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Abstract

We define four versions of Floer homology generated by (certain) ho-
moclinic points and point out their algebraic and dynamical proper-
ties. Among others, the rank of filtered homoclinic Floer groups grows
linearly with the number of iterations of the underlying symplectomor-
phism. Moreover, we point out a relation between the (absolute) flux
in MacKay & Meiss & Percival [MMP], Mather’s [Ma] difference in
action 4W and homoclinic Floer theory.

1 Introduction

In order to make this survey easily accessible to a broader audience, we
repeat some crucial definitions before we delve into the construction and
applications of homoclinic Floer homology.

1.1 Notations

A smooth (even dimensional) manifold M is symplectic if it admits a closed,
nondegenerate 2-form. Such a form is called a symplectic form and will
(usually) be denoted by ω. A diffeomorphism f on a symplectic manifold
(M,ω) is a symplectomorphism if f preserves ω, i.e. f∗ω = ω. The group
of symplectomorphisms w.r.t. ω is denoted by Symp(M,ω). We abbreviate
Symp(M) if there is no confusion.
Given a smooth function F : M × S1 → R, we set Ft := F (·, t) and define
its (nonautonomous) Hamiltonian vector field XF

t via ω(XF
t , ·) = −dFt(·).

Then ż(t) = XF
t (z(t)) is the associated Hamiltonian equation and its (nonau-

tonomous) flow is called Hamiltonian flow. A Hamiltonian diffeomorphism
is a symplectomorphisms which can be written as the time-1 map ϕ1 of a
Hamiltonian flow ϕt. We denote by Hamc(M,ω) the group of compactly
supported Hamiltonian diffeomorphisms. Again, we abbreviate Hamc(M) if
there is no confusion. A Hamiltonian diffeomorphism is called nondegenerate
if its graph intersects the diagonal in M ×M transversely.
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x is a periodic point of a diffeomorphism f if there exist m ∈ N such that
fm(x) = x. In the special case m = 1, x is called a fixed point and the
set of fixed points of f is denoted by Fix(f). x ∈ Fix(f) is called hyper-
bolic if the eigenvalues of the linearization of f in x have modulus differ-
ent from 1. The stable manifold of a hyperbolic fixed point x is given by
W s(f, x) := {p ∈ M | limn→∞ f

n(p) = x} and the unstable manifold is
given by W u(f, x) := {p ∈ M | limn→−∞ f

n(p) = x}, briefly W s and W u.
They are injectively immersed submanifold. If f is symplectic then the stable
and unstable manifolds satisfy ω|W s = 0 = ω|Wu and dimW s = 1

2 dimM =
dimW u, i.e. they are Lagrangian submanifolds. Intersection points of the
stable and unstable manifold are called homoclinic points and we denote
the set of homoclinic points by H := H(f, x) := W s(f, x) ∩W u(f, x). The
connected components of W s\{x} resp. W u\{x} are called the branches of
W s resp. W u. A symplectomorphism is called W -orientation preserving if
it preserves the branches of the (un)stable manifolds. Otherwise it is called
W -orientation reversing.

1.2 Motivation

In the 1960s, Arnold conjectured that the number of fixed points of a non-
degenerate Hamiltonian diffeomorphism on a closed, symplectic manifold is
greater or equal to the sum over the Betti numbers. In order to approach this
conjecture, Floer [Fl1, Fl2, Fl3] considered the fixed points as intersection
points of the graph of the Hamiltonian diffeomorphism with the diagonal in
the symplectic manifold (M ×M,ω ⊕ (−ω)). Since the graph and the di-
agonal are Lagrangian submanifolds, Floer turned the fixed point problem
into a Lagrangian intersection problem. The intersection points can be seen
as critical points of the symplectic action functional. This inspired Floer
to devise some kind of infinite dimensional Morse theory for the symplectic
action functional which is nowadays known as Floer theory. Apart from lead-
ing to a proof of Arnold’s conjecture, Floer theory gave rise to many other
applications in symplectic geometry, dynamical systems and other fields of
mathematics and is vividly studied nowadays.

In the study of dynamical systems, homoclinic points are the next more
difficult orbit type after fixed points and periodic points. The existence
of (transverse) homoclinic points was discovered by Poincaré [Poi1, Poi2]
around 1890 when he worked on the n-body problem. In 1935, Birkhoff [Bi]
noticed the existence of high-periodic points near homoclinic ones, but it
took until Smale’s horseshoe formalism in the 1960s to obtain a formal and
precise description of the implied dynamics. Since then, homoclinic points
have been studied by various means like perturbation theory, calculus of
variations and numerical approximation, but many questions are still open.

Up to our knowledge, there are few papers where homoclinic orbits are
studied with symplectic methods or means related to Floer theory: Hofer
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& Wysocki [HW] use pseudo-holomorphic curves and Fredholm theory.
Cieliebak & Séré [CiS] combine variational technics and pseudo-holomorphic
curves. Lisi [Li] generalizes Coti Zelati & Ekeland & Séré [CZES] using La-
grangian embedding techniques.

The present survey is based on Hohloch [Ho1, Ho2]. We link homoclinic
points to Floer theory by constructing Floer homologies generated by ho-
moclinic points. Then we study their dynamical properties.
More precisely, in Section 2, we construct four versions of homoclinic Floer
homology and point out their properties and main differences.
In Section 3, we study — motivated by Polterovich [Pol1, Pol2] — the growth
of the rank of homoclinic Floer homology under iteration of the underlying
symplectomorphism. Theorem 8 shows the rank of the homoclinic Floer
groups to grow linearly.
Section 4 focuses on the dynamical interpretation of homoclinic Floer ho-
mology: we introduce the so-called (absolute) flux as defined in MacKay
& Meiss & Percival [MMP] and refine their notion of so-called turnstiles.
Lemma 10 links the flux to the symplectic action. Proposition 12 interpretes
turnstiles in terms of the Floer boundary operator. Corollary 11 deduces
linear growth of the flux under iteration of the underlying symplectomor-
phism. MacKay & Meiss & Percival [MMP] proved the flux to coincide under
certain assumptions with Mather’s [Ma] difference in action 4W . Theorem
14 eventually unites the notions of flux, 4W , (relative) symplectic action
and certain immersed disks between homoclinic points.
Section 5 summerizes the discussed homoclinic Floer homologies and their
main properties in a table.
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2 Types of homoclinic Floer homology

2.1 Primary Floer homology

Let (M,ω) be a symplectic manifold and ϕ a symplectomorphisms with hy-
perbolic fixed point x and (un)stable manifolds W s and W u. If we think
about constructing a Floer homology for the Lagrangian intersection prob-
lem W s ∩ W u, we run into the following problem: For dimM > 2, the
construction of Floer homology involves (among others) Fredholm analysis
and Gromov compactness for moduli spaces of pseudo-holomorphic curves,
see e.g. Salamon [Sa]. Since W s and W u are highly noncompact, wildly oscil-
lating and not properly embedded the analysis problem is a quite hopeless
task. But, for dimM = 2, the analysis can be replaced by combinatorics
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([dS], [Fe2], [GaRS]). This works in spite of the chaotic behaviour of W s

and W u.

Now assume (M,ω) to be R2 or a closed surface of genus g ≥ 1 with their
resp. volume forms. Consider the set of homoclinic points H := W s ∩W u

where we assume the intersection to be transverse. Let p, q ∈ H and denote
by [p, q]i the segment between p and q in W i for i ∈ {s, u}. The sym-
plectomorphism ϕ introduces a Z-action H × Z → H, (p, n) 7→ ϕn(p). For
transversely intersecting W s ∩W u, the sets H and H/Z are both infinite.
Denote by cp : [0, 1]→W u ∪W s a curve with cp(0) = x = cp(1) which runs
through [x, p]u to p and through [p, x]s back to x. We define the homotopy
class of p via [p] := [cp] ∈ π1(M,x). Then H[x] := {p ∈ H | [p] = [x]} is the
set of contractible homoclinic points. It is invariant under the action of ϕ.
When iterating homoclinic points p ∈ H we often abbreviate ϕn(p) =: pn.
Note that in this notation p0 = p and p1 = ϕ(p). Analogously to Floer [Fl1],
there is a (relative) Maslov index µ(p, q) ∈ Z for p, q ∈ H if [p] = [q]. In our
two-dimensional setting, µ(p, q) can be seen as twice the tangent winding
number of a loop starting in p, running through [p, q]u to q and through
[p, q]s back to p if we assume the intersections to be perpendicular and if we
flip +90◦ at q and −90◦ at p. We observe µ(p, q) = µ(pn, qn) for n ∈ Z. The
(relative) Maslov index yields a grading µ : H[x] → Z via µ(p) := µ(p, x)
such that for contractible homoclinic points p and q holds

µ(p, q) = µ(p, x) + µ(x, q) = µ(p, x)− µ(q, x) = µ(p)− µ(q).

H and H[x] are somehow ‘too large’ sets in order to be used as generators
for a Floer chain complex. But there are suitable subsets for which we can
construct a Floer homology: We call p ∈ H semi-primary if ]x, p[s ∩ ]x, p[u =
∅. A contractible p ∈ H[x] is called primary if ]p, x[s ∩ ]p, x[u ∩ H[x] = ∅ and
the set of primary points is denoted by Hpr.

Lemma 1 ([Ho1]). (i) Let ϕ be W -orientation preserving, p (semi-) pri-
mary and denote the branches containing p by W u

p and W s
p . Then for

every (semi-) primary q ∈ (W u
p ∩W s

p )\{pn | n ∈ Z} there is a unique
n ∈ Z such that qn ∈ ]p, ϕ(p)[u ∩ ]p, ϕ(p)[s.

(ii) For a primary point p holds µ(p) = µ(p, x) ∈ {±1,±2,±3}.

(iii) If W s and W u intersect transversely then H̃pr := Hpr/Z is finite.

We denote the equivalence class of p ∈ Hpr in H̃pr = Hpr/Z by 〈p〉. The
homotopy class and the Maslov index µ pass to the quotient via [〈p〉] := [p],
µ(〈p〉, 〈q〉) := µ(p, q) and µ(〈p〉) := µ(p, x).

Consider a fixed 2-gon D in R2 with convex vertices at (−1, 0) and (1, 0).
Denote its lower edge by Bu and its upper edge by Bs. For p, q ∈ H, we
define M(p, q) to be the space of smooth, immersed 2-gons v : D → M
which are orientation preserving and satisfy v(Bu) ⊂ W u, v(Bs) ⊂ W s,
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v(−1, 0) = p and v(1, 0) = q. Denote by G(D) the group of orienta-
tion preserving diffeomorphisms of D which preserve the vertices. We set
M̂(p, q) :=M(p, q)/G(D) and m(p, q) := #M̂(p, q). For 〈p〉, 〈q〉 ∈ H̃pr set
m(〈p〉, 〈q〉) :=

∑
n∈Zm(p, qn). We define the chain groups and the boundary

operator via

Ck := Ck(ϕ, x;Z) :=
⊕
〈p〉∈H̃pr

µ(〈p〉)=k

Z〈p〉, ∂〈p〉 :=
∑
〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉

on a generator 〈p〉 and extend ∂ by linearity. We have rkZ(Ck) < ∞ and,
due to Lemma 1, Ck = 0 for k /∈ {±1,±2,±3}.

Theorem 2 ([Ho1]). ∂ ◦ ∂ = 0, i.e. (C∗, ∂∗) is a chain complex and

Hk := Hk(ϕ, x;Z) :=
ker ∂k

Im ∂k+1

is called primary Floer homology of ϕ in x and Hk = 0 for k 6= ±1,±2,±3.

Since H̃pr and the sum in the definition of ∂ are finite, primary Floer homol-
ogy is in fact completely determined by (possibly large) compact segments
of the (un)stable manifolds centered around the fixed point.

The proofs of the well-definedness of ∂ and of ∂ ◦∂ = 0 involve the so-called
breaking and gluing procedure which mainly relies on the classification of
M(p, q) and of immersions of relative Maslov index 2. Certain parts of the
proofs are of combinatorial nature whereas other parts make use of the
iteration behaviour of W s ∩ W u and use classical dynamical results like
Palis’ λ-Lemma [Pa].

H∗ is clearly invariant under conjugation, thus making all constructions
natural. But there is also another form of invariance.

Remark 3 ([Ho1]). H∗ is invariant under a quite large class of perturbations
of the underlying symplectomorphism.

For a more precise description of the class of perturbations cf. [Ho1]. The
proof has to combine analytical and combinatorial arguments since a pri-
mary point p might vanish (arise) in two ways: (a) p vanishes as intersection
point and (b) p persists as intersection point, but is no longer primary.
Generic bifurcations can be considered as second Reidemeister moves and
H∗(ϕ, x) is proven to be invariant under them: There are primary moves
(both vanishing points are primary), secondary moves (both vanishing points
are nonprimary) or mixed moves with primary-secondary flips (one vanishing
point primary, the other nonprimary while an odd number of primary points
is flipped nonprimary). These phenomena will resurface in the discussion of
dynamical properties, cf. Remark 9.
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Remark 3 affects the dynamical properties of H∗ since the invariance of
primary Floer homology is too strong to admit a direct observation of the
growth of the rank of the homology groups as it will be done in Theorem 8.
One really needs to use the filtered versions in Theorem 8, for more details
see [Ho1].

2.2 Semi-primary Floer homology

If we use contractible semi-primary points instead of primary points as gen-
erators in the previous subsection, we obtain semi-primary Floer homology
H̃∗(ϕ, x) (cf. [Ho1]). The construction is analogous to Theorem 2. The dif-
ferences between H∗(ϕ, x) and H̃∗(ϕ, x) become apparent when we study
the invariance properties: H̃∗(ϕ, x) is invariant under a much smaller class
of perturbations than H∗(ϕ, x). Thus it is much more sensitive w.r.t. the
underlying symplectomorphism.

For example (cf. [Ho1] for details), H̃∗(ϕ, x) notices certain interactions of
W s and W u with the topology of the manifold whereas primary Floer ho-
mology is oblivious to them: Consider the situation in Figure 1. Assume
for simplicity that the branches, which do not contain p, do not intersect
any other branches. Thus 〈p〉 and 〈q〉 are the only primary orbits. We have
µ(〈p〉) = −1 and µ(〈q〉) = −2. p and q are primary no matter if ]p, q[s in-
tersects ]q, p−1[u or not. Thus we obtain H−1(ϕ, x) ' Z and H−2(ϕ, x) ' Z
and H∗(ϕ, x) = 0 else.

p−1

W s

p

q
−2

−1

x

Figure 1: Arising of nontrivial homotopy classes

But if we are considering semi-primary points, the intersection behaviour
of ]p, q[s and ]q, p−1[u does matter. Whereas p is always semi-primary, q is
only semi-primary if ]p, q[s and ]q, p−1[u do not intersect. So if ]p, q[s and
]q, p−1[u do not intersect we obtain H̃−1(ϕ, x) ' Z and H̃−2(ϕ, x) ' Z and
H̃∗(ϕ, x) = 0 else. But if ]p, q[s ∩ ]q, p−1[u 6= ∅ we only have H̃−1(ϕ, x) ' Z
and H̃∗(ϕ, x) = 0 else.

Hockett & Holmes [HH] study the existence and impact of such (semi-
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primary) homoclinic points on the annulus. If cp is contractible they call
the homoclinic point p non-rotary. If cp winds k times around the hole
of the annulus, they call p k-rotary. Noncontractible, semi-primary points
therefore fit as 1-rotary points in their framework.

Moreover, semi-primary Floer homology distinguishes between ϕ and ϕn for
certain symplectomorphisms ϕ. For the case ]p, q[s ∩ ]q, p−1[u 6= ∅ in the
above example, we obtain (cf. [Ho1] for details)

H̃−1(ϕn, x) ' Zn and H̃m(ϕn, x) = 0 for m ∈ Z\{−1}, n ∈ N.

And if ]p, q[s ∩ ]q, p−1[u = ∅ then

H̃−1(ϕn, x) = H−1(ϕn, x) ' Z ' H̃−2(ϕn, x) = H−2(ϕn, x) for n ∈ N

and H̃∗(ϕ
n, x) = H∗(ϕ

n, x) = 0 else.

Speaking in terms of the proof of Remark 3, the intersection behaviour of
]p, q[s and ]q, p−1[u can be interpreted as secondary move (since both arising
points are not primary). As such, it clearly leaves primary Floer homology
invariant. For semi-primary Floer homology, this is obviously not true.

2.3 Cylinder Floer homology

Primary Floer homology as well as semi-primary Floer homology use con-
tractible homoclinic points as generators. But in physical examples, the ho-
moclinic points are often noncontractible. For dynamical systems on the
infinite, symplectic cylinder (Z, ω), there is a simple idea how to define ho-
moclinic Floer homology based on noncontractible semi-primary points: We
identify the cylinder with an annulus in R2 and ‘forget’ about the hole of
the annulus. In this way, we can use large parts of the homology contruction
from Theorem 2. Moreover, we can adjust said construction to ‘keep in mind’
the original homotopy class of a homoclinic point such that we get mean-
ingful homologies e.g. for the perturbed pendulum and Chirikov’s Standard
map. We will call this type of Floer homology cylinder Floer homology.

We denote by Sympc0(Z) := Sympc0(Z, ω) the group of compactly supported
symplectomorphisms isotopic to the identity. For some of the following con-
structions, we need the symplectomorphisms to be W -orientation preserv-
ing. For W -orientation reversing symplectomorphisms ϕ, consider the W -
orientation preserving ϕ2 instead. As in the construction of primary Floer
homology, we define the homotopy class of a homoclinic point p on the
cylinder as [p] := [cp] ∈ π1(Z, x). It holds [p] = [ϕ(p)] for ϕ ∈ Sympc0(Z).

Let 0 < R− < R+ < ∞ and denote by Q := Q(R−, R+) the open an-
nulus in (R2, dx ∧ dy) centered at the origin with radii R− and R+. Let
h : Z → Q be an orientation preserving diffeomorphism which identi-
fies the cylinder with the annulus. Given f ∈ Sympc0(Z), we denote by
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F := Fh := h ◦ f ◦ h−1 ∈ Diff(Q) its conjugate. If x ∈ Fix(f) is hyper-
bolic so is x := h(x) ∈ Fix(F ). Denote by H(f, x) := W s(f, x) ∩W u(f, x)
the set of homoclinic points of f w.r.t. x. Analogously define H(F, x) :=
W s(F, x) ∩ W u(F, x) seen as points in R2, i.e. all of them are considered
contractible. Denote by Hpr(F, x) ⊂ H(F, x) the set of primary points of F
w.r.t. x and define Hpr(f, x) := h−1(Hpr(F, x)). Images under h of homo-
clinic points p ∈ H(f, x) are abbreviated in Gothic print as p := h(p) etc.
We denote by H̃pr(f, x) resp. H̃pr(F, x) the equivalence classes of primary
points and set [〈p〉] := [p]. We consider h(p) ∈ R2 as contractible in R2 and
define the Maslov index of p ∈ H(f, x) to be µ(p) := µh(p) := µ(h(p), x). It
holds µ(ϕ(p), ϕ(q)) = µ(p, q). In order to keep track of the actual homotopy
class [p] ∈ π1(Z, x), we modify the boundary operator via

νh(〈p〉, 〈q〉) := ν(〈p〉, 〈q〉) :=

{
m(〈p〉, 〈q〉) if ∅ 6=M(p, q) 3 v, 0 /∈ Im(v),

0 otherwise.

BR−(0) ⊂ R2 corresponds to the hole of the annulus resp. the S1-direction of
the cylinder. The new signs ensure that only immersions between primary
points p, q ∈ Hpr(F, x) with [p] = [q] ∈ π1(Z, x) are counted. As in the
previous homoclinic Floer homologies, the chain complex is defined via

Ck(f, x, h) :=
⊕

〈p〉∈H̃pr(f,x)

µ(〈p〉)=k

Z〈p〉, D〈p〉 :=
∑

〈q〉∈H̃pr(f,x)

µ(〈q〉)=µ(〈p〉)−1

νh(〈p〉, 〈q〉)〈q〉.

The breaking and gluing construction carries over since BR−(0) ⊂ R2 is
untouched by F and can therefore be considered invariant under iteration.

Theorem 4 ([Ho2]). We have D ◦ D = 0 and H∗(f, x, h) := ker D∗
Im D∗+1

is
called cylinder Floer homology on Z.

Since the boundary operator only connects points within the same homotopy
class on the cylinder we obtain

Corollary 5 ([Ho2]). C∗(f, x, h) and H∗(f, x, h) split into a direct sum
w.r.t. the homotopy classes in π1(Z, x):

C∗(f, x, h) = C∗(f, x, h, [·] = 1)⊕ C∗(f, x, h, [·] = 0)⊕ C∗(f, x, h, [·] = −1),

H∗(f, x, h) = H∗(f, x, h, [·] = 1)⊕H∗(f, x, h, [·] = 0)⊕H∗(f, x, h, [·] = −1).

Clearly, cylinder Floer homology can also be defined using an orientation
reversing diffeomorphism h. In fact, cylinder Floer homology only depends
on the orientation of the underlying diffeomorphism, i.e. there are two well-
defined cylinder Floer homologies H∗(f, x,+) and H∗(f, x,−).
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2.4 Chaotic Floer homology

Birkhoff [Bi] proved in 1935 that there is an intricate amount of high-periodic
points near a homoclinic one. This phenomenon is nowadays explained by
Smale’s horseshoe and symbolic dynamics. For Hamiltonian systems, Con-
ley’s conjecture claims the existence of infinitely many periodic points on
certain symplectic manifolds. It has been established for certain classes of
manifolds ([Gi], [GiG], [Hi]).

Motivated by those observations, we want to include information about the
periodic points ‘near’ homoclinic ones in homoclinic Floer homology. Assume
ϕ ∈ Symp(M) and x ∈ Fix(ϕ) hyperbolic. Given n ∈ Z, we assign new signs
to primary points p, q ∈ H(ϕn, x) via

νn(p, q) :=

{
m(p, q) if ∅ 6=M(p, q) 3 v, Fix(ϕn) ∩ Im(v) = ∅,
0 otherwise.

Set νn(〈p〉, 〈q〉) :=
∑

l∈Z νn(p, ql) and define the chain complexes C(n)
∗ :=

C∗(x, ϕ
n;Z). The boundary operators are defined on generators via

D(n) : C(n)
∗ → C(n)

∗−1, D(n)(〈p〉) :=
∑

〈q〉∈H̃pr(ϕn)

νn(〈p〉,〈q〉)=1

νn(〈p〉, 〈q〉)〈q〉

and are extended to C(n)
∗ by linearity. Excluding immersions with fixed points

in their ranges is compatible with the breaking and gluing procedure. Thus
the construction of primary Floer homology carries over and we obtain

Theorem 6 ([Ho1]). D(n) ◦ D(n) = 0 and Ĥ∗(x, ϕ
n) := kerD(n)

∗
ImD(n)

∗+1

is called

chaotic Floer homology.

The main importance of chaotic Floer homology lies in its change under
iteration of ϕ, i.e. the dynamics of n 7→ Ĥ∗(x, ϕ

n). For example, we can
assign a symplectic zeta function to this sequence via

ζx,ϕ(z) := exp

( ∞∑
n=1

χ(HFix
∗ (x, ϕn))

n
zn

)

where χ(HFix
∗ (x, ϕn)) denotes the Euler characteristic of HFix

∗ (x, ϕn). Zeta
functions have been studied a lot in number theory, algebraic geometry and
dynamical systems. An overview can be found in Fel’shtyn [Fe1, Fe2]. We
are investigating the properties of this zeta function and plan to link them
to the growth behaviour of symplectomorphisms.
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3 Action filtration and growth

In this section, we measure symplectic properties of homoclinic points of
symplectomorphisms. Let (M,ω = dα) stand for the exact manifolds (R2, ω)
resp. (Z, ω) if not stated otherwise. We assume f ∈ Symp(R2) resp. f ∈
Hamc(Z) with x ∈ Fix(f) hyperbolic.

For p ∈ H and i ∈ {s, u}, fix a smooth parametrization γip : [0, 1] → [x, p]i
with γip(0) = x and γip(1) = p. Define the symplectic action of p ∈ H via

A(p) :=

∫
γ̄up #γsp

α

with γ̄up (τ) := γup (1− τ) and where # stands for the concatenation of paths.
If M = R2, Stokes theorem yields A(p) =

∫
γ̄up #γsp

α =
∫
G(x,p) ω which is

the (signed) symplectic area of the resonance domain G(x, p) of p. Back
to M ∈ {R2,Z}, the relative action of p, q ∈ H is given by A(p, q) :=
A(p)−A(q). Since immersions inM(p, q) are orientation preserving Stokes’
theorem yields for such p and q

A(p, q) =

∫
v

ω > 0, implying A(p) > A(q). (7)

In particular, A(p, q) is the symplectic area enclosed by [p, q]s and [p, q]u.
f ∈ Hamc(Z) is characterized by f∗α − α = dH̃ for a smooth function
H̃ : Z → R. This allows us to conclude A(p) = A(fn(p)) and A(p, q) =
A(fn(p), fn(q)) for all n ∈ Z and f ∈ Hamc(Z). The action is also invariant
for f ∈ Symp(R2).

In classical Floer theory, filtration by the action has been used success-
fully to define and interprete symplectic invariants, see e.g. Schwarz [Sch].
We demonstrate the construction with (positive) cylinder Floer homology
H∗(f, x,+). Let a ∈ R and define the filtered Floer groups via

C a
k := C a

k (f, x,+) :=
⊕

〈p〉 ∈ H̃pr(f, x)
µ(〈p〉) = k
A(〈p〉) ≤ a

Z〈p〉.

If p, q ∈ Hpr(f, x) with µ(p, q) = 1 and M̂(p, q) 6= ∅ it follows from (7) that
A(p) > A(q). Thus the boundary operator D restricts to C a

k and (C a
∗ ,D) is

a subcomplex of (C∗(f, x,+),D). For a < b, we define C
]a,b]
∗ := C b

∗ /C
a
∗ . We

identify C∞∗ = C∗(f, x,+) and C
]−∞,a]
∗ = C a

∗ and define the filtered Floer

groups H
]a,b]
∗ := H

]a,b]
∗ (f, x,+) as the homology of C

]a,b]
∗ . If a < amin :=

min{A(p) | 〈p〉 ∈ H̃pr} and b > amax := max{A(p) | 〈p〉 ∈ H̃pr} then
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H
]−∞,a]
∗ = 0 and H

]b,∞]
∗ = 0 such that the homology is concentrated in the

interval ]amin − ε, amax] for ε > 0.

In classical Floer theory, the action and (mean) index of periodic Hamilto-
nian orbits grow linearly under iteration of the underlying symplectomor-
phism. This fact was used e.g. by Ginzburg & Gürel [GiG] to prove gen-
eralizations of the Conley Conjecture (‘There are infinitely many periodic
Hamiltonian orbits’) on certain classes of symplectic manifolds. Polterovich
[Pol1] studied growth behaviour of symplectomorphisms under iteration us-
ing results by Schwarz [Sch] about the action spectrum. In a subsequent
paper, Polterovich [Pol2] used these results to establish a Hamiltonian ver-
sion of the Zimmer program.
Denote by Spec(ϕ, x) := {A(〈p〉) | 〈p〉 ∈ H̃pr} the homoclinic action spec-
trum of ϕ at x and set gap(ϕ, x) := min{|A(〈p〉)−A(〈q〉)| | 〈p〉, 〈q〉 ∈ H̃pr}.

Theorem 8 ([Ho2]). Let ϕ ∈ Symp(R2) resp. ϕ ∈ Hamc(Z). Let b ∈
Spec(ϕ, x) and 0 < ε ≤ 1

2 gap(ϕ, x). Then we obtain

rkH
]b−ε,b+ε]
∗ (ϕn, x) = n rkH

]b−ε,b+ε]
∗ (ϕ, x),

rk H
]b−ε,b+ε]
∗ (ϕn, x) = n rk H

]b−ε,b+ε]
∗ (ϕ, x).

Thus filtered homology distinguishes between ϕ and its iterate ϕn and we
have linear growth of the rank. We will see in the next section that the rank
is not the only quantity related to homoclinic Floer homology which has
linear growth under iteration.

4 Flux, turnstiles and transport

MacKay & Meiss & Percival [MMP] are interested in the long-term be-
haviour of Hamiltonian systems. A crucial notion in their work is the so-
called (absolute) flux: Let c be a simply closed curve in (R2, ω) and let
ϕ ∈ Symp(R2) be W -orientation preserving. Denote by Int(c) the interior of
c and by Ext(c) its exterior. We define

F luxϕ(c) := volω(ϕ(Int(c)) ∩ Ext(c)) = volω(Int(ϕ(c)) ∩ Ext(c))

to be the absolute flux of ϕ through c. If ϕ is W -orientation reversing we set
F luxϕ := F luxϕ2 . Now let c be a curve on (Z, ω) with [c] ∈ {±1} ⊂ π1(Z)
without self-intersections and let ϕ ∈ Hamc(Z). The range of c cuts Z
into two connected components. Denote one of them by Zc. We define the
absolute flux through c as

F luxϕ(c) := volω(Zϕ(c)\Zc).

If c is a contractible curve on the cylinder we define F luxϕ(c) similarly
as in the plane. We usually call the absolute flux briefly flux. Note that the

11



absolute flux differs from the flux homomorphism usually used in symplectic
geometry (cf. [McS]). Roughly speaking, the latter considers the difference
between ϕ(Int(c))∩Ext(c) and ϕ(Ext(c))∩ Int(c). Given a primary orbit 〈p〉
on the cylinder resp. R2, we set

F luxϕ(〈p〉) := F luxϕ(cp).

F luxϕ(c) measures how much of a barrier the curve c is for the transport: If
c is invariant under ϕ, the flux through c is zero. In that case, c is a complete
barrier for the transport of points by ϕ. Now we investigate certain curves
which form a partial barrier and where the ‘outlet’ only happens along a
small part of c: Let p be a homoclinic point. It holds [x, ϕ(p)]s ⊂ [x, p]s and
[x, ϕ(p)]u ⊃ [x, p]u. Thus the ranges of the curves cp and cϕ(p) coincide except
in the segments [p, ϕ(p)]u and [p, ϕ(p)]s. MacKay & Meiss & Percival [MMP]
call the resulting picture a turnstile. The name is motivated by its behaviour,
cf. Figure 2 (a): One wing sweeps points out of the interior (shaded region),
the other one sweeps points in. Let us refine this notion in the following.

ϕ is called x-simple if each pair of intersecting branches contains exactly two
primary orbits. If not stated otherwise, assume from now on ϕ ∈ Symp(R2)
resp. ϕ ∈ Hamc(Z) to be x-simple. Consider primary points 〈p〉 and 〈q〉 in a
chosen pair of intersecting branches and assume {q} = ]p, ϕ(p)[s ∩ ]p, ϕ(p)[u.
The resulting picture is called a true turnstile with pivot q and frame p and
ϕ(p). The regions enclosed by [p, ϕ(p)]s ∪ [p, ϕ(p)]u are called the wings of
the turnstile. An example is sketched in Figure 2 (a). The flux through 〈p〉
is the area of the shaded region.
If ϕ is x-simple, but if we assume #(]p, ϕ(p)[s ∩ ]p, ϕ(p)[u) = 3 the resulting
picture is called an overtwisted turnstile with frame p and ϕ(p) and pivot q.
An example is sketched in Figure 2 (b) and the flux through 〈p〉 is the area
of the shaded region.
If we assume a pair of intersecting branches to have k primary orbits
〈p1〉, . . . , 〈pk〉 with ]p1, ϕ(p1)[s ∩ ]p1, ϕ(p1)[u = {p2, . . . , pk} we call this pic-
ture a k-generalized turnstile with frame p1 and ϕ(p1) and pivots p2, . . . , pk.
Note that the wings between pi and pi+1 not always have the same symplec-
tic volume. An example is sketched in Figure 2 (c) and the flux through 〈p1〉
is the area of the shaded regions.

Remark 9. Overtwisted turnstiles correspond to mixed moves with primary-
secondary flips in the proof of Remark 3, k-generalized turnstiles correspond
to primary moves.

The following statement explains the absolute flux of a primary point in
terms of the related turnstile. Denote by cpq a curve which runs from p
through [p, q]u to q and then through [p, q]s back to p. The wing enclosed
by cp,q is called G(p, q).

12
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Figure 2: (a) True turnstile, (b) Overtwisted turnstile, (c) Generalized turn-
stile

Lemma 10 ([Ho2]). Let ϕ ∈ Symp(R2) or let ϕ ∈ Hamc(Z). Let p be a
primary point and pivot of a true turnstile with frame q and ϕ(q). Then we
have

F luxϕ(〈q〉) =
∣∣∣ ∫
cpq

α
∣∣∣ =

∣∣∣ ∫
G(p,q)

ω
∣∣∣ =

∣∣∣ ∫
G(p,ϕ(q))

ω
∣∣∣ =

∣∣∣ ∫
cpϕ(q)

α
∣∣∣

and in particular
F luxϕ(〈p〉) = F luxϕ(〈q〉).

For a k-generalized turnstile with frame p1 and ϕ(p1) and pivots p2, . . . , pk
holds

F luxϕ(〈p1〉) =

k
2∑
i=1

∣∣ A(〈p2i−1〉, 〈p2i〉)
∣∣= k

2∑
i=1

∣∣ A(〈p2i〉, 〈p2i+1〉)
∣∣ .

For overtwisted turnstiles with frame p and ϕ(p) and pivot q holds∣∣ A(〈p〉, 〈q〉)
∣∣ > F luxϕ(〈p〉).

There are also combinations of generalized and overtwisted turnstiles, but
we are mainly interested in a special case of generalized turnstiles. Consider
a true turnstile with frame p and ϕ(p) and pivot q. If we iterate ϕ n times
the two primary orbits 〈p〉 and 〈q〉 split into 2n classes 〈p0〉, . . . , 〈pn−1〉
and 〈q0〉, . . . , 〈qn−1〉. In particular, we have a 2n-generalized turnstile with
frame p0 and pn and pivots q0, p1, . . . , qn−1.

Corollary 11 ([Ho2]). For 0 ≤ i ≤ n−1 holds under the above assumptions

F luxϕn(〈pi〉) =
n−1∑
l=0

∣∣ A(〈pl〉, 〈ql+1〉)
∣∣= n−1∑

l=0

∣∣ A(〈ql〉, 〈pl〉)
∣∣

and in particular
F luxϕn(〈pi〉) = nF luxϕ(〈p〉).
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Thus homoclinic orbits forms a partial barrier for the transport of ϕ with
associated turnstile as only in- and outlet. Moreover, the flux grows linearly
in n if n is the number of iterations of ϕ.

Let 〈p〉 and 〈q〉 be in the same pair of intersecting branches. Assume w.l.o.g.
µ(〈p〉) = µ(〈q〉) + 1 and p ∈ ]q, ϕ(q)[s ∩ ]q, ϕ(q)[u. Then 〈p〉 and 〈q〉 give
rise to two distinct (families of) turnstiles, more precisely p is the pivot of a
turnstile with frame q and ϕ(q) and q is the pivot of a turnstile with frame
ϕ−1(p) and p.

Proposition 12 ([Ho2]). The (true or overtwisted) turnstile with pivot p
shows up in the boundary operator ∂ (and also D) via

∂〈p〉 = 〈q〉−〈q〉+
∑

〈q〉6=〈q̃〉∈H̃pr

µ(〈q̃〉)=µ(〈p〉)−1

m(〈p〉, 〈q̃〉)〈q̃〉 =
∑

〈q〉6=〈q̃〉∈H̃pr

µ(〈q̃〉)=µ(〈p〉)−1

m(〈p〉, 〈q̃〉)〈q̃〉.

Thus such turnstiles are annihilated by the boundary operator. IfM(p, q̃) = ∅
for all 〈q〉 6= 〈q̃〉 ∈ H̃pr the turnstile with pivot p lies in the kernel of the
boundary operator, i.e. the pivot is a cycle.

A monotone twist map on a cylinder or annulus with coordinates (s, t) ∈
R× S1 is a volume preserving map f with f(s, t) = (s̃, t̃) satisfying ∂t̃

∂s > 0
for all s and t. Mather [Ma] studies the (non)existence of invariant circles
for monotone twist maps using an action functional W and the calculus of
variations. He denoted the difference in action between an action maximizing
orbit and its associated minimax orbit by 4W . MacKay & Meiss & Percival
[MMP] showed the following relation between turnstiles and 4W :

Theorem 13 ([MMP]). Let f be a Hamiltonian diffeomorphism on the
cylinder which is in addition a monotone twist map. Then, for the peri-
odic, quasiperiodic and heteroclinic orbits of f , holds: Mather’s difference in
action 4W between a maximizing orbit and the associated minimax orbit
coincides with the area of one wing of the turnstile, i.e. the flux through the
associated curve.

Now we unite the notions of orientation preserving immersions, (relative)
symplectic action of homoclinic points, wings of turnstiles, flux and Mather’s
difference in action 4W .

Theorem 14 ([Ho2]). Let ϕ ∈ Hamc(Z) be an x-simple, monotone twist
map. Consider a true turnstile with frame p and ϕ(p) and pivot q and assume
w.l.o.g. µ(〈p〉) = µ(〈q〉) + 1. Then v ∈M(p, q) 6= ∅ and

A(〈p〉)−A(〈q〉) = A(〈p〉, 〈q〉) =

∫
v

ω = F luxϕ(〈p〉) = 4Wp,q.
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Therefore the flux and4W are meaningful quantities for the action filtration
of homoclinic Floer homology. Thus everything which is formulated in terms
of the symplectic action spectrum can be interpreted in terms of the flux
and4W . This means that the algebraic notion of homology has a dynamical
interpretation and measures dynamical quantities.

5 Table of homoclinic Floer homologies

Let us summarize the main properties of the homoclinic Floer homologies:

Primary FH Semi-pr. FH Cylinder FH Chaotic FH

Generator primary,
contractible

semi-primary,
contractible

‘primary’,
noncontr.

primary,
contractible

Growth
ϕ vs. ϕn

Filtered FH:
linear growth

examples of
linear growth

Filtered FH:
linear growth

‘subsequence’
k 7→Ĥ∗(x,(ϕ

n)k)

Transport turnstiles,
flux = action

turnstiles not
involved: cf.
Remark 15

turnstiles,
flux = action
= 4W

turnstiles not
involved: cf.
Remark 15

Number
theory

ζ-function

There are different reasons why turnstiles do not play the same role in semi-
primary and chaotic Floer homology as they do in primary and cylinder
Floer homology:

Remark 15. 1) Consider the example associated to Figure 1 in case
]p, q[s ∩ ]q, p−1[u 6= ∅. Then none of the pivots of the turnstile with frame
p and p−1 is a generator.

2) Chaotic Floer homology does not count immersions between primary
points if there is a certain fixed point in their ranges. Thus it may hap-
pen, that one (or maybe both) wings of a turnstile do not show up in the
boundary operator in contrast to Proposition 12.
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