ∈ J .

Now we ask for the invariance properties of the action spectrum and the filtered
primary homoclinic Floer homology. We start with the analogon of Proposition
7.5.

Proposition 8.13. Let ϕ, ψ, h ∈ Diffω(M) and x ∈ Fix(ψ) hyperbolic and let
ϕ and ψ be conjugate by h, i.e. ϕ ◦ h = h ◦ ψ. Then Σx,ψ = Σh(x),ϕ and for all
−∞ ≤ a < b ≤ +∞

H ]a,b]
∗ (x, ψ) = H ]a,b]

∗ (h(x), ϕ).

Proof : This is proven analogously to Proposition 7.5, but we have to check
that the (relative) action remains unchanged. To p, q ∈ Hpr(ψ) and u ∈ M(p, q)
corresponds under the conjugacy h(p), h(q) ∈ Hpr(ϕ) and h◦u ∈ M(h(p), h(q)).
Since h∗ω = ω we obtain A(p) = A(h(p)) and

A(p, q)
(8.3)
=

∫

D

u∗ω =

∫

D

(h ◦ u)∗ω (8.3)
= A(h(p), h(q))

which yields the claim.

Moreover we note

Remark 8.14. Σx,ϕ = Σx,ϕn for n ∈ Z since iteration only produces artifically
new equivalence classes without changing the tangle, compare the discussion be-
fore Theorem 7.8.
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τ0 τ

A

τ0 τ1 τ

A

(a) (b)

Figure 8.1. Changing of the action spectrum under primary (a)
and mixed moves (b)

Whenever primary points vanish the spectrum and the action filtration might
change. In figure 8.1 the behaviour of the action spectrum w.r.t. primary and
mixed moves is sketched. Assume for simplicity all homoclinic equivalence classes
to have different action and consider an isotopy Φτ . Figure 8.1 (a) displays at
τ0 and τ1 primary moves vanishing resp. generating two primary points. The

local model from Remark 6.13 implies the cusps to behave like τ 7→ (τ ± τ0)
3
2 .

A mixed move destroys a certain number of primary points and generates one,
compare figure 6.6. And the modulus of the action of the new primary point is
larger than those of the destroyed ones as sketched in figure 8.1 (b).

Nevertheless we will see in Corollary 8.19 that the ‘rough picture’ of the action
spectrum stays invariant under certain isotopies.

Remark 8.15. There is no analogon to the constructions done by Schwarz
[Sch3] and Leclercq [Le] who assign to a given homology class of M resp. Li
a section of the action bundle.

Proof : Schwarz [Sch3] and Leclerc [Le] exploit some versions of the
PSS-isomorphism which in our framework does not exist. Moreover anyway
Hsing

∗ (Li) = 0 for n 6= 0 w.r.t. topology induced by the immersions R → Li.

3. Isotopy invariants

Now we consider an isotopy Φτ and ask for changes of the action spectrum and
the filtered primary Floer homology.

Schwarz [Sch3] and Leclercq [Le] use the well-known homotopy technic in order
to answer the change of their invariants under changing the Hamiltonian func-
tion resp. the Lagrangian submanifold. But we already mentioned in Chapter
6 that the homotopy argument is not at our disposal. Even if we could use the
homotopy argument we would need some generalization of the Hofer distance
to noncompact Lagrangian manifolds depending implicitly via Lτ0 = W u(xτ ,Φτ )
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and Lτ1 = W s(xτ ,Φτ ) on the isotopy. Moreover generally always both Lagrangians
change under an isotopy.
Proposition 8.13 implies that conjugacies cannot be used in order to model
isotopies since conjugacies do not admit bifurcations. They only can be used in
order to straighten compact segments of one invariant manifold w.r.t. the other.

Briefly, the lack of compactness of Li and the fact that we do not apply isotopies
to the Lagrangians, but that they depend implicitly on the isotopy Φτ makes the
problem much more difficult than in the approaches of Schwarz and Leclercq.

We deduce from Lemma 8.7

Remark 8.16. Let Φτ be an isotopy from (xϕ, ϕ) to (xψ, ψ). Denote by Sϕi
resp. Sψi for i ∈ {0, 1} the associated generating functions. Let p ∈ Hpr(ϕ) let
pτ ∈ Hpr(Φτ ) be its continuation. Then

A(p0) −A(p1) = (Sϕ1 − Sϕ0 )(p̃0) − (Sψ1 − Sψ0 )(p̃1).

and analogously for A(p0, q0) −A(p1, q1).

Theorem 6.1 implies for isotopies with Φ0 and Φ1 close to each other that com-
pact segments of Lϕi and Lψi around the fixed point are close to each other, but
it says nothing about the exact relative positions w.r.t. each other. At least it
assures the signed areas A(p0) and A(p1) to be close.

Since (filtered) primary homoclinic Floer homology is already determined by

compact segments of Lϕi and Lψi as explained after Definition 4.23 we can eval-
uate Remark 8.16 as accurately as wished using a good computer program for
explicit examples.

Apart from numerical approaches there are not many theoretical technics for
comparing explicitly the (un)stable manifolds and their intersection points. Most
of the technics dealing with homoclinic points in discrete dynamical systems are
interested in genericity and stability results and thus only deal locally with
tiny perturbations. More or less there are only Melnikov’s method (sketched in
Appendix A) and Lazutkin’s invariant (see Appendix B) which provide explicit
estimates for the (relative) action depending on the perturbation. Both methods
concentrate on primary homoclinic or heteroclinic points.

Melnikov’s result Theorem A.4 applies to a Hamiltonian system arising from

Hε : R ×M → R, Hε(t, x, y) := H0(x, y) + εH1(t, x, y)

and yields the existence of primary homoclinic points for the isotopy

ε 7→ ΦM
ε := ϕHε

1
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(b)(a)

x

y

p

Figure 8.2. Typical homoclinic tangle of the quadratic map (a)
and the asymmetric cubic map (b)

(for ε > 0 sufficiently small) if the Melnikov function is independent from ε. Note
that in many physically relevant cases the Melnikov function is given explicitly.
For more details and the according references see Appendix A.

If the splitting of the (un)stable manifolds is very small it might be to tiny to
be detected by Melnikov’s method. This is for instance the case for Chirikov’s
standard map

Fε : T 2 → T 2, (x, y) 7→ (x1, y1), y1 := y + ε sin(x), x1 := x+ y1.

as sketched by Lazutkin [Laz] and finally proven by Gelfreich [Ge1]. For more
details and the according references see Appendix B. Fε is related to the pen-
dulum equation and thus has either noncontractible homoclinic points or het-
eroclinic points when considered on R2. Thus it is uninteresting for primary
homoclinic Floer homology. But some types of the so called generalized standard
map

Gε : R2 → R2, (x, y) 7→ (x1, y1), y1 := y + εf(x), x1 := x+ y1,

as considered in Gelfreich & Lazutkin [GeL] and Gelfreich & Simó [GeS] admit
contractible homoclinic points. Unfortunately up to now their theory has been
made rigorous only for the area-preserving Hénon map where f(x) = x− x2. In
other cases like f(x) = x + rx2 − x3 with r ∈ R only numerical experiments
suggest the validity of analogous results. Thus

ε 7→ ΦL
ε := Gε

is the considered isotopy w.r.t. Lazutkin’s theory. The homoclinic tangle for the
Hénon map is sketched in figure 8.2 (a) and for asymmetric (i.e. r 6= 0) cubic f
in (b).

A priori Melnikov’s method inquires primary points lying on a pair of branches
which arose from a homoclinic loop of the unperturbed system. The primary
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points which Lazutkin’s method analyses arise from symmetries of the map Gε.
Such primary points we will call direct.

Theorem 8.17 ([Me], [GeL], [GeS]). (1) Let p = pε, q = qε ∈ Hpr(Φ
M
ε )

be direct and adjacent with µ(p, q) = 1. Let M be the Melnikov function
and sp and sq zeros associated to p and q. Then

A(p, q) = ε

sp∫

sq

M(s)ds+O(ε2).

(2) Let p = pε, q = qε ∈ Hpr(Φ
L
ε ) be direct and adjacent with µ(p, q) = 1

and a0 and h ≈ ε2 taken from (B.2). Then

|A(p, q)| ≈ 4πa0

h6
e−

2π2

h (1 +O(h4e−
π2

h )) ≈ O



e
−2π2

√
ε

ε3



 .

Moreover Melnikov’s and Lazutkin’s theory imply

Remark 8.18. (1) If p and q are adjacent, but not direct A(p, q) is of order
O(ε) resp. O(e

√
ε).

(2) For adjacent primary p and q the modulus of the action A(p) and A(q)
is huge in comparison with A(p, q).

Proof : First item: Under the chaotic layer we understand the region visited
by the homoclinic tangle, see figures 8.2 and 2.1. For ε > 0 not to large this region
looks like a tubular neighbourhood of the homoclinic loop of the unperturbed
system. We call its maximal distance relative to the homoclinic loop width of
the chaotic layer. Either KAM theory or Zaslavsky’s [Za] explicit estimates
show that the width of the chaotic layer is of order O(ε) resp. O(e

√
ε). Thus for

adjacent primary points we can estimate the relative action by the area of the
chaotic layer which is of order O(ε) resp. O(e

√
ε) — but in fact their relative

action is much smaller.
Second item: A(p) approximates the area enclosed by the homoclinic loop(s) of
the unperturbed system.

Corollary 8.19. (1) Let p be primary and Q := Hpr ∩ [p, p1[0 ∩[p, p1[1.

Then 1
#Q

∑
q∈QA(q) ≈ A(p) +O(ε) resp. ≈ A(p) +O(e

√
ε) can be seen

as isotopy invariant.
(2) For c =

∑
l cl〈pl〉 from Remark 8.12 with a < minlA(pl) and

maxlA(pl) ≤ b we have |a− b| ≈ O(ε) resp. ≈ O(e
√
ε).

Figure 8.3 pictures the action spectrum of the tangle of figure 8.2 and sketches
Corollary 8.19.
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0 A

Figure 8.3. Action spectrum of the tangle from figure 8.2 (b)

Using Corollary 8.10Theorem 8.17 yields an upper bound for the primary radius
r = r(Lε0, L

ε
1):

Corollary 8.20. For (Lε0, L
ε
1) arising from ΦM

ε resp. ΦL
ε the primary radius

r = r(Lε0, L
ε
1) is bounded from above by

√√√√√
2ε

π

sp∫

sq

M(s)ds+O(ε2)

resp.

2
√

2a0

h3
e−

π2

h

√

(1 +O(h4e−
π2

h )) ≈ O



e
− π2√

ε

ε
√
ε



 .

Remark 8.21. Whereas for ΦL
ε direct primary points have exponentially small

relative action Gelfreich and Simó [GeS] discovered that for cubic asymmetric f
the ratio is exponentially different when we compare the relative action associated
to points on the left loop and the relative action on the right loop as sketched in
figure 8.2 (b).



CHAPTER 9

Applications and outlook

In this chapter we sketch generalizations and further applications of (primary)
homoclinic Floer homology.

1. Invariance under Hamiltonian isotopies

We sketch a proof strategy in order to show invariance of primary homoclinic
Floer homology under Hamiltonian isotopies.

Conjecture 9.1. Let (M,ω) be a closed two-dimensional symplectic manifold
with genus g ≥ 1. Let ϕ and ψ be strongly intersecting Hamiltonian diffeomor-
phisms with x ∈ Fix(ϕ) and y ∈ Fix(ψ) both hyperbolic. Let all primary points
be transverse. If a pair of branches does not admit primary points assume the
semi-primary ones transverse. Assume there is a Hamiltonian isotopy Φ between
(x, ϕ) and (y, ψ). Then

H∗(x, ϕ) = H∗(x, ψ).

Our idea for a proof is the following:

(1) Show that Φ can be perturbed to a strongly intersecting Hamiltonian
isotopy with generic bifurcations for all τ ∈ [0, 1].

(2) Recall the k ∈ N0 from Remark 4.3. Show for Hamiltonian diffeomor-
phisms k = 0 and that the existence of primary points of a pair of
branches implies the existence of a semi-primary contractible one within
this pair.

(3) For each pair of intersecting branches of the isotopy show

B := {τ ∈ [0, 1] | ∃ primary points}
and Bc are open. Thus one of them is empty.

(4) Now the proof technics of Theorem 6.4 carry over.

The first item is difficult. Usually genericity results for paths of diffeomorphisms
concerning dynamical behaviour are highly nontrivial as described for instance
in the survey article by Newhouse [Ne2].
‘Strongly intersecting’ is a generic property for Hamiltonian diffeomorphisms on
closed surfaces in the Cr-topology with 1 ≤ r ≤ ∞, see Xia [Xia3]. Moreover
Hamiltonian system on compact two-dimensional manifolds have very strong
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existence and rigidity properties, see the recent results by Xia [Xia1, Xia2],
Burns & Weiss [BW] and others.
For those reasons Xia [Xia4] and the author think the first item true. Unfor-
tunately the proof from Xia [Xia3] does not generalize to paths. Note that for
volume preserving isotopies which are not Hamiltonian the first item is very
likely wrong, compare Xia [Xia2, Xia3] and Remark 6.6 on R2.

The second item will be a tricky combination of combinatorial and analytical
aspects. We need it for the proof of the third item.

The third item is proven by a flux argument applied to a (semi-)primary point p:
Consider the loop from cp from p to x via [p, x]0 and back to p via [p, x]1. Since
the flux of cp − cp1 is zero we conclude the existence of (semi-)primary points
in ]p, x[0 ∩ ]p, x[1 which persist under small perturbations. The second item
together with the knowledge where primary points can arise in a (semi-)primary
frame allows to conclude B and Bc open.

2. Application to Birkhoff invariants

In this section we motivate and explain

Conjecture 9.2. Filtered primary homoclinic Floer homology of a hyperbolic
periodic point in the KAM-picture reflects coefficients of the Birkhoff normal
form.

Motivation: Consider the 2-dimensional KAM picture around an elliptic point
with its chain of islands, see for instance Arnold & Avez [ArA]. Such a chain
consists of 2n periodic points alternatingly hyperbolic and elliptic with the sym-
plectomorphism ϕ acting on them. The heteroclinic tangles generated by the
hyperbolic periodic points in the chain give rise to a homoclinic tangle of each
hyperbolic periodic point by means of the λ-lemma Theorem 3.21. Let x be one
of those hyperbolic periodic points and consider m ∈ Z such that x ∈ Fix(ϕm).
As discussed in the proof of Theorem 7.8 the (un)stable manifolds of ϕ and ϕm

coincide as sets, but differ in the number of homoclinic equivalence classes. The
homoclinic tangle of x looks schematically like the one of figure 5.3 by consid-
ering y as the elliptic fixed point in the center of the KAM picture and placing
at the position ỹ the other periodic points of the chain.

Call the primary orbits encircling the elliptic fixed point, but not the island
chain inner primary points and those encircling the island chain outer ones. In
figure 5.3 〈p〉 and 〈q〉 correspond to inner primary points.

Gelfreich & Simó [GeS] consider this situation under the point of view of split-
ting of the (un)stable manifolds when passing from the integrable to the per-
turbed situation (compare Appendix B). They announce that the splitting of
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inner and outer (primary) homoclinic points differs due to the changes of the
rotation number (of an integrable approximation) along the resonance zone and
that sufficiently close to the elliptic fixed point those changes are related to the
second coefficient of the Birkhoff normal form around the elliptic fixed point.
For details they refer to the not yet published preprint of Simó & Vieiro [SiV].

Now different splitting means different angle at the arising primary points and
therefore different relative action, compare Appendix B.

Since the action filtration is sensitive to the relative action which represents
the difference of (certain) critical levels it notices different splitting angles. And
since the splitting behaviour is related to the Birkhoff coefficients so is the filtered
primary homoclinic Floer homology. This indicates a way to express the Birkhoff
invariants by means of Floer homology.

3. Generalization to nonprimary points

Let ϕ ∈ Diffω(M) with x ∈ Fix(ϕ) hyperbolic and H := L0 ⋔ L1 transverse. Let
L0 and L1 be strongly intersecting. The cutting and gluing construction from
Theorem 3.14 and Theorem 3.16 are valid for arbitrary homoclinic points which
suggests attempts to enlarge the generator set of the chain complex. If we want
to generalize d resp. ∂ to H resp. H̃ we have to investigate for p ∈ H

• #{q ∈ H | m(p, q) 6= 0} <∞ ?
• #{n ∈ Z | m(p, qn) 6= 0} <∞ for q ∈ H ?

• #{〈q〉 ∈ H̃ | m(p, qn) 6= 0 for some n ∈ Z} <∞ ?

As already mentioned in Chapter 1 all three can be infinite: For x in figure 9.1
holds m(x, pn) 6= 0 for all n ∈ Z. There are also tangles with p, q ∈ H and
m(p, qn) 6= 0 for n ∈ Z>no or n ∈ Z<n0 for some n0 ∈ Z. And for p in figure 9.1
holds m(p, sn) 6= 0 6= m(p, rn) and 〈sn〉 and 〈rn〉 are all mutually distinct for
n ∈ N.

The natural idea is to find a filtration (Hc)c∈R ⊂ H satisfying

(1) Hc ⊂ Hc′ for c < c′ and ϕ(Hc) = Hc and #H̃c <∞ for all c
(2) The cutting and gluing construction are well-defined within Hc for all

c.

This turns out to be a rather tricky task. We will discuss the following ap-
proaches:

• Filtration by action sublevel sets
• Exhaustion of L0 and L1

• Winding numbers
• Generalized primary points
• Structure index
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3.1. The action filtration. We already sketched parts of the following in
Chapter 1. Filtration by the sup- or suplevel sets of the action functional A
is the most natural idea due to the ‘negative gradient flow’ property (8.4). In
a similar situation it has been successfully used by Abbondandolo & Schwarz
[AbS]. Unfortunately in our case neither the sup- nor sublevel are finite:

Lemma 9.3. Consider p ∈ H in figure 9.1. There exist (sn)n∈N ∈ H and
(rn)n∈N ∈ H with

(1) 〈sn〉 and 〈rn〉 mutually distinct for n ∈ N,
(2) m(p, sn) 6= 0 6= m(p, rn) for all n ∈ N,
(3) A(sn) < −2A(p) < A(rn) for all n,
(4) limn→∞A(sn) = −2A(p) = limn→∞A(rn).

Proof : Consider the symmetric ‘figure eight’ tangle of figure 9.1, locate the
points p, rn and sn. Due to symmetry we have A(pn) = A(p̃m) for all n, m ∈ Z.
Let Qn be the polygon with vertices p, rn, p̃

n−1 and x oriented counterclockwise.
Choose p close enough to x. The λ-lemma Theorem 3.21 implies that for n→ ∞
the edge [p̃n−1, rn]1 of Qn converges to [x, p]1 while the length of the other two
edges tends to zero. Therefore limn→∞

∫
Qn
ω = 0 and since A(p) = A(p̃n) for all

n we get

lim
n→∞

A(p, rn) = −A(p) + lim
n→∞

∫

Qn

ω = −A(p)

approaching −A(p) from above. Analogously the sn yield an approximation of
−A(p) from below which yields the claim due to A(p, q) = A(p) −A(q) for all
q.

3.2. Exhaustion. If we exhaust L0 and L1 by considering segments
[pn, qn]i ⊂ [pn+1, qn+1]i for i ∈ {0, 1} centered around x and use H(n) :=
[pn, qn]0 ⋔ [pn, qn]1 as generator sets of the chain complex the cutting construc-
tion fails.

3.3. Winding numbers. A filtration by the ‘winding number’ around fixed
points, i.e. considering [p] ∈ π1(M\{y}) in figure 9.1, does not lead to finite sup-
or sublevel sets.

3.4. Generalized primary points. Generalize the definition of primary
points to

H(n) := {p ∈ H | #([p, x[0 ⋔ [p, x[1 ∩ Hpr) = n} for n ∈ N.

Generally the cutting construction is not well-defined. But if we choose the
connecting immersions carefully we can define a homology whose chain groups
are generated by H(n).
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Figure 9.1. The differential of p is infinite mod Z with converg-
ing action

• For primary points p ∈ Hpr use the differential d resp. ∂ after dividing
by the action.

• For p ∈ H(n)\Hpr and q ∈ H set

m̃(p, q) =






m(p, q) if M(p, q) = ∅
m(p, q) if u ∈ M(p, q) 6= ∅, Im(u) ∩Hpr = ∅
0 otherwise

These signs lead to a well-defined boundary operator and thus to a homology.

However, this homology seems a bit unnatural and no real generalization of
primary homoclinic Floer homology since the primary and generalized primary
points do not interact.

3.5. Structure index. The structure index defined in Easton [E] and
Hocket & Holmes [HH] motivates the following approach: Let p be primary
and define

H̃(n) := {〈p〉 | p ∈ {[p, p1]0 ∩ [pl, pl+1]1 | 0 ≤ l ≤ n}}.
In all computed examples it was well-defined, but up to now there is no proof
for the validity of the cutting construction within H̃(n).
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4. Generalization to higher dimensions

So far primary homoclinic Floer homology is defined for homoclinic tangle in a
two-dimensional situation. Now we discuss the generalization to higher dimen-
sional manifolds.

First note that we have to require the diffeomorphism to be symplectic in order
to have Lagrangian (un)stable manifolds needed for the definition of the Maslov
index. Thus in higher dimension homoclinic Floer homology (if defined) is au-
tomatically a symplectic invariant. (In the two-dimensional situation primary
homoclinic Floer homology also is defined for diffeomorphisms, but invariance
is only natural within the class of symplectomorphisms.)

Let (M2n, ω, J) be a symplectic 2n-dimensional manifold with (time dependent)
almost complex structure J compatible with ω. Let ϕ ∈ Diffω(M) with hyper-
bolic fixed point x and strongly intersecting (un)stable manifolds L0 and L1. Let
H := L0 ⋔ L1 be transverse and graded by the Maslov index.
We consider for p, q ∈ H with µ(p, q) = 1 the space M(p, q) of u : R×[0, 1] →M
satisfying

(1) ∂su+ J∂tu = 0,
(2) u(·, 0) ⊂ L0 and u(·, 1) ⊂ L1

(3) lims→−∞ u(s, ·) = p and lims→+∞ u(s, ·) = q.

Dividing by the R-action (σ.u)(s, t) = u(s+ σ, t) we define M̂(p, q) := M(p, q)/
R. Let µ(p, q) = 1. Now we have to worry about

• #M̂(p, q) <∞ ?

• #{q ∈ H | M̂(p, q) 6= ∅} <∞ ?

• #{n ∈ Z | M̂(p, qn) 6= ∅} <∞ ?
• Are Theorem 3.14 and Theorem 3.16 satisfied?

Already the first question is a highly nontrivial Fredholm problem since the
Lagrangians are noncompact. The sets in the second and third item are already
infinite in the two-dimensional setting. And the last item is even a more difficult
Fredholm and compactness problem than the first one.

Even if the first question can be answered positively (under certain assumptions)
we still have to find a ‘good’ set of homoclinic points which allow a well-defined
differential. Primary points have no natural generalization to higher dimensions.
Thus the situation becomes similarly difficult to the two-dimensional one when
looking for a filtration of H.



APPENDIX A

Melnikov’s perturbation method

This appendix briefly sketches Melnikov’s [Me] perturbation method which
yields (under certain assumptions) from a time independent system having a
homoclinic trajectory a slightly time dependent system having a homoclinic tan-
gle. This section summarizes Guckenheimer & Holmes [GH], §4.5, §4.6. where
all proofs and details carefully are written down. Helpful figures can be found
in Arrowsmith & Place [ArP] §3.8.

Let H0 : R2 → R be a time independent Hamiltonian function and X := XH0

its Hamiltonian vector field. Let Y : S1×R2 → R2 be a periodic time dependent
vector field and assumeX and Y to be at least C2 and to be bounded on bounded
sets. Consider the time independent integrable Hamiltonian system

(A.1) ż(t) = X(z(t))

and for ε > 0 its time dependent perturbation

(A.2) ż(t) = X(z(t)) + εY (t, z(t))

which yields for ε = 0 the original system. From now on we assume (A.2) to have
a hyperbolic saddle point x0 and an orbit q0 homoclinic to x0, i.e. limt→±∞ q0(t) =
x0, which is sketched in figure 1.1 (a). We set Γ0 := {q0(t) | t ∈ R} ∪ {x0}.
The idea is to use (computable) global solutions of the integrable system (A.1)
in order to obtain solutions of the perturbed system (A.2). More precisely we
expect that the perturbation will break the homoclinic R-family q0(·+ r) of the
unperturbed system and will gain from it homoclinic solutions of the perturbed
system.

Consider the global cross section Σt0 := {t0} × R2 ⊂ S1 × R2 with the Poincaré
map (first return map) P ε

t0
: Σt0 → Σt0 associated to the perturbed system (A.2).

Hyperbolicity and the implicit function theorem imply for sufficiently small ε
the existence of a unique hyperbolic periodic orbit t 7→ γε(t) of the perturbed
system (A.2) which is O(ε) close to x0. Thus the associated Poincaré map P ε

t0
has a unique hyperbolic saddle point xεt0 which is O(ε) close to x0.
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Figure 1.1. The Melnikov construction

For t ≥ t0 we define qs1 to be the solution of the first variational equation with
initial time t0

q̇s1(t, t0) = DX(q0(t− t0)).q
s
1(t, t0) + Y (t, q0(t− t0))

and analogously qu1 for t ≤ t0.

If X and Y are Cr with r ≥ 2 it can be shown that the local stable and unstable
manifoldsW s

loc(γε) andW u
loc(γε) are Cr-close to those of the unperturbed periodic

orbit S1 × {x0}. Moreover, orbits qsε(t, t0) and quε (t, t0) lying in W s(γε) resp.
W u(γε) associated to Σt0 can be (uniformely) written in the indicated intervals
as

(A.3)
qsε(t, t0) = q0(t− t0) + εqs1(t, t0) +O(ε2) for t ∈ [t0,∞[,

quε (t, t0) = q0(t− t0) + εqu1 (t, t0) +O(ε2) for t ∈ ] −∞, t0].

Now we are able to start with the actual construction which is sketched in figure
1.1 (b). The points quε (t0) := quε (t0, t0) and qsε(t0) := qsε(t0, t0) denote the unique
points on W u(xεt0) resp. W s(xεt0) ‘closest’ to xεt0 and lying on the normal to Γ0 in

q0(0) spanned by X⊥(q0(0)) := (−X2(q0(0)), X1(q0(0)))T where X = (X1, X2).
We define the ‘distance’ of the (un)stable manifolds W u(xε0) and W s(xε0) on the
global cross section Σt0 at the point q0(0) to be

d(t0) := quε (t0) − qsε(t0).

If we define the wedge product of two vectors a = (a1, a2)
T and b = (b1, b2)

T to
be a∧ b := a1b2 − a2b1 then the Cr-closeness of W u(xεt0) and W s(xεt0) to Γ0 and
the expansion (A.3) imply

d(t0) =
X(q0(0)) ∧ (qu1 (t0, t0) − qs1(t0, t0))

|X(q0(0))| · ε+O(ε2)
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The wedge product X ∧ (qu1 − qs1) is nothing else than the projection of (qu1 − qs1)
onto X⊥. The Melnikov function is defined as the integral

M(t0) :=

∞∫

−∞

X(q0(t− t0)) ∧ Y (t, q0(t− t0))dt

which simplies for a Hamiltonian vector field Y = Y H1 induced by the Hamil-
tonian H1 nicely to

M(t0) :=

∞∫

−∞

{H0(q0(t− t0)), H1(t, q0(t− t0))}dt

where {H0, H1} = ∂xH0∂yH1 − ∂yH0∂xH1 denotes the Poisson bracket. The
geometric importance of the Melnikov function lies in its relation to the ‘distance’
d via

d(t0) =
ε M(t0)

|X(q0(0))| +O(ε2),

i.e. the ‘distance’ d is up to scaling with ε and normalization by |X(q0(0))|
approximatively given by the Melnikov function. The ability of the Melnikov
function to provide homoclinic intersection points is described in the following
theorem.

Theorem A.4. If M(t0) is independent of ε and if it has (as function of t0)
simple zeros then for small enough ε > 0 the (un)stable manifolds W u(xεt0) and
W s(xεt0) intersect transversely. If M(t0) is bounded away from zero then W u(xεt0)
and W s(xεt0) do not intersect.

If the Melnikov function can be computed explicitly then the question about the
existence of homoclinic points can accuratly be answered.

The ‘distance’ d is sometimes also called ‘primary distance function’ since it
measures the distance between W u(xεt0) and W s(xεt0) perpendicular to the ho-
moclinic trajectory q0 where the reference points quε (t0) and qsε(t0) are the first
intersection in elapsed time.
In order to deal with homoclinic points arising from ‘later’ intersections Rom-
Kedar [RK2] used the so called ‘secondary Melnikov function’ having similar
properties as the original one.

Given two adjacent primary points p = pε and q = qε the Melnikov method
provides a formula for the relative action A(p, q) from (8.2). The following result
may be found in Kovačič [Ko].
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Let Hamiltonian be of the form H(t, x, y) := H0(x, y) + εH1(t, x, y) and 2π-
periodic in time. Then

M(τ) :=

∫

R

{H0, H1}(τ + t, q0(t))dt

and denoting the zeros of M corresponding to p and q by τp and τq we obtain

(A.5) A(p, q) = ε

τp∫

τq

M(τ)dτ +O(ε2).

Kaper & Wiggins [KaW] deduce analogously in case of adiabatic Hamiltonian
system

ẋ = ∂yH(z, x, y), ẏ = −∂xH(z, x, y), ż = ε

(and also for more general z-dependence) the adiabatic Melnikov function MA(z)
and A(p, q) =

∫ z1
z0

MA(z)dz + error where the error vanishes at least as fast as
ε. Moreover they distinguish between locally action minimizing homoclinic
orbits if MA(z) = 0 and d

dz
MA(z) > 0 and locally action maximizing ho-

moclinic orbits if MA(z) = 0 and d
dz

MA(z) < 0.

There is ample literature about the Melnikov method and its application among
mathematicians and physicists. We already mentioned the text books by Guck-
enheimer & Holmes [GH] and Arrowsmith & and Place [ArP] to which we add
Wiggins [W]. Good intuition motivated by physical applications yields Zaslavsky
[Za].



APPENDIX B

Lazutkin’s homoclinic invariant

This appendix summarizes the construction proposed by Lazutkin [Laz] and
finally proved by Gelfreich [Ge1] of Lazutkin’s homoclinic invariant for the so
called (Chirikov) standard map

Fε : T 2 → T 2, (x, y) 7→ (x1, y1), y1 := y + ε sin(x), x1 := x+ y1

for T 2 := R2/(2πZ) and ε > 0 small. The standard map Fε appears as integrator
of the pendulum equation

ẋ = y, ẏ = sin x,

i.e. the difference Fε(x, y) − Φε(x, y) lies in O(ε2) where Φt denotes the flow
of the system. The (un)stable manifolds associated to the pendulum system
coincide, but there are analytic obstructions preventing coinciding in case of Fε.
The transition from the integrable situation with coinciding (un)stable manifolds
to noncoinciding invariant manifolds is also called splitting. Often splitting is
analysed by the Melnikov method (see Appendix A), but in case of the standard
map and most of its generalizations the splitting is to small to be detected by
Melnikov’s method.

Fε has one hyperbolic fixed point in (0, 0) and one elliptic in (π, 0) and

DFε(0, 0) =
(

1+ε
ε

1
1

)
with eigenvalues λ and λ−1 where λ = 1 + 1

2
ε+

√
ε+ ε2

4
.

Figure 2.1 sketches the upper half of the now heteroclinic tangle on the universal
cover R2. Unlike our usual notation the unstable manifold is drawn by a non-
dotted line since the oscillations are to small for dots.

x
0

y

2ππ

z0

Figure 2.1. Heteroclinic tangle of the standard map
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Instead of ε-dependence it is more convenient to consider h := log λ which is
related to ε via ε = 4 sinh2(h

2
) implying ε ≈ h2. Solutions of the finite difference

system

x(t+ h) = x(t) + y(t+ h),

y(t+ h) = y(t) + ε sin(x(t))

yield parametrizations of the branches sketched in figure 2.1 via z− := (x−, y−)
for the unstable branch and z+ := (x+, y+) for the stable one under the condi-
tions

lim
t→−∞

x−(t) = 0 and x−(0) = π,

(x+, y+)(t) := (2π − x−(−t), y−(−t) + ε sin x−(−t)).

x+ satisfies limt→∞ x+(t) = 0 and x+(0) = π. Note that the boundary conditions
do not yield unique solutions. We find (x−(0), y−(0)) = (x+(0), y+(0)) =: z0 as
heteroclinic point and define Lazutkin’s homoclinic invariant of z0 by

Λ := det

(
ẋ−(0) ẋ+(0)
ẏ−(0) ẏ+(0)

)

which yields the same value for all F n
ε (z0) for n ∈ Z and is invariant under

symplectic coordinate changes. Geometrically Λ is the value of the symplectic
form dx∧dy evaluated on the tangent vectors on the parametrizations in z0, i.e.
the area of the parallelogram given by those vectors. If α is the splitting angle
at z0 then

α = sin−1

(
Λ

|z̃−(0)||z̃+(0)|

)
.

In the literature Lazutkin’s invariant usually is denoted by ω, but since ω stands
in our framework for the symplectic form we avoid confusion by using Λ.
There is exactly one other second primary heteroclinic equivalence class 〈z1〉
different from 〈z0〉 and they have up to sign the same aymptotic expansion in
the following theorem.

Theorem B.1. Λ has the asymptotic expansion

Λ
as
=

4π

h2
e−

π2

h

( ∞∑

n=0

h2nΛn

)

where
as
= means that the absolute value of the error when considering only the

sum for n ≤ N can be estimated from above by O(h2N−2e−
π2

h ). We have Λ0 =
1118.827706 . . . and Λ1, . . . ,Λ4 are also known with high accuracy.
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For all sufficiently small ε > 0 the (un)stable manifolds of Fε intersect trans-
versely in z0 and the splitting angle is given by

α
as
=

π

h2
e−

π2

h

( ∞∑

n=0

h2ncn

)

where the coefficients cn can be expressed via the coefficients Λn, in particular

Λ0 = c0, Λ1 = c1 + c0
4
, Λ2 = c2 + c1

4
+ 25

72
c0.

The relative action between z0 and adjacent primary heteroclinic points in 〈z1〉
is asymptotically given by

2

π
e−

π2

h

( ∞∑

n=0

h2nΛn

)
.

Now we consider the generalized standard map

Gε : R2 → R2, (x, y) 7→ (x1, y1), y1 := y + εf(x), x1 := x+ y1,

as introduced in Gelfreich & Lazutkin [GeL] and Gelfreich & Simó [GeS]. Gelfre-
ich & Simó [GeS] study numerical methods for f being a polynomial, a trigono-
metrical polynomial or a meromorphic or rational function, but only when Gε is
the area-preserving Hénon-map, i.e. f(x) = x − x2, the results are (up to now)
mathematically rigorous.

The Hénon-map has two symmetry lines, namely {y = 0} and {y = − ε
2
(x−x2)},

and their ‘first’ intersection points with the (un)stable manifolds are represen-
tatives p = pε and q = qε of the (exactly) two primary equivalence classes.
The according homoclinic tangle is sketched in figure 8.2 (a) and the homoclinic
invariant of p is given by

Λ(p)
as
=

4π

h6
e−

2π2

h

(
∑

k≥0

akh
2k + e−

2π2

h

∑

k≥0

bkh
2k

)
.

p and q have (up to sign) a common asymptotic expansion, but numerically Λ(p)

and −Λ(q) differ by 8π
h6 e

−4π2

h
∑

k≥0 ckh
2k. The relative action between adjacent

representants of 〈p〉 and 〈q〉 is up to an exponentially small quantity of higher
order given by

(B.2)
Λh2

2π2
≈ 4πa0

h6
e−

2π2

h (1 +O(h4e−
π2

h )).

If f(x) = x+ rx2 − x3 is a cubic polynomial then the constructions and expan-
sions as performed for the standard map are not yet proven rigorously. Never-
theless high-precision numerical experiments suggest their validity. They yield
the homoclinic tangle sketched in figure 8.2 (b). The splitting of the (un)stable
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manifolds is exponentially small w.r.t. h, but for r 6= 0 the tangle is not sym-
metric w.r.t. the y-axis and the splitting on the right hand side is exponentially
large compared with the one on the left hand side.
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indice des systèmes hamiltoniens Bull. Soc. Math. France 115 (1987) no. 3, 361–390
[W] Wiggins, S.: Global dynamics, phase space transport, orbits homoclinic to reso-

nances, and applications, AMS, Providence, Rhode Island 1993
[Xia1] Xia, Z.: Homoclinic points in symplectic and volume-preserving diffeomorphisms

Commun. Math. Phys. 177 (1996), 435 – 449
[Xia2] Xia, Z.: Homoclinic points and intersections of Lagrangian submanifolds Discr. Cont.

Dyn. Sys. 6, no. 1 (2000), 243 – 253
[Xia3] Xia, Z.: Homoclinic points for area preserving surface diffeomorphisms Preprint 2006
[Xia4] Xia, Z.: Private communications
[Za] Zaslavsky, G.: Hamiltonian chaos and Fractional dynamics, Oxford University

Press 2005
[Ze] Zehnder, E.: Homoclinic points near elliptic fixed points Comm. pure appl., 26,

(1973) 131 – 182



151
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