
VERTICAL ALMOST TORIC SYSTEMS

SONJA HOHLOCH, SILVIA SABATINI, DANIELE SEPE,
AND MARGARET SYMINGTON

Abstract. This paper introduces vertical almost-toric systems,
a generalization of semi-toric systems (introduced by Vũ Ngo.c and
classified by Pelayo and Vũ Ngo.c), that provides the language to
develop surgeries on almost-toric systems in dimension 4. We prove
that vertical almost-toric systems are natural building blocks of
almost-toric systems. Moreover, we show that they enjoy many of
the properties that their semi-toric counterparts do.
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1. Introduction

A driving problem in Hamiltonian mechanics and symplectic geom-
etry is to classify integrable systems up to a suitable notion of equiv-
alence. An integrable system is a triple (M,ω,Φ), where (M,ω) is a
2n-dimensional symplectic manifold and Φ : (M,ω)→ Rn is a smooth
map whose components are in involution and functionally independent
almost everywhere on M . This paper introduces vertical almost-toric
systems, a category of integrable systems on 4-dimensional symplectic
manifolds that generalizes toric and semi-toric systems and lays the
foundation for studying almost-toric systems. A key feature of verti-
cal almost-toric systems is that they behave well under a process of
taking appropriate subsystems, a fact that facilitates development of
precise language to define, for vertical almost-toric systems, integrable
surgeries in the sense of Zung [51].

In general, classification of integrable systems becomes a tractable
problem only under assumptions that restrict the topology of fibers
of the system. Intuitively, the greatest challenge arises from non-
compactness of the group action. Accordingly, full classifications were
first established for toric systems in which the Rn action is replaced
by an Tn-action. Building upon the foundational results of Atiyah [1]
and Guillemin & Sternberg [14], Delzant [7] classified toric systems on
closed manifolds. More recently, Karshon & Lerman [23] have extended
Delzant’s classification to non-compact toric manifolds, relying upon
the local normal forms of Guillemin & Sternberg [15] and Marle [26].

Once one allows non-compactness of the group acting on the total
space, complexity of both the fibers and of the total space can be rea-
sonably controlled by restricting the singularities of the moment map.
Symington [40] and Vũ Ngo.c [46] have proposed a notion of almost-
toric systems on 4-dimensional symplectic manifolds that includes toric
systems but also allows for so-called focus-focus fibers, which can be
thought of as the Lagrangian analog of the nodal fibers that arise in
Lefschetz fibrations. The diffeomorphism types of closed manifolds
that support an almost-toric system has been determined (cf. Leung &
Symington [25]), and recently, almost-toric systems have proved to be
of independent interest in symplectic topology (cf. Vianna [41, 42, 43]).

While the classification problem of almost-toric systems has not been
settled, even in the compact case, an important subclass of almost-
toric systems has been completely understood: Pelayo & Vũ Ngo.c
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([34, 35]) have classified semi-toric systems, which were initially in-
troduced by Vũ Ngo.c in [46]. An integrable system (M,ω,Φ = (J,H))
is semi-toric if it is almost-toric and if J is a proper moment map
of an effective Hamiltonian S1-action. Semi-toric systems, whose to-
tal spaces may be non-compact, share many fundamental properties
with closed symplectic toric manifolds, like connectedness of the fibers
of the moment map, but their classification is significantly more in-
volved as the presence of focus-focus fibers introduces more data (see
Pelayo & Vũ Ngo.c [34]). While semi-toric systems appear naturally
both in symplectic topology and in (quantum) Hamiltonian mechanics
(cf. Eliashberg & Polterovich, Le Floch & Pelayo & Vũ Ngo.c, Pelayo
& Vũ Ngo.c [11, 24, 36]), the properness condition excludes some famil-
iar almost-toric integrable systems, such as the spherical pendulum (cf.
Duistermaat [9]). For this reason, Pelayo & Ratiu & Vũ Ngo.c ([32, 33])
introduce a family of almost-toric systems that share some of the main
properties of semi-toric systems, like connectedness of the fibers of the
moment map, while allowing enough freedom to include examples such
as the spherical pendulum. These systems are called generalized semi-
toric. In such an almost-toric system (M,ω,Φ = (J,H)) the moment
map Φ is proper and J is the moment map of an effective Hamiltonian
S1-action that satisfies some constraints on the sets of singular points
and values (see Definition 1.3 in Pelayo & Ratiu & Vũ Ngo.c [33]).

Vertical almost-toric systems, defined and studied in this paper, can
be viewed as an extension of generalized semi-toric systems to the non-
compact setting but were defined with different purposes in mind. For
instance, vertical almost-toric systems provide a category that can ac-
commodate non-compact systems that are convenient local models and
building blocks for almost-toric systems. The essential difference be-
tween vertical almost-toric systems and generalized semi-toric systems
is that the moment maps of the former are merely required to be proper
onto their image while the moment map of a generalized semi-toric sys-
tem must be proper. (The fibers of the moment maps of both types of
systems are connected; for vertical almost-toric systems this connect-
edness is imposed by definition, while for semi-toric and generalized
semi-toric systems it can be proven as a result of the other properties.)

The definition of a vertical almost-toric system is crafted so that ap-
propriately chosen subsystems are again vertical almost-toric. Specifi-
cally, given an open, connected subset U of the moment map image of
a vertical-almost toric system, if the intersection of U with any vertical
line is either empty or connected then restricting the moment map to
the preimage of U yields a vertical almost-toric system. In fact, such a
subsystem of a (generalized) semi-toric system is vertical almost-toric.
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In a forthcoming paper, [20], the process of taking such subsystems
is an essential ingredient in the definition of surgeries in the category
of vertical almost-toric systems. Those surgeries are going to be ap-
plied to the determination of which Hamiltonian S1-spaces underlie
compact semi-toric systems ([21], forthcoming), thus completing the
work started in Hohloch & Sabatini & Sepe [19]. The language of ver-
tical almost-toric systems also allows one to have a more conceptual
understanding of the local-to-global arguments in the classification of
semi-toric systems (cf. Pelayo & Vũ Ngo.c [34, 35]); this is also going
to be explored in a separate paper.

The main results of this paper are as follows:

(A) A connected component of a fiber of an almost-toric system admits
an open neighborhood that is isomorphic to a vertical almost-toric
system (cf. Proposition 4.9);

(B) Using terminology analogous to that for (generalized) semi-toric
systems (cf. Pelayo & Ratiu & Vũ Ngo.c [33]), vertical almost-
toric systems possess cartographic homeomorphisms (see Theorem
4.24). These are homeomorphisms of the moment map image
onto subsets of R2 that encode the induced Z-affine structures
(cf. Section 2.3). In particular, the monodromy introduced by
focus-focus fibers is encoded via vertical cuts.

(C) The space of all cartographic homeomorphisms of a given vertical
almost-toric system is described (cf. Theorem 4.36), generalizing
the analogous result for semi-toric system (cf. Vũ Ngo.c [46]). This
can be used to construct an invariant of the isomorphism class of
a vertical almost-toric system analogous to the semi-toric polygon
of Pelayo & Vũ Ngo.c [34, Definition 4.5].

(D) Given a vertical almost-toric system (M,ω,Φ = (J,H)) and a car-
tographic homeomorphism f : Φ(M)→ R2, the composition f ◦Φ
may lack the smoothness required of a moment map. We provide
a method for smoothing f ◦Φ to obtain a vertical almost-toric sys-
tem isomorphic to (M,ω,Φ = (J,H)) whose moment map image
equals f (Φ(M)) on the complement of arbitrarily small neighbor-
hoods of the cuts used to define f (cf. Theorem 4.48).

Result (A) establishes vertical almost-toric systems as building blocks
for almost-toric systems. While it is probably known to experts in the
area, we could not find a complete, self-contained proof of this fact
and decided to include it, along with proofs of basic topological facts
leading up to it (cf. Section 3.2).

Results (B) and (C) are not surprising in light of the work in Pelayo
& Ratiu & Vũ Ngo.c, Vũ Ngo.c [33, 46] and, in fact, their proofs are
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heavily influenced by that work. However, we provide explicit proofs
for several reasons:

• There is ambiguity in the literature with regards to the notion of
isomorphism in the category of semi-toric systems. It seems that, in
spite of what is stated in Pelayo & Vũ Ngo.c [34, 35], isomorphisms
of semi-toric systems must induce orientation-preserving diffeomor-
phisms on their moment map images in order for the semi-toric in-
variants in Pelayo & Vũ Ngo.c [34, 35] to be well-defined (cf. [37]).
The restriction to orientation-preserving homeomorphisms has been
made explicit in the definition of generalized semi-toric systems (cf.
Pelayo & Ratiu & Vũ Ngo.c [33, Definition 2.4]). Deeming this restric-
tion unnecessary, we allow orientation-reversing cartographic home-
omorphisms, and hence provide a proof that accommodates such
homeomorphisms.
• Our alternative proof of the existence of cartographic homeomor-

phisms in the case in which the defining cuts disconnect the moment
map image allows us to avoid the ‘homotopy argument’ of Pelayo &
Ratiu & Vũ Ngo.c [33, Step 5 of the proof of Theorem B].
• The description of the set of cartographic homeomorphisms of a ver-

tical almost-toric system is analogous to that of a semi-toric system.
However, the potential for infinitely many focus-focus points in a
vertical almost-toric system gives a richer behavior, as can be seen
by comparing Section 4.4 with Vũ Ngo.c [46, Section 4].

Result (D), which ensures the existence of η-cartographic systems in
the isomorphism class of a vertical almost-toric system, is tailored for
applications. In particular, it plays an important role in defining surg-
eries of vertical almost-toric systems ([20], forthcoming). Also, it allows
one to make precise the notion that the image of a cartographic home-
omorphism is a limit of moment map images (cf. Proposition 4.52).

Structure of the paper. Section 2 defines and explains notions that
we use throughout the paper, while also establishing notation. While
the section should serve as a self-contained primer to guide readers
unfamiliar with the subject through this paper (and the forthcoming
[20]), it may be of interest to experts in the field as well, for a few
ideas which do not appear in many other places. For instance, we
introduce the notion of a faithful integrable system, which, intuitively
speaking, is one whose moment map image reflects the topology of
the partition of the total space into the connected components of the
fibers of the moment map (cf. Section 2.2). Moreover, in Section 2.7,
we elaborate on the notion of cartographic homeomorphisms that is
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introduced in Pelayo & Ratiu & Vũ Ngo.c [33] for generalized semi-
toric systems and establish some general properties for these objects.
Note that the section should not be taken as an exhaustive reference
for either topological or symplectic aspects of integrable systems.

In Section 3, almost-toric systems are defined and their basic prop-
erties are explored. In particular, the neighborhood of a connected
component of a fiber is described (cf. Section 3.2) and, in prepara-
tion for the next section on vertical almost-toric systems, we describe
properties of systems that are both faithful and almost-toric (Section
3.3).

Section 4 is the heart of the paper: It contains the definition of
vertical almost-toric systems as well as all the main results described
above. Section 4.1 contains main result (A) as Proposition 4.9, charac-
terizations of the moment map image of vertical almost-toric systems
(Corollary 4.5), and a useful criterion to determine which saturated
subsystems of vertical almost-toric systems are vertical almost-toric
(Proposition 4.7). Section 4.2 explores the consequences of the pres-
ence of the S1-action. The existence of cartographic homeomorphisms
(Theorem 4.24) is proved in Section 4.3, which also establishes some
useful topological properties of the complements of the cuts needed to
define cartographic homeomorphisms. Section 4.4 describes the set of
cartographic homeomorphisms associated to a given vertical almost-
toric system, paying particular attention to the subtleties that arise
from allowing infinitely many focus-focus points (see Theorem 4.36).
Finally, Section 4.5 proves that, in some sense, cartographic homeo-
morphisms can be made smooth everywhere by modifying them on
arbitrarily small neighborhoods of the defining cuts. This is the con-
tent of Theorem 4.48, which can be used to establish the existence of
η-cartographic vertical almost-toric systems in any given isomorphism
class (Theorem 4.51).

Notation and conventions.

Topological conventions.

• A subset of a topological space is endowed with the subspace topology
unless otherwise stated.
• A pair of topological spaces (Y, Z) consists of a topological space Y

together with a subset Z ⊂ Y endowed with the relative topology. A
topological embedding of pairs of topological spaces (Y1, Z1), (Y2, Z2)
is a topological embedding χ : Y1 → Y2 that restricts to a topolog-
ical embedding of Z1 into Z2. A homeomorphism between pairs of
topological spaces is a topological embedding onto the target.
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• A map f : X → Y between topological spaces X and Y is proper
onto its image if the map f : X → f(X) is proper.

Smoothness conventions.

• Following Joyce [22], consider the subspace [0,+∞[ n ⊂ Rn and let M
be a topological space. An n-dimensional smooth atlas with corners
on M is a set A := {(Ui, χi)}, where
– the set {Ui} is an open cover of M ;
– for each i, there is an open set Vi ⊂ [0,+∞[ n such that the map
χi : Ui → Vi is a homeomorphism; and

– for all i, j with Ui ∩ Uj 6= ∅, the map χj ◦ χ−1
i : χi(Ui ∩ Uj) →

χj(Ui ∩ Uj) is a diffeomorphism.
A smooth manifold with corners of dimension n is a Hausdorff, para-
compact, second countable topological space together with an n-
dimensional smooth atlas with corners. A smooth structure with cor-
ners on a topological space is an equivalence class of smooth atlases
with corners, where two atlases are deemed equivalent if their union
is again a smooth atlas with corners of a given dimension.
• A smooth atlas with corners is Z-affine (or integral affine) if the

transition maps χj ◦ χ−1
i : χi(Ui ∩ Uj)→ χj(Ui ∩ Uj) of the atlas are

of the form

x 7→ Ax+ b,

for some (A, b) ∈ AGL(n;Z) = GL(n;Z) n Rn, where n is the di-
mension of the atlas. A Z-affine manifold with corners of dimension
n is a Hausdorff, paracompact, second countable topological space
together with an n-dimensional Z-affine atlas with corners. And a Z-
affine structure with corners on a topological space is an equivalence
class of Z-affine atlases with corners, where two atlases are deemed
equivalent if their union is again a Z-affine atlas with corners of a
given dimension.

Smooth atlases and Z-affine atlases, without corners, (and the cor-
responding manifold structures) are defined as above, with the stip-
ulation that the images of the coordinate charts are subsets of Rn.
Also, note that, because the transition maps of are smooth, a Z-
affine atlas (with or without corners) is also a smooth atlas, and
hence defines a unique smooth structure.
• Let A ⊂ Rn be a subset. A map f : A→ Rm is said to be smooth if

for all x ∈ A there exists an open neighborhood Ux ⊂ Rn of x and a
smooth map fx : Ux → Rm that is a local extension of f ;
• A map f : A ⊂ Rn → Rm is a smooth embedding if it is a diffeomor-

phism onto its image.
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• Manifolds are assumed to be without boundary or corners unless
otherwise stated.

Boundary conventions. Two types of boundaries of subsets X ⊂ Rn

are dealt with in this paper whenever X is a smooth manifold with
corners embedded in Rn. The topological boundary, the closure of
X ⊂ Rn minus its interior, is denoted ∂X. Meanwhile, its boundary
as a manifold with corners, X ∩ ∂X, is denoted ∂∞X. For instance if
X = {(x, y) | |x| < 1 and |y| ≤ 1}, then

∂X = {(x, y) | |x| = 1, |y| ≤ 1 or |y| = 1, |x| ≤ 1}

and

∂∞X = {(x, y) | |y| = 1, |x| < 1}.

Group conventions. Throughout the paper, the identification S1 ∼=
R/2πZ is used tacitly.

Acknowledgments. S.H. was partially supported by the Research
Fund of the University of Antwerp and by SwissMAP. D.S. was par-
tially supported by the University of Cologne, SwissMAP, the NWO
Veni grant 639.031.345 and by CNPq. M.S. was partially supported
by Mercer University, the Institute of Pure and Applied Mathematics
(IMPA) in Rio de Janeiro, the University of Cologne, and the Swiss
Federal Institute of Technology (ETH) in Zurich.

2. Primer on integrable systems

This section introduces the basic notions regarding integrable sys-
tems that are used throughout the paper. Section 2.1 presents the
category of integrable systems and defines the coarsest topological in-
variant: the leaf space of an integrable system (see Definition 2.4).
Systems whose leaf spaces can be identified with the moment map im-
ages play an important role in this paper and are studied in Section
2.2; we call such systems faithful. In Sections 2.3 – 2.6, we endow
large subsets of the leaf space of an integrable system with an Z-affine
structure. First, following Duistermaat [9], we show how the part of
the leaf space corresponding to regular leaves inherits such a structure
in Section 2.3. Second, we identify a class of systems that are isomor-
phic to systems equipped with Hamiltonian torus actions of maximal
dimension: these are called weakly toric, are related to symplectic toric
manifolds and are studied in Section 2.5. Third, Section 2.6 extends
the Z-affine structure on the regular part of the leaf space to include
singular leaves that admit a neighborhood supporting a Hamiltonian
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torus action of maximal dimension. In Section 2.4, we recall a funda-
mental property that Z-affine structures enjoy, namely that they can
be developed. Finally, following Pelayo & Ratiu & Vũ Ngo.c [33], we in-
troduce the notion of cartographic homeomorphisms, which, intuitively,
can be thought of a way to encode the above Z-affine structure in a
way that is compatible with singular orbits of the system.

2.1. Completely integrable Hamiltonian systems. We begin by
introducing the category of integrable systems.

Definition 2.1. For any n ≥ 1, the category of completely integrable
Hamiltonian systems with n degrees of freedom, denoted by IS(n), has
objects and isomorphisms as follows:

• Objects: completely integrable Hamiltonian systems (M,ω,Φ) where
(M,ω) is a 2n-dimensional symplectic manifold and

Φ := (H1, . . . , Hn) : (M,ω)→ Rn

a smooth map satisfying
• {Hi, Hj} = 0 for all i, j = 1, . . . , n, where {·, ·} is the Poisson

bracket induced by ω;
• Φ is a submersion almost everywhere.
Sometimes, for brevity, Φ is referred to as a (completely) integrable
(Hamiltonian) system. Its component Hi is called the ith integral (of
motion).
• Morphisms: isomorphisms of integrable systems (Ψ, ψ), where, for
i = 1, 2, (Mi, ωi,Φi) is a completely integrable Hamiltonian system,
Ψ : (M1, ω1) → (M2, ω2) is a symplectomorphism, ψ : Φ1(M1) →
Φ2(M2) is a diffeomorphism, and the following diagram commutes:

(M1, ω1)
Ψ //

Φ1

��

(M2, ω2)

Φ2

��
Φ1(M1)

ψ
// Φ2(M2)

Given Φ = (H1, . . . , Hn) : (M,ω)→ Rn denote by Xi, for 1 ≤ i ≤ n,
the Hamiltonian vector field associated to Hi, defined implicitly by the
equation ω(Xi, ·) = dHi. If the flows of the vector fields X1, . . . , Xn

are complete, then there is a Hamiltonian Rn-action on (M,ω), one of
whose moment maps is precisely Φ.

Throughout this paper, integrable systems have compact fibers un-
less otherwise stated, so the above completeness assumption is satisfied
and Φ is a moment map for a Hamiltonian Rn-action (upon identifying
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the Lie algebra of Rn with Rn). For this reason, it is referred to as the
moment map of the system.

Many of the integrable systems considered in this paper arise from
restricting a given system to a subset.

Definition 2.2. A subsystem of an integrable system (M,ω,Φ) is an
integrable system (V, ω|V ,Φ|V ) where V is an open subset of M . If V =
Φ−1(U) for some open subset U of Φ(M), the subsystem of (M,ω,Φ)
relative to V is also referred to as the subsystem of (M,ω,Φ) relative
to U .

Remark 2.3 Subsystems of integrable systems with compact fibers
need not have compact fibers; moreover, subsystems of integrable sys-
tems supporting a Hamiltonian Rn-action need not support a Hamil-
tonian Rn-action.

The most accessible feature of an integrable system is the image of Φ,
but, for arbitrary systems, there is no way to extract useful information
from that image. However, the leaf space of the system reliably reflects
some of the structure.

Definition 2.4. Given an integrable system (M,ω,Φ),

• a leaf is a connected component of a fiber of Φ;
• its leaf space is the topological space L := M/ ∼, where p ∼ q if p

and q belong to the same leaf, endowed with the quotient topology;
• a subsystem (V, ω|V ,Φ|V ) of (M,ω,Φ) is saturated if any leaf of

(M,ω,Φ) that intersects V is contained in V .

Remark 2.5 Given an integrable system (M,ω,Φ) and an open subset
U ⊂ Φ(M), the leaf space of the subsystem relative to U is naturally
included in the leaf space of (M,ω,Φ).

Given an integrable system (M,ω,Φ) with leaf space L, the moment
map Φ factors through L, giving rise to the quotient map q : M → L
and inducing a continuous map π : L → Φ(M) that makes the following
diagram commute:

(M,ω)

q

||

Φ

((
L π // B := Φ(M) ⊂ Rn.

Remark 2.6 Isomorphic integrable systems possess homeomorphic
leaf spaces.
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Remark 2.7 The sets of connected components of the leaf space of an
integrable system and of connected components of its total space are
in bijection.

A natural way to enhance the topological data encoded in the leaf
space of an integrable system is to identify the singular leaves of the
system.

Definition 2.8. Let (M,ω,Φ) be an integrable system with n degrees
of freedom with leaf space L.

• A point p ∈M is singular if rkDpΦ < n. Otherwise it is regular.
• A leaf of Φ is singular if it contains a singular point. Otherwise it is

regular.
• The subset Lsing ⊂ L consisting of the image of singular leaves of Φ

is said to be the singular part of L, while its complement Lreg is said
to be the regular part.

Definition 2.9. The pair (L,Lreg) associated to an integrable system
(M,ω,Φ) is called the pair of leaf and regular leaf spaces of the system.

The above association descends to isomorphism classes of systems
and behaves well with respect to saturated subsystems:

Remark 2.10.

• Isomorphic integrable systems possess homeomorphic pairs of leaf
and regular leaf spaces.
• The pair of leaf and regular leaf spaces of saturated subsystems of

(M,ω,Φ) naturally embed in the pair of leaf and regular leaf spaces
of (M,ω,Φ).

2.2. Faithful integrable systems. In light of Remark 2.6, it is help-
ful to distinguish those cases in which a moment map image at least
carries the topological information of the leaf space.

Definition 2.11. An integrable system (M,ω,Φ) with leaf space L
is said to be faithful if the induced map π : L → B = Φ(M) is a
homeomorphism. Here, B ⊂ Rn is equipped with the subset topology.

Faithful integrable systems form a full subcategory of the category
of all integrable systems.

Remark 2.12. If an integrable system (M,ω,Φ) is faithful, then so is
every integrable system isomorphic to it, and every saturated subsys-
tem. In particular, by Remark 2.7, if U ⊂ Φ(M) is open, the set of
connected components of U is in bijective correspondence with the set
of connected components of the total space of the subsystem relative
to U .



12 S. HOHLOCH, S. SABATINI, D. SEPE, AND M. SYMINGTON

Remark 2.13. Because the leaf space of a faithful integrable system is
homeomorphic to a subset of Rn, such a leaf space is second countable
and Hausdorff.

Example 2.14 illustrates two ways in which a failure of faithfulness
can disrupt the relationship between the moment map image and the
topology of the total space – first if the fibers of the moment map need
not be connected, and second if the moment map need not be proper
onto its image.

Example 2.14 Let A ⊂ R2 be the closed annulus centered at the ori-
gin with inner and outer radii 1 and e. Let (M,ω,Φ) be the toric system
(cf. Definition 2.26) that underlies the compact symplectic toric mani-
fold whose moment map image is the rectangle R := [0, 1]×[0, 2π] ⊂ R2

and define gk : R → A ⊂ R2 by gk(x, y) = (ex cos(ky), ex sin(ky)) with
k ∈ N.

1) For any k ∈ N, the integrable system (M,ω, gk ◦Φ) has fibers that
are the disjoint union of
• k tori or
• 2 circles and k−1 tori or
• 2 points and k−1 circles.

2) Let (M ′, ω′,Φ′) be the subsystem of (M,ω,Φ) relative to the subset
[0, 1]× [0, 2π[. Then the integrable system (M ′, ω′, g1 ◦Φ′) has the
same (connected) fibers as (M ′, ω′,Φ′), but unlike (M ′, ω′,Φ′) – or
any toric system defined on a compact manifold – has circle orbits
in the preimage of some points on the interior of the moment map
image A, cf. Figure 2.1. Notice however that, unlike Φ′, the map
g1 ◦ Φ′ is not proper onto its image: the preimage of the compact
set A is not compact.

Figure 2.1. A circle as fiber over the interior of the
moment map image in the segment {0}×]0, 1[.
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If the fibers of Φ are compact, necessary and sufficient conditions for
faithfulness can be phrased without reference to the leaf space.

Lemma 2.15. An integrable system (M,ω,Φ) with compact fibers is
faithful if and only if Φ has connected fibers and is proper onto its
image.

Proof. Let L and B be the leaf space and moment map image, re-
spectively, of (M,ω,Φ). Let q : M → L be the quotient map and let
π : L → B be the induced map. Suppose first that Φ has connected
fibers and is proper onto its image. By the definition of L, the con-
tinuous map π is a bijection because the fibers of Φ are connected.
It remains to show that π is a closed map. In general, a continuous
proper map to a metrizable space is closed (cf. Palais [31]). To see that
π is proper, consider an arbitrary compact set K ⊂ B. The preimage
Φ−1(K) is compact because Φ is proper onto its image. Furthermore,
π−1(K) = q(Φ−1(K)) because q is surjective, so π−1(K) is compact
because q is continuous and Φ−1(K) is compact. Therefore π is proper.
Then, since B ⊂ R2 is metrizable, the map π is also closed. Conse-
quently, π is a homeomorphism.

Conversely, suppose that π is a homeomorphism; in particular, it is
a bijection, which implies that Φ has connected fibers. It remains to
prove that Φ is proper onto its image; since π is a homeomorphism, it
suffices to check that q is proper onto its image. Note that, since π is a
homeomorphism, L is second countable, locally compact and Hausdorff.
Properness of q can be checked at every point of L, using the pointwise
version of properness of Duistermaat & Kolk [10, Definition 2.3.2].
Seeing as L satisfies the above topological conditions, the criterion of
del Hoyo [6, Proposition 2.1.3] can be used: since the fibers of Φ and
hence of q are compact, it suffices to show that any open neighborhood
of a fiber of q contains a q-saturated open neighborhood. To this end,
observe that M is locally compact, the fibers of q are Hausdorff, and
q has compact and connected fibers. Therefore the result of Mrčun
[30, Theorem 3.3] can be applied: any open neighborhood of any given
fiber of q contains an open neighborhood that is the union of compact
connected components of fibers of q. Connectedness of the fibers of q
implies that this neighborhood is q-saturated. �

2.3. Z-affine structure on the regular part of the leaf space.
When the fibers of an integrable system are compact, the regular leaf
space inherits a geometric structure. This is a consequence of the
Liouville-Arnol’d theorem, which provides a local normal form for a
neighborhood of a regular leaf (cf. Cushman & Bates [5, Appendix
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D], Duistermaat [9], Guillemin & Sternberg [16, Chapter 44], Sepe &
Vũ Ngo.c [38] for various versions of a proof). Let Ω be the canon-
ical symplectic form on T∗Tn ∼= Tn × Rn for which the projection
pr2 : (T∗Tn,Ω)→ Rn defines an integrable system.

Theorem 2.16 (Liouville-Arnol’d). Let (M,ω,Φ) be an integrable sys-
tem with n degrees of freedom and let F be a regular, compact leaf. Then
there exist open neighborhoods V ⊂ (M,ω) of F and W ⊂ (T∗Tn,Ω)
of Tn×{0}, the latter saturated w.r.t. pr2, such that the subsystems of
(M,ω,Φ) and of (T∗Tn,Ω, pr2), relative to V and W , respectively, are
isomorphic via a pair (Ψ, ψ) where ψ (Φ(F )) = 0.

Remark 2.17 Identify the Lie algebra of Tn with Rn. Using the
notation of Theorem 2.16, the composition ψ ◦ Φ|V is the moment
map of a free, effective Hamiltonian Tn-action, i.e. the Hamilton-
ian vector fields of its components have 2π-periodic flows. Moreover,
if Φ = (H1, . . . , Hn) with H1 being the moment map of an effective
Hamiltonian S1-action, then the diffeomorphism ψ can be taken to be
of the form

ψ(x1, . . . , xn) =
(
ψ(1), . . . , ψ(n)

)
(x1, . . . , xn)

=
(
x1 + a, ψ(2)(x1, . . . , xn), . . . , ψ(n)(x1, . . . , xn)

)
,

(2.1)

where a ∈ R is a constant.

Corollary 2.18. Let (M,ω,Φ) be an integrable system with compact
fibers. The regular leaf space Lreg ⊂ L is open and it inherits a structure
of smooth, Hausdorff manifold uniquely defined by requiring that the
restriction of the quotient map q|q−1(Lreg) be a submersion onto Lreg. In
particular, the restriction π|Lreg is smooth.

Proof. Moerdijk and Mrčun proved, in [29, Section 2.4], that the leaf
space of a submersion whose fibers are compact can be endowed with
the structure of a smooth manifold uniquely defined by demanding that
the quotient map be a submersion. The version of the Liouville-Arnol’d
theorem given in Theorem 2.16 implies that, for any point p ∈ Lreg,
the corresponding regular leaf Fp has an open neighborhood that is
saturated by regular leaves. Therefore, Φ|q−1(Lreg) is a submersion whose
leaf space is naturally isomorphic to Lreg, an open subset of L. Since
the fibers of Φ are compact by hypothesis, the result of Moerdijk and
Mrčun implies the desired result. �

A symplectomorphism ϕ of (Tn×Rn,Ω) that preserves the fibers of
pr2 must have the form ϕ = (ϕ(1), ϕ(2)) where ϕ(1)(t, x) = (A−1)T t +
f(x) and ϕ(2)(t, x) = Ax + c for some A ∈ GL(n,Z), some c ∈ Rn,



VERTICAL ALMOST TORIC SYSTEMS 15

and a smooth function f : Rn → Rn such that the matrix A−1 ∂f
∂x

is
symmetric (cf. Symington [40, Lemma 2.5].)

This implies that maps of the form ψ ◦ π, where ψ is as in Theorem
2.16, can be used to define a Z-affine atlas on Lreg.

Definition 2.19. For any n ≥ 1, the category of n-dimensional Z-
affine manifolds, denoted by AffZ(n), has objects and morphisms as
follows:

• Objects: Z-affine manifolds (with corners), as defined in Section 1.
• Morphisms: Z-affine maps, i.e. maps f : (N1,A1) → (N2,A2) that

are local diffeomorphisms such that f ∗A2 and A1 define equivalent
Z-affine atlases (cf. Section 1).

If (N2,A2) is a Z-affine manifold and f : N1 → N2 is locally a
homeomorphism then there exists a unique (up to isomorphism) Z-
affine structure A1 on N1 that makes f into a Z-affine morphism. The
structure A1 is henceforth referred to as being induced by f .

Example 2.20 For any n ≥ 1, denote by A0 both the Z-affine struc-
ture on Rn and the Z-affine structure with corners on [0,∞[ n obtained
by declaring the standard coordinates x1, . . . , xn to be Z-affine. Then
the standard Z-affine structure on an open subset of Rn is the Z-affine
structure induced by inclusion of the subset in (Rn,A0). Likewise, an
open subset of the subspace [0,∞[ n also inherits the standard Z-affine
structure from inclusion in ([0,+∞[n,A0).

For Z-affine manifolds, it makes sense to consider (the sheaf of) Z-
affine functions, i.e. (locally defined) smooth functions that, in local
Z-affine coordinates (x1, . . . , xn), are given by

n∑
i=1

kixi + c,

where ki ∈ Z and c ∈ R. The local normal form provided by the
Liouville-Arnol’d Theorem (Theorem 2.16) implies that the regular leaf
space of an integrable system with compact fibers can be characterized,
as a Z-affine manifold, by the sheaf of functions that generate 2π-
periodic flows tangent to the fibers of the quotient map.

Corollary 2.21. Let (M,ω,Φ) be an integrable system with compact
fibers. Then the subset Lreg ⊂ L inherits a Z-affine structure Areg,
uniquely defined by the property that locally defined Z-affine functions
from (Lreg,ALreg) to (R,A0) correspond, by taking the pull-back along
the restriction to q−1 (Lreg) of the quotient map q : M → L, to functions
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on q−1 (Lreg) ⊂ M whose Hamiltonian vector fields are tangent to the
fibers of q and have 2π-periodic flows.

Corollary 2.22. For each n ≥ 1, there is a functor IS(n)→ AffZ(n)
that, on objects, is precisely the map (M,ω,Φ) 7→ (Lreg,Areg) given by
Corollary 2.21.

Proof. The above functor is completely determined by the following
property, which can be checked directly: an isomorphism of integrable
systems induces a Z-affine (iso)morphism between the associated Z-
affine manifolds. �

Furthermore, the correspondence between integrable systems and Z-
affine manifolds given by Corollary 2.21 behaves well under restriction
to saturated subsystems.

Corollary 2.23. Given an integrable system (M,ω,Φ), the natural
inclusion of the leaf space of a saturated subsystem into the leaf space of
(M,ω,Φ) corresponds to a Z-affine embedding of one Z-affine manifold
into another.

Finally, the above discussion allows further refinement of the set
of invariants that can be associated to an integrable system. Given
(M,ω,Φ), associate the pair (L, (Lreg,Areg)) to it, where (L,Lreg) is
the pair of leaf and regular leaf spaces of (M,ω,Φ) and Areg is the
Z-affine structure given by Corollary 2.21. This association descends
to isomorphism classes of systems. In this case, isomorphisms of pairs
are homeomorphisms of the underlying topological pairs that restrict
to Z-affine isomorphisms on the Z-affine subspace.

Remark 2.24 For faithful integrable systems (M,ω,Φ), the leaf space
L can be identified topologically with the moment map image B =
Φ(M). Under this correspondence, Lreg is identified with the subset
of regular values Breg ⊂ B. By Corollary 2.21, Breg inherits a Z-affine
structure denoted by Areg which, in general, is not isomorphic to the
standard one.

2.4. Developing maps. Given an n-dimensional Z-affine manifold
(with corners) (N,A), let Ñ denote its universal cover. The universal
covering map q : Ñ → N induces a Z-affine structure Ã on Ñ , mak-
ing q : (Ñ, Ã) → (N,A) into a Z-affine morphism. Fix a basepoint
x0 ∈ N , a point x̃0 ∈ Ñ with q(x̃0) = x0, and a Z-affine coordinate
chart φ0 : U0 → Rn defined near x0. Identify Ñ with the space of
paths starting at x0, up to homotopy relative to endpoints. Then there
is a Z-affine map dev : (Ñ, Ã) → (Rn,A0), uniquely determined by
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the property that, near x̃0, it equals the restriction of φ0 to a suitable
neighborhood of x0, and a representation a : π1(N ; x0) → AGL(n;Z),
called the affine holonomy of (N,A), which is intertwined with dev as
follows: for all γ ∈ π1(N ; x0), the following diagram commutes

(Ñ, Ã)
dev //

·γ
��

(Rn,A0)

(Ñ, Ã)
dev
// (Rn,A0),

a(γ)

OO

where ·γ denotes the Z-affine isomorphism of (Ñ, Ã) induced by the
natural action of π1(N ; x0) on Ñ .

The map dev : Ñ → Rn is called the developing map of (N,A)
(relative to the choices (x0, x̃0, φ0)), cf. for details Goldman & Hirsch [13]
and references therein. Note that, using the fundamental groupoid of
N , the information of a developing map can be packaged and conveyed
independent of choices (cf. Crainic & Fernandes & Mart́ınez-Torres [4]).

Remark 2.25

• If dev, dev′ : Ñ → Rn are developing maps for (N,A) constructed us-
ing different choices then there exists a unique element h ∈ AGL(n;Z)
such that dev′ = h ◦ dev.
• If (N,A) is a Z-affine manifold with corners, then the image of any

codimension-k face of Ñ (0 < k ≤ n) under a developing map is
the intersection of k linear hyperplanes of Rn whose normals can be
chosen to span a unimodular sublattice of Zn, i.e. this span is a
direct summand of Zn.
• In general, developing maps need not be covering maps and their

images can be rather complicated (cf. Sullivan & Thurston [39] for
pathological examples).

2.5. Toric and Delzant systems. This section describes the connec-
tion between integrable toric actions and integrable systems.

Definition 2.26. For any n ≥ 1, the category of symplectic toric mani-
folds of dimension 2n, denoted by TM(2n), has objects and morphisms
as follows:

• Objects: symplectic toric manifolds, i.e. 2n-dimensional symplectic
manifolds (M,ω) endowed with an effective Hamiltonian Tn-action
with moment map µ : (M,ω) → t∗, where t∗ denotes the dual of
the Lie algebra of Tn. A symplectic toric manifold is henceforth
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denoted by the triple (M,ω, µ) and, for brevity, referred to as a toric
manifold.
• Morphisms: isomorphisms of symplectic toric manifolds, i.e. given

(Mi, ωi, µi) for i = 1, 2, a symplectomorphism Ψ : (M1, ω1)→ (M2, ω2)
and an element ξ ∈ t∗ making the following diagram commute

(M1, ω1)

µ1

��

Ψ // (M2, ω2)

µ2

��
t∗

+ξ
// t∗,

where +ξ : t∗ → t∗ denotes translation by ξ.

Henceforth, for each n ≥ 1, fix an isomorphism t∗ ∼= Rn so that the
standard lattice in t∗ (dual to ker (exp : t→ Tn)) is mapped to Zn.

Note that the individual components of the moment map µ : (M,ω)→
Rn Poisson commute and µ is a submersion almost everywhere, due to
the Marle-Guillemin-Sternberg local normal form for Hamiltonian ac-
tions of compact Lie groups (cf. Guillemin & Sternberg, Marle [15, 26]).
Therefore, taking Φ = µ, call (M,ω,Φ) the integrable system un-
derlying (M,ω, µ). Because isomorphisms of symplectic toric mani-
folds induce isomorphisms of underlying integrable systems, for each
n ≥ 1, the function from TM(2n) to IS(n) that maps a toric man-
ifold to its underlying integrable system defines a ‘forgetful functor’
F : TM(2n)→ IS(n).

It is useful to identify the integrable systems that underlie symplectic
toric manifolds and systems that are isomorphic to such.

Definition 2.27. An integrable system (M,ω,Φ) is toric if there ex-
ists a toric manifold (M,ω, µ) such that (M,ω,Φ) = F(M,ω, µ). An
integrable system is weakly toric if it is isomorphic to a toric one.

Example 2.28. Let (M,ω,Φ) be an integrable system with compact
fibers and q : M → L the quotient map to its leaf space. A Z-affine
coordinate chart on Lreg ⊂ L yields, pre-composing with the quotient
map, the moment map of a locally defined effective (but not unique)
Hamiltonian Tn-action (cf. Corollary 2.21), and hence a toric system
on the preimage by q of the domain of the coordinate chart.

Remark 2.29 The image of F is a subcategory of IS(n), but it is
not full. For instance, if h ∈ AGL(n;Z) is an element different from
the identity, the symplectic toric manifolds (M,ω,Φ) and (M,ω, h◦Φ)
are not isomorphic, but the underlying integrable systems are. In fact,
the integral affine group AGL(n;Z) completely captures the failure of
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the functor to be full: Suppose that (M1, ω1,Φ1) and (M2, ω2,Φ2) are
isomorphic toric systems with isomorphism denoted by (Ψ, ψ). Then
ψ : Φ1(M1) → Φ2(M2) is given, on each connected component of
Φ1(M1), by the restriction of an element in AGL(n;Z).

The classification by Delzant [7] of compact symplectic toric mani-
folds (M,ω, µ) is well-known. In particular, the manifold M , the sym-
plectic form ω and the moment map µ up to isomorphism are deter-
mined by the image of the moment map, µ(M). Two properties of
a compact symplectic toric manifold (M,ω, µ) that are important for
the classification are that µ has connected fibers and that µ(M) is a
convex polytope. These properties follow from work of Atiyah [1] and
Guillemin & Sternberg [14] and hold for the more general family of
effective Hamiltonian torus actions on compact symplectic manifolds.

If the underlying symplectic manifold is not compact, neither of the
above properties need hold (cf. Karshon & Lerman [23]). Nevertheless,
Karshon & Lerman [23] achieve a classification of these objects. Among
others, they use the following result:

Orbits are tori that have a neighborhood that can be put in normal
form (cf. Guillemin & Sternberg [15], Marle [26]): For each orbit O of
dimension k, there exist

• open neighborhoods V ⊂ M of O and W ⊂ T∗Tk × R2(n−k) ∼= Tk ×
R2n−k of Tk × {0};
• a symplectomorphism Ψ : (V, ω) → (W,ωcan ⊕ ω0) sending O to
Tk × {0};
• an element A ∈ GL(n− k;Z);
• a translation −µ(O) : µ(U)→ Rn

making the following diagram commute

(V, ω)
Ψ //

µ

��

(W,ωcan ⊕ ω0)

pr2⊕A◦q
��

µ(U)
−µ(O)

// Rk × Rn−k,

where

• ωcan is the canonical symplectic form on T ∗Tk ∼= Tk × Rk;
• pr2 : Tk × Rk → Rk is projection onto the second factor;

• ω0 =
∑n−k

i=1 dxi∧dyi with respect to standard symplectic coordinates
on R2(n−k);

• q =
(
x21+y21

2
, . . . ,

x2n−k+y2n−k

2

)
.

Observe that W is saturated by the fibers of pr2 ⊕ A ◦ q.
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The existence of these local normal forms implies that even singu-
lar orbits of the action make up whole connected components of the
fibers of the moment map: this sets toric systems apart from general
integrable systems.

In analogy with Corollary 2.21, the above local normal forms imply
the following:

Remark 2.30 Let (M,ω, µ) be a symplectic toric manifold with as-
sociated toric system (M,ω,Φ). Then the above local normal forms
imply the following.

1) The orbit space M/Tn of (M,ω, µ) is a Z-affine manifold with cor-
ners uniquely characterized as in Corollary 2.21.

2) M/Tn is canonically homeomorphic to the leaf space L of (M,ω,Φ).
3) The image under π of a codimension-k face of L, where 0 < k ≤ n,

is the intersection of k hyperplanes of Rn whose normals can be
chosen to span a unimodular sublattice of Zn (cf. Remark 2.25).

4) With the above identification, the Z-affine structure on L, denoted
by AL, extends Areg, i.e. the inclusion (Lreg,Areg) ↪→ (L,AL) is a
Z-affine embedding.

5) The regular leaf space satisfies Lreg = Lr ∂∞L.

Note that the developing map dev : L̃ → Rn for (L,AL) makes the
following diagram commute

L̃
q

��

dev

  
L π

// Rn,

where q : L̃ → L is the universal covering map from Karshon & Lerman
[23, Proposition 1.1, Remarks 1.4 and 1.5] and π the so-called orbital
moment map of (M,ω, µ) therein.

The orbital moment map is an essential invariant of symplectic toric
manifolds; this is the content of the following result stated below with-
out proof.

Proposition 2.31. Two toric manifolds are isomorphic only if their
orbit/leaf spaces are homeomorphic and have, once the above homeo-
morphism is taken into consideration, orbital moment maps that are
equal up to translation.

The remaining ingredients in the classification up to isomorphism are
topological invariants depending on H2(L;Z); for a precise statement



VERTICAL ALMOST TORIC SYSTEMS 21

see Karshon & Lerman [23, Theorem 1.3]. Motivated by the classifica-
tion theorem of Karshon & Lerman [23, Theorem 1.3], we introduce a
class of toric systems whose corresponding symplectic toric manifolds
are determined up to isomorphism by their moment map images.

Definition 2.32. A toric system (M,ω,Φ) is said to be Delzant if it
is faithful and Φ(M) is contractible.

Lemma 2.33. The total space of a Delzant system is connected.

Proof. This follows from the faithfulness of the moment map, connect-
edness of the moment map image, and the equivalence of the cardinality
of the set of components of the leaf space and of the total space of an
integrable system (Remark 2.7). �

Proposition 2.34. Two Delzant systems (Mi, ωi,Φi), i = 1, 2, are
isomorphic if and only if there is an element h ∈ AGL(n;Z) such that
Φ2(M2) = h ◦ Φ1(M1). Furthermore, the two Delzant systems underlie
isomorphic toric manifolds if and only if Φ1(M1) and Φ2(M2) agree up
to translation.

Proof. Because (Mi, ωi,Φi), i = 1, 2, are toric systems, there exist sym-
plectic toric manifolds (Mi, ωi, µi) such that µi = Φi, i = 1, 2. Under
that equivalence, faithfulness of the moment maps Φi corresponds to
the orbital moment maps of the symplectic toric manifolds being em-
beddings. Therefore, since µi(Mi) = Φi(Mi), i = 1, 2, is contractible,
Theorem 1.3 of Karshon & Lerman [23] implies the symplectic toric
manifolds (Mi, ωi, µi) are determined up to isomorphism by their mo-
ment map images. By the definition of TM(2n), the category of sym-
plectic toric manifolds (Definition 2.26), (Mi, ωi, µi), i = 1, 2 belong to
the same isomorphism class if and only if µ1(M1) and µ2(M2) differ
by a translation. The criterion for isomorphism of the toric systems
then follows from Remark 2.29 and connectedness of the total space
(Lemma 2.33). �

Remark 2.35 Given a Delzant system (M,ω,Φ) with n degrees of
freedom, identify its leaf space with its moment map image B. The
above discussion, together with the fact that B is simply connected,
implies that the inclusion B ↪→ Rn is a developing map for the induced
Z-affine structure on B. Thus the Z-affine structure on B coming from
(M,ω,Φ) is the standard one.

Unlike compact symplectic toric manifolds (and their associated toric
systems), the moment map image of a Delzant system need not be con-
vex; however, the above local normal form, together with the defining
properties of Delzant systems, imply the following result.
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Corollary 2.36. The moment map image of a Delzant system (M,ω,Φ)
is locally convex, i.e., for all c ∈ Φ(M), there exists an open neighbor-
hood U of c in Φ(M) that is convex as a subset of Euclidean space.

2.6. Locally weakly toric leaf spaces. Weakly toric provide exam-
ples of integrable systems whose leaf spaces are naturally endowed with
the structure of a Z-affine manifold with corners. This is not a phe-
nomenon to be expected in general. However it is natural to ask, what
is the largest subset of the leaf space of an integrable system that does
inherit the structure of a Z-affine manifold with corners?

That question motivates the following notions of a weakly toric leaf
and the weakly locally toric leaf space of an integrable system.

Definition 2.37. Given an integrable system (M,ω,Φ), a leaf L ⊂M
is said to be weakly toric if there exists a connected open neighborhood
V ⊂M such that the subsystem (V, ω|V ,Φ|V ) is weakly toric.

Remark 2.38 A weakly toric leaf L is a smoothly embedded submani-
fold that must be compact even though the system (M,ω,Φ) may have
non-compact fibers. Also, the open neighborhood V of Definition 2.37
is saturated with respect to the quotient map q : M → L and all leaves
contained in V are weakly toric. Finally, in analogy with Remark 2.17,
if (Ψ, ψ) denotes the isomorphism between (V, ω|V ,Φ|V ) and a toric
system, and the first component of Φ|V is the moment map of an ef-
fective Hamiltonian S1-action, then ψ can be taken to be of the form
of equation (2.1).

Definition 2.39. Given an integrable system (M,ω,Φ) with leaf space
L, the subset Llt ⊂ L corresponding to weakly toric leaves is called the
locally weakly toric leaf space associated to (M,ω,Φ).

A priori, if the fibers of an integrable system are not necessarily
compact, the associated locally weakly toric leaf space may be empty.
In contrast, when the fibers are required to be compact, the Liouville-
Arnol’d Theorem (Theorem 2.16) implies Llt must be dense in L:

Corollary 2.40. If (M,ω,Φ) has compact fibers, then Lreg ⊂ Llt.

In fact, if an integrable system has compact fibers, its locally weakly
toric leaf space inherits a Z-affine structure.

Proposition 2.41. The locally weakly toric leaf space Llt of an in-
tegrable system, whenever non-empty, inherits a structure of Z-affine
manifold with corners denoted by Alt. This structure is uniquely defined
by the property that locally defined Z-affine functions from (Llt,ALlt)
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correspond to functions on q−1 (Llt) ⊂ M whose Hamiltonian vector
fields are tangent to the fibers of q and have 2π-periodic flows.

Proof. Fix an integrable system (M,ω,Φ) with n degrees of freedom
whose locally weakly toric leaf space Llt is not empty. To show that
the locally weakly toric leaf space Llt is Hausdorff, it suffices to check
that if L1, L2 are weakly toric leaves with Φ(L1) = Φ(L2), then for
i = 1, 2, there exists an open neighborhood Vi of Li, saturated with
respect to q and containing solely weakly toric leaves, with V1∩V2 = ∅.
First, observe that L1, L2 ⊂M are closed; thus there exist V ′1 , V

′
2 ⊂M

open, disjoint subsets with Li ⊂ V ′i for i = 1, 2. Since, for i = 1, 2,
Li is weakly toric, there exists an open neighborhood Vi ⊂ V ′i of Li
saturated with respect to q containing solely weakly toric leaves; V1

and V2 are the desired separating open subsets. The space Llt is second
countable because it is the image of a second countable space under
an open map. Indeed q−1 (Llt) ⊂ M is second countable as it is an
open subset of a smooth manifold, and the topological quotient map
q|q−1(Llt) : q−1 (Llt) → Llt is open because the quotient maps in the
local models for symplectic toric manifolds are open. Finally, since Llt

is locally homeomorphic to a subset of Euclidean space, it is locally
compact, thereby implying Llt is paracompact (by virtue of being a
locally compact, Hausdorff, second countable space).

Next we define an open cover of Llt and coordinate charts whose
codomain is [0,+∞[n. Let L ⊂M be a weakly toric leaf; by definition,
there exists an open neighborhood V ⊂ M of L whose corresponding
subsystem is weakly toric. By restricting V if necessary, it may be
assumed that the corresponding subsystem is isomorphic to a local
model for symplectic toric manifolds. Since q|q−1(Llt) is open, q(V ) is
an open subset of Llt; moreover, the above isomorphism implies that
there is a map χ : q(V )→ [0,+∞[n that is locally a homeomorphism.
Since L ⊂M is arbitrary, the above reasoning defines an open cover of
Llt, denoted by {Ui}, and, for each i, a map χi : Ui → [0,+∞[n. In fact,
Alt := {(Ui, χi)} is an n-dimensional Z-affine atlas with corners. To see
this, fix i, j with Ui ∩ Uj 6= ∅. Then, unraveling the above definitions,
we obtain an isomorphism (Ψij, ψij) of saturated subsystems of local
models of symplectic toric manifolds with ψij = χj ◦ χ−1

i ; observing
that ψij is necessarily the restriction of an element in AGL(n;Z) shows
the desired result. Finally, the defining property of Alt follows directly
from its definition and the fact it holds for the (locally weakly toric)
leaf spaces of symplectic toric manifolds. �

Remark 2.42 Note that, by Proposition 2.41, the locally weakly toric
leaf space of an integrable system is, tautologically, the largest subset
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of the leaf space of an integrable system that inherits the structure of
a Z-affine manifold with corners. Moreover, if the system has compact
fibers, the inclusion (Lreg,Areg) ↪→ (Llt,Alt) is a Z-affine morphism.

As expected, the Z-affine manifold with corners (Llt,Alt) associated
to (M,ω,Φ) is an invariant of the isomorphism class of (M,ω,Φ) and
behaves well with respect to restriction to saturated subsystems, i.e.
statements analogous to Corollaries 2.22 and 2.23 hold for this (possibly
larger) Z-affine manifold with corners. This allows one to associate to
an integrable system (M,ω,Φ) the pair (L, (Llt,Alt)), the latter being
an invariant of the isomorphism class of (M,ω,Φ).

Remark 2.43 If (M,ω,Φ) is faithful and has compact fibers, the
locally weakly toric leaf space corresponds to an open, dense sub-
set denoted by Blt ⊂ B = Φ(M) and its boundary as a manifold
with corners (corresponding to singular weakly toric leaves) satisfies
∂∞Blt ⊂ B ∩ ∂B, where the inclusion may be strict.

2.7. Cartographic maps. The geometry of the locally weakly toric
leaf space of a faithful integrable system (M,ω,Φ) with compact fibers
is captured by the moment map image whenever the inclusion B ↪→ Rn

is a Z-affine embedding when restricted to Blt
∼= Llt, as is the case for

faithful toric (and, in particular, Delzant) systems. In this case, the
subsystem relative to Blt is toric; expanding the terminology of Pelayo
& Ratiu & Vũ Ngo.c [33], we say that the moment map Φ is cartographic.

When the moment map of a faithful integrable system (M,ω,Φ) with
compact fibers is not cartographic, one could ask whether there is an
isomorphic system whose moment map is cartographic. Existence of
such a system is tantamount to finding a smooth embedding of the
moment map image B into Rn whose restriction to the locally weakly
toric leaf space Blt is a Z-affine embedding into (Rn,A0). A necessary
condition is that the affine holonomy of (Blt,Alt) be trivial; however,
that condition is not sufficient, as the following example illustrates.

Example 2.44 Let R be the open rectangle ]0, 1[× ]0, 2π[⊂ R2. Con-
sider the unique symplectic toric manifold (T2×R,ω, µ) defined by the
orbital moment mapW : R→ R2 given by g2(x, y) = (ex cos(2y), ex sin(2y)).
Observe that ω is not the standard symplectic structure induced by in-
clusion of T2 ×R in (T2 × R2, ωcan). Let Φ : T2 ×R→ R ⊂ R2 be the
projection onto the second factor. Then (T2 ×R,ω,Φ) defines a faith-
ful integrable system. Note that for any open simply connected subset
U ⊂ {(x1, x2) | 1 < x2

1 + x2
2 < e2}, the subsystem of (T2 × R,ω, µ)

relative to U is the union of at least two disjoint subsystems, each of



VERTICAL ALMOST TORIC SYSTEMS 25

which is isomorphic to a subsystem of the toric system (T2 ×R,ω, µ).
However, the integrable system (T2×R,ω,Φ) as a whole is not isomor-
phic to any system with a cartographic moment map as g2, which is
not injective, is the unique map (up to composition on the right with
an Z-affine diffeomorphism of (R2,A0)) such that g2 ◦ Φ generates an
effective Hamiltonian T2-action on (T2 × R, ω).

The faithful integrable systems with compact fibers considered in
Sections 3 and 4 allow for singular fibers (focus-focus fibers, cf. Section
3.1.2) that induce non-trivial affine holonomy on the locally weakly
toric leaf space (cf. Theorem 3.27). Thus for such an integrable sys-
tem there is not necessarily a system in its isomorphism class that
has a cartographic moment map. However, following the insight of
Symington [40] and Vũ Ngo.c [46], for such systems it is reasonable to
ask whether there is a homeomorphism of the moment map image that,
when restricted to an open, dense subset of the locally weakly toric leaf
space, is a Z-affine embedding. That question motivates introducing
the following notion.

Definition 2.45. Let (M,ω,Φ) be a faithful integrable system with n
degrees of freedom and whose fibers are compact, and set B = Φ(M).
A cartographic pair (f, S) for (M,ω,Φ) consists of a topological embed-
ding f : B → f(B) ⊂ Rn, called cartographic homeomorphism, and an
open, dense subset S ⊂ Blt, with the property that f |S : (S,Alt|S) →
(Rn,A0) is a Z-affine smooth embedding. If such a pair exists, (M,ω,Φ)
is said to admit a cartographic homeomorphism whose image is said to
be cartographic.

Remark 2.46 If (f, S) is a cartographic pair for (M,ω,Φ), there is
no guarantee that S is maximal, i.e. that it is the largest open, dense
subset of Blt on which f restricts to a Z-affine embedding.

The following lemma provides a simple but useful way to adjust a
given cartographic homeomorphism.

Lemma 2.47. If (f, S) is a cartographic pair for (M,ω,Φ), then, for
any h ∈ AGL(n;Z), (h ◦ f, S) is also a cartographic pair.

Intuitively, cartographic homeomorphisms should be thought of as
continuous extensions of restrictions of developing maps to suitable
domains; for instance, if S is simply connected, S can be identified
with a dense subset of a fundamental domain in the universal cover of
Blt.

If S = B holds in Definition 2.45, then f◦Φ is a cartographic moment
map. If not, a cartographic homeomorphism at least provides a dense
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subset of the total space on which the system is isomorphic to a toric,
and possibly Delzant system. More precisely:

Corollary 2.48. Let (M,ω,Φ) be a faithful integrable system with com-
pact fibers. If (f, S) is a cartographic pair, then

(
Φ−1(S), ω|Φ−1(S), (f ◦ Φ) |Φ−1(S)

)
is toric. If, in addition, S is contractible, then the above system is
Delzant.

Cartographic homeomorphisms restrict appropriately when taking
saturated subsystems.

Corollary 2.49. Suppose that (M,ω,Φ) is a faithful integrable system
with compact fibers with cartographic pair (f, S). Let U ⊂ B = Φ(M)
be an open subset. Then (f |U , S ∩ U) is a cartographic pair for the
subsystem relative to U .

Combining Corollaries 2.48 and 2.49, we obtain the following simple
description of cartographic homeomorphisms when restricted to open
subsets of the moment map image whose corresponding subsystems are
Delzant.

Corollary 2.50. Let (M,ω,Φ) be a faithful integrable system with
compact fibers with cartographic pair (f, S). Suppose that U ⊂ S is
an open subset with the property that the subsystem relative to U is
Delzant. Then f |U is the restriction of an element hU ∈ AGL(n;Z)
and

(
h−1
U ◦ f, S

)
is a cartographic pair for (M,ω,Φ) with

(
h−1
U ◦ f

)
|U =

id|U .

Proof. By assumption,
(
Φ−1(U), ω|Φ−1(U),Φ|Φ−1(U)

)
is a Delzant sys-

tem and, by Corollary 2.48,
(
Φ−1(U), ω|Φ−1(U), (f ◦ Φ) |Φ−1(U)

)
is also

Delzant. In fact, the pair (id, f |U) defines an isomorphism between
these two systems. Because U is connected (by virtue of being con-
tractible), there exists an element hU ∈ AGL(n;Z) such that f |U = hU
(cf. Remark 2.29). Lemma 2.47 gives that

(
h−1
U ◦ f, S

)
is a carto-

graphic pair for (M,ω,Φ) that, by construction, satisfies
(
h−1
U ◦ f

)
|U =

id|U . �

Finally, it is important to notice that the property of admitting a
cartographic homeomorphism is independent of the choice of represen-
tative of the isomorphism class of a faithful integrable system.

Corollary 2.51. Let (M1, ω1,Φ1) and (M2, ω2,Φ2) be faithful integrable
systems with compact fibers isomorphic via (Ψ, ψ) and let (f1, S1) be a
cartographic pair for (M1, ω1,Φ1). Then (f2 := f1 ◦ ψ−1, S2 := ψ(S1))
is a cartographic pair for (M2, ω2,Φ2).
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In fact, cartographic images of isomorphic systems are homeomor-
phic via maps that extend Z-affine isomorphisms. More precisely, the
following holds.

Corollary 2.52. Consider, for i = 1, 2, a faithful integrable system
(Mi, ωi,Φi) with n degrees of freedom and compact fibers with a carto-
graphic pair (fi, Si). Assume that there exists an isomorphism (Ψ, ψ)
between (M1, ω1,Φ1) and (M2, ω2,Φ2). Then the cartographic images
f1(B1) and f2(B2) are homeomorphic by a map that, when restricted
to each connected component of f1 (S1 ∩ ψ−1(S2)), is the restriction of
an element of AGL(n;Z).

Proof. Fix an isomorphism (Ψ, ψ) : (M1, ω1,Φ1) → (M2, ω2,Φ2). The
map g := f2 ◦ ψ ◦ f−1

1 : f1(B1) → f2(B2) is a homeomorphism as it
is the composition of homeomorphisms. In fact, we claim that it is
the unique extension of a Z-affine isomorphism f1 (S1 ∩ ψ−1(S2)) →
f2 (ψ(S1) ∩ S2). To see this, begin by observing that S1 ∩ ψ−1(S2)
and ψ(S1) ∩ S2 are open and dense in B1 and B2 respectively. This
implies that for each i = 1, 2, fi (S1 ∩ ψ−1(S2)) is open and dense in
fi(Bi) as fi is a homeomorphism. Therefore, g is determined uniquely
by its restriction to f1 (S1 ∩ ψ−1(S2)), which maps homeomorphically
onto f2 (ψ(S1) ∩ S2). This restriction is a Z-affine isomorphism, by the
definition of cartographic homeomorphisms and Corollary 2.22. Since
the Z-affine structures on f1 (S1 ∩ ψ−1(S2)) and on f2 (ψ(S1) ∩ S2) are
isomorphic to the ones induced by inclusion into (Rn,A0), the restric-
tion of the above Z-affine isomorphism to each connected component
of f1 (S1 ∩ ψ−1(S2)) is the restriction of an element of AGL(n;Z). �

3. Almost-toric systems

Motivated by Symington [40] and Vũ Ngo.c [46], this section intro-
duces and studies the fundamental properties of almost-toric systems,
a category of integrable systems generalizing that of weakly toric sys-
tems (Definition 2.27) in dimension 4 by allowing for the presence of
focus-focus fibers, which are the Lagrangian analog of nodal fibers in
Lefschetz fibrations. To define this category formally, we first recall the
notion of almost-toric singular orbits, which are a special class of non-
degenerate singular orbits in dimension 4. This is achieved in Section
3.1. Section 3.2 defines almost-toric systems and establishes fundamen-
tal properties of leaves and their neighborhoods. Seeing as the vertical
almost-toric systems of Section 4 are both faithful and almost-toric,
Section 3.3 collects results about systems that satisfy both properties.

3.1. Singular orbits.
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3.1.1. Non-degenerate singular orbits in arbitrary dimension. The types
of singular orbits considered in Section 3.1.2 are a special case of non-
degenerate singular orbits, a condition that is briefly recalled below and
should be thought of as a ‘symplectic’ Morse-Bott condition. Through-
out this subsection, let (M,ω,Φ) be an integrable system so that Φ is
the moment map of an effective Hamiltonian Rn-action; for any t ∈ Rn,
denote by φt : (M,ω) → (M,ω) the symplectomorphism induced by
acting via t. Moreover, for any p ∈ M , denote by Op the Rn-orbit
through p. If p is singular, then every point in Op is singular; thus
the notion of singular orbit is well-defined. Next, we introduce the
following useful notion.

Definition 3.1. Given an integrable system (M,ω,Φ), the rank of a
point p ∈M is given by rkDpΦ.

Remark 3.2 With the above notation, if p ∈ M is a point of rank
0 ≤ k ≤ n, the existence of a Hamiltonian Rn-action implies that the
orbit Op is a k-dimensional immersed, isotropic submanifold of (M,ω)
that is diffeomorphic to Rk−c(p)×Tc(p), where 0 ≤ c(p) ≤ k is called the
degree of closedness ofOp in Zung [49, Definition 3.4]. In particular, the
rank and the degree of closedness of an orbit are well-defined notions.

Fix a singular orbit O ⊂ M of rank 0 ≤ k < n and let p ∈ O;
since, for all t ∈ Rn, φt is a symplectomorphism sending O to it-
self, it follows that, for all t ∈ Rn, Dpφ

t is a symplectomorphism
of ((TpOp)ω /TpOp,Ω), where (TpOp)ω is the symplectic orthogonal
of TpOp and Ω is the symplectic form induced by performing lin-
ear reduction. Thus we obtain a Lie algebra homomorphism Rn →
Sp ((TpOp)ω /TpOp,Ω). In fact, this homomorphism only depends on
the orbit and not on the choice of point; this is because the action is by
an abelian Lie group. Choosing local Darboux coordinates, it is possi-
ble to identify Sp ((TpOp)ω /TpOp,Ω) with Sp (2(n− k);R); therefore,
by taking derivative at the identity, we obtain a Lie algebra homomor-
phism Rn → sp (2(n− k);R) whose image is denoted by hO.

Definition 3.3. A singular orbit O of rank 0 ≤ k < n is said to be
non-degenerate if hO ⊂ sp (2(n− k);R) is a Cartan subalgebra.

Remark 3.4 Since sp(2n;R) is semisimple, its Cartan subalgebras
are maximal Abelian and self-normalizing. A criterion to check that a
fixed point in an integrable system with n-degrees of freedom is non-
degenerate is as follows (cf. Bolsinov & Fomenko [2, Definitions 1.24
and 1.25]) for details. Let p be a singular point of rank 0 in (M,ω,Φ),
where Φ = (H1, . . . , Hn). Then, for all i = 1, . . . , n, the Hamiltonian
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vector field of Hi vanishes at p; thus it makes sense to consider its
linearization at p denoted by XLin

i (p) ∈ sp(2n;R). The point p is non-
degenerate if XLin

1 (p), . . . , XLin
n (p) are linearly independent and if there

exists a linear combination λ1X
Lin
1 (p)+. . .+λnX

Lin
n (p) with 2n distinct,

non-zero eigenvalues.

Cartan subalgebras of sp (2(n− k);R) have been classified up to con-
jugacy in Williamson [48] using the standard isomorphism sp (2(n− k);R) ∼=
Sym (2(n− k);R), where the latter is the Lie algebra of symmetric bi-
linear forms on the linear symplectic vector space R2(n−k) with Lie
bracket given by the commutator, and the isomorphism sends a qua-
dratic polynomial to its Hamiltonian vector field. The classification of
Williamson [48] is recalled below without proof.

Theorem 3.5. Fix a positive integer n and let h ⊂ Sym (2n;R) be
a Cartan subalgebra. Then there exist canonical coordinates xi, yi of
the linear symplectic vector space R2n, a triple (ke, kh, kff) ∈ Z3

≥0 with
ke + kh + 2kff = n, and a basis H1, . . . , Hn of h such that

Hi =

{
x2i +y2i

2
if i = 1, . . . , ke,

xiyi if i = ke + 1, . . . , ke + kh,

and, if i = ke+kh+1, ke+kh+3, . . . , ke+kh+2j−1, . . . , ke+kh+2kff−1,
then

Hi = xiyi+1 − xi+1yi

Hi+1 = xiyi + xi+1yi+1.

Moreover, the triple (ke, kh, kff) determines h up to conjugacy.

Definition 3.6. Given a Cartan subalgebra h ⊂ sp (2n;R), the triple
(ke, kh, kff) ∈ Z3

≥0 with ke + kh + 2kff = n classifying it up to conjugacy
is called the Williamson triple of h, where ke, kh, kff are referred to as
the number of elliptic, hyperbolic and focus-focus components.

Going back to non-degenerate singular orbits, adapting and following
Zung [49, Definition 3.4], we introduce the following terminology.

Definition 3.7. Given an integrable system (M,ω,Φ) and a non-
degenerate singular orbit O ⊂ M , its Williamson type is the element
(k, c, ke, kh, kff) ∈ Z5

≥0, where k is the rank of O, c is its degree of
closedness, and (ke, kh, kff) ∈ Z3

≥0 is the Williamson triple of hO.

Non-degenerate singular orbits can be linearized, i.e., there exist
canonical coordinates which also put the moment map in standard form
(cf. Dufour & Molino, Eliasson, Miranda & Zung [8, 12, 28] amongst
others). While the various linearization results are beyond the scope
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of this article, it is worthwhile observing that they are simpler in the
absence of hyperbolic blocks, i.e. if kh = 0, and when the orbits are
compact, i.e. if k = c. This is part of the motivation for introducing the
singular orbits studied in Section 3.1.2. To conclude this subsection, we
state the following characterization of non-degenerate, compact singu-
lar orbits of purely elliptic type, i.e. whose Williamson types are given
by elements of the form (k, k, n− k, 0, 0), relating them to singular
toric leaves (cf. Dufour & Molino, Eliasson [8, 12]). Such orbits are
henceforth referred to as elliptic tori.

Theorem 3.8. Let O be an elliptic torus in an integrable system
(M,ω,Φ). Then there exists a (connected) open neighborhood V ⊂ M
of O whose corresponding subsystem is isomorphic to a toric system.
In particular, O is a singular locally weakly toric leaf.

Theorem 3.8 is the crucial ingredient in proving that elliptic tori can
be linearized (cf. Dufour & Molino, Eliasson [8, 12]).

3.1.2. Almost-toric orbits. Motivated by the work of Symington, Vũ
Ngo.c [40, 46], we distinguish the following family of singular orbits.

Definition 3.9. An orbitO in an integrable system (M,ω,Φ) is said to
be almost-toric if it is compact and non-degenerate without hyperbolic
blocks.

If O is an almost-toric orbit, its Williamson type (cf. Definition 3.7)
is constrained to be of one of three types, namely

• elliptic-elliptic, i.e. (0, 0, 2, 0, 0),
• elliptic-regular, i.e. (1, 1, 1, 0, 0),
• focus-focus, i.e. (0, 0, 0, 0, 1).

The first two are elliptic tori of dimension 0 and 1 respectively. On the
other hand, focus-focus points are completely characterized by the fol-
lowing local normal form (cf. Chaperon, Eliasson, Vũ Ngo.c & Wacheux
[3, 12, 47]):

Let p be such a point and consider (R4, ω0) where ω0 = dx1 ∧ dy1 +
dx2 ∧ dy2. There exist open neighborhoods V ⊂ M and W ⊂ R4 of
p and the origin respectively, such that (V, ω|V ,Φ|V ) is isomorphic to
(W,ω0|W ,q|W ) via a pair (Ψ, ψ) with ψ(p) = 0, where q = (q1, q2),
q1 = x1y2 − x2y1 and q2 = x1y1 + x2y2.

Observe that the flow of the Hamiltonian vector field Xq1 is periodic.
In fact, W can be chosen to be saturated with respect to the effective
Hamiltonian S1-action whose moment map is given by q1.

Remark 3.10 An immediate consequence of the above local normal
form is that the set of focus-focus points is discrete.
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Elliptic tori and focus-focus points differ significantly. An immediate
topological difference is that the former are leaves of the system while
for the latter are not. A crucial geometric difference lies in the fact
that the former support a local effective Hamiltonian T2-action whose
moment map has components that Poisson commute with the inte-
grals of the system (we say that the action is system-preserving), while
the latter possesses a unique (up to sign) system-preserving effective
Hamiltonian S1-action (cf. Zung [50, Proposition 4]).

Remark 3.11 Let p be a focus-focus point in an integrable system
(M,ω,Φ) and let V be an open neighborhood of p that can be put in
local normal form. Then

• the restriction Φ|V is open;
• p is the only singular point of Φ|V ;
• the fibers of Φ|V are connected;
• a fiber of Φ|V is either diffeomorphic to a cylinder (if it does not

contain p) or given by the union of two Lagrangian planes intersecting
transversally at p. In particular, if the latter fiber is denoted by
L, then (V ∩ L) r {p} consists of two connected components, each
diffeomorphic to a cylinder;
• there exist smooth sections σ1, σ2 defined near Φ(p) whose image lies

inside V with the property that σ1 (Φ(p)) , σ2 (Φ(p)) lie in distinct
connected components of (V ∩ L) r {p}, where L denotes the leaf
through p.

3.2. Definition and fundamental properties. Following Syming-
ton [40] and Vũ Ngo.c [46], we introduce a category of integrable sys-
tems of two degrees of freedom that generalize weakly toric systems on
4-dimensional manifolds while retaining significant similarities.

Definition 3.12. An integrable system (M,ω,Φ) on a 4-dimensional
symplectic manifold is almost-toric if Φ is proper onto its image and
all of its singular orbits are almost-toric.

The following result can be used to describe almost-toric systems
in an equivalent fashion; seeing as it follows directly from Zung [49,
Proposition 3.5], its proof is omitted.

Lemma 3.13. Let (M,ω,Φ) be an integrable system on a 4-dimensional
symplectic manifold with compact fibers, all of whose singular orbits are
non-degenerate without hyperbolic blocks. Then the singular orbits are
compact and, in particular, almost-toric.
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The above notion of almost-toric system differs slightly from that in
Vũ Ngo.c [46], for Definition 3.12 only requires that Φ be proper onto
its image, as opposed to being proper.

Remark 3.14 Almost-toric systems form a full subcategory of IS(2),
henceforth referred to as the category of almost-toric systems and de-
noted by AT .

Remark 3.15 Note that saturated subsystems of almost-toric systems
are almost-toric.

The restriction on the types of singular orbits in an almost-toric
system (M,ω,Φ) implies the singular leaves of Φ are either elliptic tori
or contain at least one focus-focus singular orbit. That dichotomy arises
because the local normal form for elliptic singular orbits implies such
orbits (which are elliptic tori) make up whole connected components
of a fiber of Φ. Henceforth, leaves that contain focus-focus orbits are
referred to as focus-focus leaves. Denote by Lff the set of points in the
leaf space L corresponding to leaves containing focus-focus singular
orbits. Then Lsing = Le ∪ Lff , where Le is the elliptic part of L.
Elements of Lff are called focus-focus values (in the leaf space).

Definition 3.16. Let c ∈ Lff be a focus-focus value in the leaf space of
an almost-toric system (M,ω,Φ). The multiplicity of c, denoted rc ≥ 1,
is the number of focus-focus singular orbits in the corresponding leaf
of Φ.

Focus-focus values, counted with multiplicity, are an invariant of the
isomorphism class of an almost-toric system. Henceforth, all focus-
focus values are counted with multiplicity unless otherwise stated.

The topology of focus-focus leaves is well-known and is completely
determined by the finite number r ≥ 1 of focus-focus singular points
contained in the corresponding leaf. In particular, each focus-focus leaf
is homeomorphic to a torus with r homologous cycles, each collapsed to
a point (cf. Bolsinov & Fomenko [2, Chapter 9.8]). Lying at the heart
of this result is the existence of a vector field tangent to a focus-focus
leaf, whose flow is periodic and whose fixed points are precisely the
focus-focus points.

In fact, the S1-action on any focus-focus leaf can be extended to a
suitable neighborhood of the leaf, one that is saturated with respect
to the quotient map to the leaf space. To prove this, we start by
establishing the existence of this suitable neighborhood.
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Proposition 3.17. Given an almost-toric system (M,ω,Φ), any focus-
focus leaf L ⊂M admits an open neighborhood V satisfying the follow-
ing properties:

• L is the only singular leaf in V ;
• V is saturated with respect to the quotient map q : M → L;
• V contains at most one leaf of any fiber of Φ.

Proof. Fix a focus-focus leaf L. First, we show that L admits an open
neighborhood Z that is saturated with respect to q and in which L is
the only focus-focus leaf. Suppose not; then there exists a sequence of
focus-focus points {pn} with the property that Φ(pn)→ Φ(L); since Φ
is proper onto its image, there exists a convergent subsequence pnj

→ p.
The limit point p is necessarily singular, but the local normal form for
almost-toric orbits yields a contradiction.

Fix such a neighborhood Z and let p1, . . . , pr ∈ L denote the focus-
focus points in L. For i = 1, . . . , r, let Vi ⊂ Z be an open neighborhood
of pi that can be put in local normal form (cf. Section 3.1.2). Consider
the subset

V̂ :=
r⋃
i=1

⋃
t∈R2

φt (Vi)

where, as in Section 3.1.2, φt denotes the Hamiltonian action by t ∈ R2;
this is the union of the orbits that intersect at least one Vi. Since, for
i = 1, . . . , r, Vi is open, so is V̂ ; moreover, V̂ contains L because

L =
r⋃
i=1

⋃
t∈R2

φt (Vi ∩ L). Next we show that V̂ is also saturated with

respect to q. To see this, observe that if p ∈ VirL, then the leaf passing
through p is contained in Z and is not equal to L, thus implying that
it is not a focus-focus leaf. Since p is regular (by the local normal form
for focus-focus points), the leaf through p is regular and is, therefore,

an orbit of the Hamiltonian R2-action, which is contained in V̂ by
construction.

The above construction does not necessarily guarantee that V̂ con-
tains at most one leaf of any fiber of Φ. However, the local normal form
for a focus-focus point and the R2 action can be used to determine a
possibly smaller neighborhood in which that property holds. Specifi-
cally, fix some i ∈ {1, . . . , r}. There exists a smooth section σi of Φ
defined near Φ(pi) whose image is contained in Vi; this implies that
σi (Φ(pi)) ∈ (Vi ∩ L) r {pi} (cf. Remark 3.11). The structure of the
focus-focus leaf L implies that there exists t0 ∈ R2 with the following
property
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• if r = 1, then σi (Φ(pi)) and φt0 (σi (Φ(pi))) lie in different connected
components of (Vi ∩ L) r {pi} (cf. Vũ Ngo.c [44]);
• if r > 1, there exists j 6= i with φt0 (σi (Φ(pi))) ∈ Vj (cf. Bolsinov &

Fomenko [2, Chapter 9.8]).

In other words, the section σi flows out of Vi and into Vj (and if i = j,
then it approaches Vi from the ‘opposite’ side). Let c ∈ R2 be suffi-
ciently close to Φ(pi) so that σi(c) is defined; then the above properties
show that

• if r = 1, Φ−1(c) ∩ V̂ is connected;
• if r > 1, the intersections Φ−1(c)∩Vi and Φ−1(c)∩Vj lie on the same

leaf of Φ−1(c).

In the latter case, using again the structure of the focus-focus leaf L
(cf. Bolsinov & Fomenko [2, Chapter 9.8]), we can iterate the above
argument finitely many times to ensure that, for all c sufficiently close
to Φ(L) (= Φ(pi) for all i = 1, . . . , r), Φ−1(c) ∩ V̂ is connected. This

shows that V̂ can be shrunk as desired. �

Corollary 3.18. The set of focus-focus values in the leaf space of an
almost-toric system is discrete.

Any open neighborhood of a focus-focus leaf as in Proposition 3.17
is henceforth referred to as a (q-)saturated regular neighborhood of a
focus-focus leaf. A saturated regular neighborhood has the necessary
S1-symmetry.

Proposition 3.19. Given a focus-focus leaf L of an almost-toric sys-
tem (M,ω,Φ), any saturated regular neighborhood of L admits a local
system-preserving Hamiltonian S1-action.

Sketch of proof. The ideas behind proving this result are known (cf.
Bolsinov & Fomenko [2, Lemma 9.8] and Zung [50, Section 3]), but the
key ideas are provided below for completeness. Let L be a focus-focus
leaf and let V be a saturated regular neighborhood of L. Let p be a
focus-focus point on L; the local normal form for p implies that, near
p, there exists a local system-preserving Hamiltonian S1-action. By
construction of V , this action can be extended to the whole of V and is
independent (up to sign) of the choice of focus-focus point p ∈ L. �

In fact, a saturated regular neighborhood of a focus-focus leaf (of
multiplicity one) is a singular Liouville foliation of (simple) focus-focus
type in the sense of Vũ Ngo.c [45, Definition 2.4]. Moreover, saturated
regular neighborhoods of focus-focus leaves ought to be thought of as
analogous to the neighborhoods of elliptic tori that can be put in local
normal form. For instance, the following result holds.



VERTICAL ALMOST TORIC SYSTEMS 35

Proposition 3.20. Let V be a saturated regular neighborhood of a
focus-focus leaf L in an almost-toric system (M,ω,Φ). The subsystem
(V, ω|V ,Φ|V ) is faithful and almost-toric.

Proof. By construction, the fibers of Φ|V are connected and all singular
orbits in the subsystem are almost-toric. To prove the result, it suffices
to show that Φ|V is proper onto its image, for then the subsystem
is almost-toric by Definition 3.12 and faithful by Lemma 2.15. Set
BV := Φ|V (V ); to prove that Φ|V is proper onto its image, it suffices
to check that it is proper at every point c ∈ BV . Observe that, by
definition of V , BV contains only one singular value, which equals Φ(L).
If c 6= Φ(L), then Φ|V is proper at c as Φ|V rL is a submersion with
compact and connected fibers. If c = Φ(L), then arguing as in the
second half of the proof of Lemma 2.15, it can be shown that Φ|V is
also proper at c. �

To summarize the above results and motivate subsequent sections,
we state the following description of regular neighborhoods of leaves in
almost-toric systems.

Corollary 3.21. Given an almost-toric system (M,ω,Φ), any leaf L
admits an open neighborhood V satisfying the following properties:

• V is saturated with respect to the quotient map q : M → L;
• the subsystem (V, ω|V ,Φ|V ) is faithful and admits a system-preserving

Hamiltonian S1-action.

3.3. Faithful almost-toric systems. By Corollary 3.21, any leaf in
an almost-toric system admits an open neighborhood whose corre-
sponding subsystem is faithful almost-toric. Therefore it makes sense
to view faithful almost-toric systems as building blocks of almost-toric
systems. Throughout this subsection, let (M,ω,Φ) be a faithful almost-
toric system. Moreover, fix the identification between L and B = Φ(M)
and denote by Bff the image of Lff under this identification.

Remark 3.22 The local normal form for focus-focus points implies
that Bff ⊂ Int(B). Thus, by Corollary 3.18, Bff is discrete in Int(B).

The arguments in Vũ Ngo.c [46, Proposition 3.9] can be used to prove
the following result, stated without proof.

Lemma 3.23. Given a faithful almost-toric system on a connected
symplectic manifold, the subsets Breg and Int(B) of B are path-connected.

The restriction on the types of singular orbits, as well as faithfulness,
imply the following useful fact for faithful almost-toric systems.
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Lemma 3.24. Given a faithful almost-toric system (M,ω,Φ) and a
continuous path γ : [0, 1] → B, the subset Φ−1 (γ ([0, 1])) is path-
connected.

Proof. Fix a path γ as in the statement. By the local normal form
for almost-toric singular points, given any point c ∈ B, there exists
an open, path-connected neighborhood U ⊂ B of c and a continuous
section σ : U → M . The image of γ is contained in the union of
finitely many such neighborhoods. Connectedness of the fibers of Φ
then implies the desired result. �

Remark 3.25 Given a faithful almost-toric system (M,ω,Φ),

• the smooth manifold with corners structure on Blt, the locally weakly
toric part of the leaf space, extends to all of B;
• the image of elliptic tori is precisely ∂∞B = ∂∞Blt, where corners

and facets (or curved edges) of B are the images of elliptic-elliptic
and elliptic-regular points, respectively (cf. Remark 2.43).
• The set of focus-focus values Bff ⊂ Int(B) is at most countable, and

the set of its limit points in R2 is contained in ∂B r ∂∞B.

Example 3.26 Suppose (M,ω) is symplectomorphic to a K3 surface
(for example, a smooth quartic hypersurface in CP 3). Such a symplec-
tic manifold admits singular Lagrangian fibrations over S2 in which
each singular fiber has a neighborhood that, with respect to an ap-
propriate coordinate chart on S2, defines a faithful almost-toric system
that is a regular saturated neighborhood of a focus-focus fiber with one
singular orbit. Suppose Π : (M,ω) → S2 is such a fibration and let
p ∈ S2 be the image of a regular fiber. Let N = M r Π−1(p) and let
φ : S2 r p → R2 be an embedding. Then (N,ω|N , φ ◦ Π|N) defines a
faithful almost-toric system with 24 focus-focus leaves.

A natural question arising from Remark 3.25 is whether the Z-affine
structure Alt on Blt can be extended to B. The presence of focus-focus
fibers prevents this from happening, as the Z-affine structure on any
neighborhood of a focus-focus value has non-trivial affine holonomy.

Theorem 3.27 (Zung [50], Prop. 3 and Cor. 1). Let (M,ω,Φ) be
faithful almost-toric system and let U ⊂ B = Φ(M) be an open neigh-
borhood of a focus-focus value c, sufficiently small such that U contains
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no other focus-focus value. The affine holonomy of the Z-affine struc-
ture on U \ {c} ⊂ Blt is given, in a suitable basis, by

π1(U) ∼= Z→ AGL(2;Z)

k 7→
((

1 0
krc 1

)
,

(
0
0

))
,

(3.1)

where rc ≥ 1 is the multiplicity of c.

Remark 3.28 The eigenspace associated to the above representa-
tion reflects the uniqueness (up to sign) of the local effective system-
preserving Hamiltonian S1-action in a neighborhood of a singular fiber
containing focus-focus points. With respect to the local choice of ba-
sis in Theorem 3.27, this action is induced by the first integral of the
moment map.

Another natural question is which almost-toric systems are isomor-
phic to toric ones? Certainly, the system must not contain focus-focus
points. If the system is faithful, it suffices that there be a Z-affine im-
mersion of the moment map image into (R2,A0). However, as the next
example illustrates, an absence of focus-focus points does not suffice.

Example 3.29 Let (M,ω,Φ) be the Delzant system defined (up to
isomorphism) by the moment map image [0, 1]×R ⊂ R2. Then, up to
isomorphism, M = S2 × R × S1 with ω = ωS2 ⊕ da ∧ dθ, where ωS2

is a suitable symplectic form on S2, and Φ(p, a, θ) = (h(p), a), where

h : S2 → R is a suitable height function. Let (M,ω, Φ̂) be the almost-

toric system defined by Φ̂ = g1 ◦ µ where g1(x, y) = (ex cos y, ex sin y)
and consider the symplectic Z-action on M given by k · (p, a, θ) =

(p, a + 2πk, θ). The quotient is M ′ = S2 × T 2. Observe that Φ̂ is
invariant under this Z-action. Therefore, taking the quotient yields
an almost-toric system (M ′, ω′,Φ′). This system has no focus-focus
points but is not isomorphic to a toric system: it is faithful, and yet
has a moment map image that is not simply connected and hence not
homeomorphic to a polygon.

Remark 3.30 Consider a faithful almost-toric system (M,ω,Φ) with
focus-focus points and suppose that (f, S) is a cartographic pair. The
definition of a cartographic pair (Definition 2.45) and the local normal
form for singular orbits of elliptic type together imply that the carto-
graphic image of curved edges in S are line segments whose tangent
vectors can be chosen to have coprime integer coefficients, and then
those tangent vectors span the standard lattice Z2 ⊂ R2 whenever the
edges are incident to a corner of S.
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An important question is thus, when does a faithful almost-toric sys-
tem admit a cartographic homeomorphism? Addressing this problem
in full generality is beyond the scope of this paper. However, in light
of Corollary 3.21, a natural family of faithful almost-toric systems to
consider arises: namely, those admitting a system-preserving S1-action.

4. Vertical almost-toric systems

This section studies vertical almost-toric systems and proves the
main results of the paper. As pointed out in the introduction, verti-
cal almost-toric systems are closely related to (generalized) semi-toric
systems (cf. Pelayo & Ratiu & Vũ Ngo.c, Vũ Ngo.c [33, 46]). Many
of the ideas and proofs that appear in this section are inspired by
the work in op. cit. Section 4.1 introduces vertical almost-toric sys-
tems and establishes their basic properties, as well as proving that
such systems can be viewed as ‘building blocks’ of almost-toric sys-
tems (see Proposition 4.9 for a formal statement). However, unlike
their almost-toric counterparts, vertical almost-toric systems possess
a global Hamiltonian S1-action, a fact that has some important geo-
metric consequences which are investigated in Section 4.2. Section
4.3 is devoted to proving that vertical almost-toric systems admit car-
tographic homeomorphisms constructed by choosing suitable vertical
cuts of their moment map images (Theorem 4.24). The set of all car-
tographic homeomorphisms of a given vertical almost-toric system is
described in Section 4.4, which generalizes Vũ Ngo.c [46, Section 4].
Finally, Section 4.5 shows that cartographic homeomorphisms can be
made smooth by modifying them on arbitrarily small neighborhoods
of the corresponding cuts (Theorem 4.48). This result provides repre-
sentatives (which we call η-cartographic) in the isomorphism class of
any vertical almost-toric system, representatives that are particularly
useful when defining surgeries on vertical almost-toric systems (cf. the
forthcoming [20]).

4.1. Definition and basic properties. To the best of our knowl-
edge, there are no general results regarding the existence of carto-
graphic homeomorphisms for faithful almost-toric systems, even if the
total space is closed (cf. Leung & Symington [25] and Symington [40]).
However, the existence results of Pelayo & Ratiu & Vũ Ngo.c [33] and
Vũ Ngo.c [46] hint at the fact that if the first integral in an almost-toric
system (M,ω,Φ = (J,H)) is the moment map for an effective Hamil-
tonian S1-action, then some control on J suffices.

Definition 4.1. The category of vertical almost-toric systems, denoted
by VAT , has objects and morphisms as follows.
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• Objects: vertical almost-toric systems, i.e., 4-dimensional faithful
almost-toric systems (M,ω,Φ = (J,H)) satisfying:
(V1) the total space M is connected;
(V2) the first integral J is the moment map of an effective Hamil-

tonian S1-action;
(V3) the set of critical values of J does not contain any limit points

in J(M);
(V4) any fiber of J contains at most finitely many isolated fixed

points of the S1-action;
(V5) any fiber of J is connected.
• Morphisms: isomorphisms of vertical almost-toric systems, i.e. iso-

morphisms (Ψ, ψ) of integrable systems between vertical almost-toric
systems (Mi, ωi,Φi = (Ji, Hi)), i = 1, 2, where ψ : B1 → B2 is of the
form ψ = (ψ(1), ψ(2)) with ψ(1)(x, y) = x.

Note that the leaves of a vertical almost-toric system are compact
because the system is almost-toric and each fiber consists of a single
leaf (and hence is connected) because the system is faithful. Moreover,
property (V5) is equivalent to path-connectedness of the fibers of J
by the local normal form for Hamiltonian S1-action (cf. Guillemin &
Sternberg, Marle [15, 26]).

Remark 4.2 Vertical almost-toric systems do not form a full sub-
category of AT , as the above notions are not invariant under general
isomorphisms of integrable systems. The more restrictive notion of
isomorphisms of vertical almost-toric systems places special emphasis
on the S1-action and suggests that the geometry of a vertical almost-
toric system (M,ω,Φ = (J,H)) is closely related to the geometry of
the triple (M,ω, J) obtained by ‘forgetting’ the second integral (cf.
Hohloch & Sabatini & Sepe [19] and the forthcoming [21]).

Henceforth, let (M,ω,Φ = (J,H)) be a vertical almost-toric system.
The important property of connectedness of the fibers of J can be
checked directly on the moment map image.

Lemma 4.3. Let (M,ω,Φ = (J,H)) be a faithful almost-toric system.
Then the fibers of J are path-connected if and only if, for all x0 ∈ R,
the intersection B∩{(x, y) | x = x0} is either empty or path-connected.

Proof. If the fibers of J are path-connected, then the claimed result
holds. Conversely, suppose that B ∩ {(x, y) | x = x0} 6= ∅ is path-
connected; the aim is to prove that J−1(x0) = Φ−1 (B ∩ {(x, y) | x = x0})
is path-connected. Let p1, p2 ∈ J−1(x0) and set ci = Φ(pi), for i = 1, 2.
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Then the vertical segment joining c1 to c2 is contained in B by assump-
tion; Lemma 3.24 then implies that there exists a path joining p1 to p2

contained in the preimage under Φ of that vertical segment. Since that
preimage is contained in J−1(x0), this shows the desired result. �

In fact, the path-connectedness of the intersection of B with any
vertical line in turn implies that intersections of vertical lines with the
interior of B are path-connected.

Lemma 4.4. The set Int(B) ∩ {(x, y) | x = x0} is path-connected for
any x0 ∈ pr1 (Int(B)).

Proof. Suppose not, then there exists x0 ∈ pr1 (Int(B)) such that
Int(B)∩{(x, y) | x = x0} is not path-connected. SinceB∩{(x, y) | x = x0}
is nonempty and path-connected, it follows that there exist y1 < y0 <
y2 such that (x0, y0) ∈ ∂∞B ⊂ ∂B and (x0, yi) ∈ Int(B), for i = 1, 2.
However this is impossible because it forces a disconnection of the in-
tersection of B and a vertical line as follows.

For i = 1, 2, because the point (x0, yi) is in Int(B), there is open disk
of radius ri centered at (x0, yi) that is a subset of Int(B). And because
(x0, y0) ∈ ∂∞B ⊂ ∂B, there exists a sequence of points {(x′n, y′n)} such
that each (x′n, y

′
n) is in the open ball of radius 1

n
centered at (x0, y0) but

(x′n, y
′
n) /∈ B. Consequently, for each n such that 1

n
< min(r1, r2) the

intersection B∩{(x, y) | x = xn} is disconnected because y1 < y0− 1
n
<

y′n < y0 + 1
n
< y2, with (x′n, y1), (x′n, y2) ∈ B and (x′n, y

′
n) /∈ B. �

Corollary 4.5. The moment map image of a vertical almost-toric sys-
tem is contractible.

Proof. Fix a vertical almost-toric system with moment map image B.
As noted in Remark 3.25, B is a manifold with corners. The inclusion
Int(B) = Br∂∞B ↪→ B is a homotopy equivalence because B is home-
omorphic to a smooth manifold with boundary, which is homotopy
equivalent to the complement of its boundary Thus it suffices to prove
that Int(B) is contractible. By Lemma 3.23, Int(B) is path-connected
and so is pr1 (Int(B)). Moreover, Int(B) ⊂ R2 is open and pr1 is an
open map. Therefore pr1 : Int(B) → pr1 (Int(B)) is a surjective sub-
mersion whose fibers are diffeomorphic to R by Lemma 4.4. Thus it is
a fiber bundle (cf. Meigniez [27, Page 3778]). Since pr1 (Int(B)) is an
interval, the bundle is trivial. Since both the base and the fiber of this
trivial bundle are contractible, so is the total space. �

Corollary 4.6. A vertical almost-toric system is Delzant if and only
if it is toric.
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Vertical almost-toric systems behave well with respect to taking cer-
tain ‘vertical subsystems’:

Proposition 4.7. Let (M,ω,Φ) be a vertical almost-toric system and
let U ⊂ B be open and path-connected. Then the subsystem of (M,ω,Φ)
relative to U is a faithful almost-toric system that satisfies properties
(V1) – (V4) of a vertical almost-toric system. Moreover, if for all
x0 ∈ R, {(x, y) | x = x0} ∩ U is either empty or path-connected, then
the subsystem relative to U is, in fact, a vertical almost-toric system.

Proof. The subsystem relative to U is faithful by Remark 2.12 and
almost-toric by Remark 3.15. The total space is connected because U
is connected and the subsystem is faithful. Property (V2) is satisfied
because Φ−1(U) is a union of orbits of its first integral. Finally, Proper-
ties (V3) and (V4) are preserved under taking subsystems. This proves
the first assertion.

Assume that the intersection of U with any vertical line is either
empty or path-connected. Because the subsystem relative to U is
faithful almost-toric, Lemma 4.3 implies the fibers of J |U are path-
connected, as desired. �

Remark 4.8 Vertical almost-toric systems are very closely related to
the generalized semi-toric systems introduced in Pelayo & Ratiu & Vũ
Ngo.c [33]. Both are special cases of integrable systems on 4-manifolds
in which all singular orbits are almost-toric and in which J is assumed
to generate a Hamiltonian S1 action and have connected fibers. But
there are some significant differences:

• The definition of generalized semi-toric systems assumes properness
of Φ (cf. Pelayo & Ratiu & Vũ Ngo.c [33, Definition 1.3]) which,
together with the other properties, can be proved to imply connect-
edness of the fibers of Φ (cf. Pelayo & Ratiu & Vũ Ngo.c [32]).
• On the other hand, as a result of being faithful, the moment map of

a vertical almost-toric system is assumed to be proper onto its image
and to have connected fibers.

Accordingly, vertical almost-toric systems can be thought of as subsys-
tems of generalized semi-toric systems. However, the notion of isomor-
phism of vertical almost-toric systems is strictly weaker than that of
generalized semi-toric systems, as it allows for diffeomorphisms of the
moment map images whose derivative has negative determinant (cf.
Pelayo & Ratiu & Vũ Ngo.c [33, Definition 2.4]).

Almost-toric systems (cf. Definition 3.12) are a source of examples
of vertical almost-toric systems.
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Proposition 4.9. Given an almost-toric system (M,ω,Φ), any leaf L
admits an open neighborhood V such that (V, ω|V ,Φ|V ) is isomorphic
to a vertical almost-toric system.

Proof. A leaf of an almost-toric system is either weakly toric or is a
focus-focus leaf. In the former case, the local normal forms for ellip-
tic tori yield the result. Thus, suppose that L is a focus-focus leaf
and let V be a saturated regular neighborhood of L. By construction,
V is connected; moreover, Proposition 3.20 gives that (V, ω|V ,Φ|V ) is
faithful almost-toric. Proposition 3.19 gives that there exists a system-
preserving effective Hamiltonian S1-action on (V, ω|V ,Φ|V ); in other
words, that subsystem is isomorphic to an almost-toric system whose
first integral is the moment map of an effective Hamiltonian S1-action.
Thus, without loss of generality, it may be assumed that the first com-
ponent of Φ|V is the moment map of an effective Hamiltonian S1-action.
By construction of V , properties (V3) and (V4) of a vertical almost-
toric system hold for (V, ω|V ,Φ|V ). Set c = Φ(L). Let U ⊂ Φ|V (V ) be
an open neighborhood of c with the property that its intersection with
any vertical line is either empty or path-connected. Using Proposition
4.7, the subsystem relative to U of (V, ω|V ,Φ|V ) is vertical almost-toric
as desired. �

Remark 4.10 The vertical almost-toric systems of Proposition 4.9
are not necessarily generalized semi-toric because their moment map
images are not necessarily closed in R2, while those of generalized semi-
toric systems are.

4.2. Geometric implications of the S1-action. Fix a vertical almost-
toric system (M,ω,Φ = (J,H)) and denote the set of fixed points of

the Hamiltonian S1-action, one of whose moment maps is J , by MS1
.

Its connected components are either isolated fixed points or symplec-
tic fixed surfaces, i.e., symplectic submanifolds of dimension 2 that
are fixed under the S1-action. This is a consequence of the Marle-
Guillemin-Sternberg local normal form (cf. Guillemin & Sternberg [15],
Marle [26]).

Proposition 4.11. Let (M,ω,Φ = (J,H)) be a vertical almost-toric

system such that MS1
contains a fixed surface Σ. Then J(Σ) is a

global extremum of J .

Proof. To show that J(Σ) is a global extremum of J it suffices to show
that it cannot lie in the interior of the interval J(M). Assume the
contrary: then J−1 (J(Σ)) = Σ as the fibers of J are connected by
property (V5). Since J(Σ) ∈ Int (J(M)), it follows that J(M) r J(Σ)
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is disconnected, thus implying that M r Σ = J−1 (J(M) r J(Σ)) is
disconnected. However, this is absurd, since Σ ⊂ M is a submanifold
of codimension 2. �

In fact, given a vertical almost-toric system (M,ω,Φ = (J,H)) for

which MS1
contains a fixed surface Σ, each point of Σ belongs to some

singular orbit of elliptic type, so Φ(Σ) ⊂ ∂∞B. Moreover Φ(Σ) ⊂
{(x, y) | x = J(Σ)}. The image Φ(Σ) ⊂ B is henceforth referred to as
a vertical edge of B. The following result provides a characterization
of vertical edges.

Proposition 4.12. Let (M,ω,Φ = (J,H)) be a vertical almost-toric
system and suppose that there exists x0 ∈ J(M) and distinct points
c∞1 , c∞2 , c∞3 ∈ ∂∞B ∩ {(x, y) | x = x0}. Then ∂∞B ∩ {(x, y) | x = x0}
is a vertical edge.

Proof. For i = 1, 2, 3, set c∞i = (x0, yi) and assume, without loss of
generality, that y1 < y2 < y3. Since the fibers of J are connected by
property (V5), it follows that

{(x, y) | x = x0 , y1 ≤ y ≤ y3} ⊂ B.

The local normal forms for almost-toric singular orbits in the presence
of a system-preserving Hamiltonian S1-action (cf. Remark 2.38), to-
gether with faithfulness of (M,ω,Φ = (J,H)), force Φ−1 (c∞2 ) to be a
singular orbit of elliptic-regular type all of whose points are critical for
J . Then Φ−1 (c∞2 ) lies on a fixed surface and Proposition 4.11, together
with connectedness of the fibers of J , completes the proof. �

Combining Propositions 4.11 and 4.12, we obtain the following result.

Corollary 4.13. Let (M,ω,Φ = (J,H)) be a vertical almost-toric sys-
tem and consider a point x0 ∈ Int (J(M)). Then the intersection
∂∞B ∩ {(x, y) | x = x0} consists of at most two points.

To conclude this section, we state the following result, which is en-
tirely analogous to Hohloch & Sabatini & Sepe [19, Lemma 3.3].

Proposition 4.14. Let (M,ω,Φ = (J,H)) be a vertical almost-toric

system. Then the isolated fixed points in MS1
are either

• focus-focus singular orbits, or
• elliptic-elliptic singular orbits whose image is not a corner adjacent

to a vertical edge.
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4.3. Cuts and cartographic homeomorphisms. An important prop-
erty of vertical almost-toric systems is that, as proved below, assum-
ing the following mild restriction, they admit cartographic homeomor-
phisms (cf. Theorem 4.24).

Definition 4.15. A vertical almost-toric system (M,ω,Φ = (J,H)) is
said to be simple if the following property holds:

(V6) Any focus-focus value has multiplicity 1.

The above condition is generic according to Zung [49]. Moreover, it
is invariant under taking isomorphisms of vertical almost-toric systems
and descends to saturated subsystems satisfying all the hypotheses of
Proposition 4.7.

While the existence of cartographic homeomorphisms is expected to
hold without imposing property (V6), proofs would require a more de-
tailed understanding of neighborhoods of focus-focus fibers with more
than one focus-focus point, which is beyond the scope of this paper (cf.
Vũ Ngo.c [45, Section 7] for some sketched proofs in this direction). To
the best of our knowledge, all existing proofs of the existence of carto-
graphic homeomorphisms assume, either tacitly or explicitly, simplicity
of the system (cf. Vũ Ngo.c [46, Step 4 of the Proof of Theorem 3.8]
and Pelayo & Ratiu & Vũ Ngo.c [33, Step 4 of the Proof of Theorem
B]).

Remark 4.16 Note that the notion of simple used in the literature on
semi-toric systems differs from ours: There it means that there exists
at most one one focus-focus point on any fiber of J .

The aim of this section is to prove that any simple vertical almost-
toric system admits a cartographic homeomorphism that, loosely speak-
ing, encodes the affine holonomy of the Z-affine structure on the locally
weakly toric part of the leaf space (cf. Theorem 4.24 for a precise state-
ment). It is important to remark that there are proofs of this result
for special families of vertical almost-toric systems (cf. Vũ Ngo.c [46,
Theorem 3.8] and Pelayo & Ratiu & Vũ Ngo.c [33, Theorem B] for semi-
toric and generalized semi-toric systems respectively). Those proofs are
utilized and adjusted as needed in what follows.

Lemma 4.17. Let (M,ω,Φ = (J,H)) be a vertical almost-toric system
without focus-focus points. Then there exists a cartographic pair (f,B),
where f is of the form

f(x, y) =
(
f (1), f (2)

)
(x, y) =

(
x, f (2)(x, y)

)
.
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In particular, (M,ω, f ◦Φ) is a Delzant system and f(B) ⊂ R2 is locally
convex.

Proof. The proof is analogous to Pelayo & Ratiu & Vũ Ngo.c [33, Step
2 of Theorem B], but is included in this paper for completeness.

The lack of focus-focus points implies B = Blt, thus B inherits a
Z-affine structure. By Corollary 4.5, B is contractible, so there exists
a developing map f : B ∼= B̃ → R2. By definition of the Z-affine
structure on B, since the first integral J of (M,ω,Φ = (J,H)) is the
moment map of an effective Hamiltonian S1-action, one can choose the
above developing map to be of the form f(x, y) =

(
x, f (2)(x, y)

)
for

some smooth function f (2) : B → R. Fix such a choice.
To show that f is the required cartographic homeomorphism, it suf-

fices to show that f is injective. If f(x0, y0) = f(x1, y1), one gets
immediately x0 = x1. The map f (2)(x0, ·) : B ∩ {(x, y) | x = x0} → R
is strictly monotone as ∂f (2)

∂y
does not vanish on B, because f is locally

a diffeomorphism. This implies that y0 = y1 as required.
Since (M,ω,Φ = (J,H)) is vertical almost-toric and because of the

form of f , (M,ω, f ◦ Φ) is vertical almost-toric. In fact, it is toric
because f ◦Φ : (M,ω)→ R2 is the moment map of an effective Hamil-
tonian T2-action. By Corollary 4.6, (M,ω, f ◦ Φ) is Delzant and by
Corollary 2.36, f(B) is locally convex. �

Remark 4.18 There is freedom in choosing the cartographic homeo-
morphism as in Lemma 4.17. If f, f̂ : B → R2 are two such choices,
then by Remark 2.25, there exists an element h ∈ AGL(2;Z) such that

f̂ = h◦f . However, since f and f̂ are chosen to have the restricted form
given by Lemma 4.17, it follows that the element h belongs, in fact, to
the subgroup Vert(2;Z) consisting of Z-affine transformations that fix
all vertical lines in R2. Using the standard basis for R2, elements of
Vert(2;Z) are of the form((

1 0
k ±1

)
,

(
0
a

))
,

where k ∈ Z and a ∈ R. In fact, if f is a cartographic homeomorphism
as in Lemma 4.17 and h ∈ Vert(2;Z), then h ◦ f is also a cartographic
homeomorphism satisfying the conditions of Lemma 4.17.

Let (M,ω,Φ = (J,H)) be a simple vertical almost-toric system with
B = Φ(M) that contains at least one focus-focus point. An example
is shown in Figure 4.1. We introduce vertical ‘cuts’ at the focus-focus
values. This terminology is motivated by Vũ Ngo.c[46]. Symington [40]
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refers to these as ‘eigenrays’ in the more general context of (faithful)
almost-toric systems.

? ?
?

??

?

?

?
? ?

?

xsup R

Figure 4.1. The image of the moment map (gray) with
the focus-focus values (marked by ?) and their projection
onto the first component.

Let Bff ⊂ Int(B) denote the set of focus-focus values. By Remark
3.25, it is a countable subset. To order the elements of Bff we fix the
following convention for the indexing set of Bff . Set

xsup := sup{pr1(c) | c ∈ Bff},
xinf := inf{pr1(c) | c ∈ Bff},

(4.1)

where pr1 : R2 → R is projection onto the first component. By property
(V3), this supremum xsup (respectively infimum xinf) is either attained
as a maximum (respectively as a minimum) or does not lie in J(M).
Set

(4.2) I :=


{1, 2, . . . , |Bff |} if |Bff | <∞;

{1, 2, . . .} if |Bff | = |N| and xinf ∈ J(M);

{0,−1,−2, . . .} if |Bff | = |N| and xsup ∈ J(M);

Z otherwise.

By construction, the cardinality of I equals that of Bff and thus we
think of the elements of the latter as being indexed by I. Order the
elements of Bff as follows. For i ∈ I, set ci = (xi, yi). Then require
that i < j implies either xi < xj, or xi = xj and yi < yj; moreover, if
0, 1 ∈ I, require that x0 < x1. (If I = Z, the above ordering is unique
up to the choice of which focus-focus value is labeled with 0.)
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For each i ∈ I choose a sign εi ∈ {+1,−1}, and denote the associated
vertical cut in B at ci by

lεi := {(x, y) ∈ R2 | x = xi, εiy ≥ εiyi} ∩B.
When εi = +1 (respectively −1), the cut lεi is simply the intersection
of B with the vertical half-line starting at ci going ‘up’ (respectively
‘down’), cf. Figure 4.2. Therefore the former is referred to as being
upward, while the latter as being downward. For a fixed ε ∈ {+1,−1}I ,
denote the union of the cuts by lε and set Sε := B r lε. Moreover, to
each element (x, y) ∈ Blt = B rBff , associate the integer

jε(x, y) :=
∑

{i∈I| (x,y)∈lεi}

εi,

with the convention that jε(x, y) = 0 for (x, y) ∈ Sε. Finiteness of
jε(x, y) follows from property (V4) and Proposition 4.14.

εi = +1

εj = +1 εj = −1

εi = +1

εj = +1

εi = −1?

?

?

?

?

?

(a) (b) (c)

Figure 4.2. Image of the moment map (gray) with cuts
emanating from the focus-focus values (marked by ?).
The choice of cuts in (a) and (b) leads to a simply con-
nected set whereas the choice in (c) yields two connected
components.

Corollary 4.19. The subset Sε is open and dense in B.

Proof. Density of Sε in B is trivial, so it remains to prove its openness
in B and, to this end, it suffices to prove that lε is closed in B. Let
{(xn, yn)} ⊂ lε be a sequence which converges to (x0, y0) ∈ B. This
implies that the sequence {xn} = pr1 ({(xn, yn)}) ⊂ J(M) converges to
x0 ∈ J(M). By construction and by Proposition 4.14, {xn} is contained
in the subset of critical values of J , which does not contain any limit
points in J(M) by property (V3). Therefore, for all but finitely many
n, xn = x0, which, in turn, implies that (xn, yn) ∈ {(x, y) | x = x0} for
all but finitely many n. By property (V4) and Proposition 4.14, the
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vertical line {(x, y) | x = x0} contains finitely many focus-focus values
and, therefore, finitely many cuts. Seeing as each cut is a closed sub-
set, then the union of all cuts contained on {(x, y) | x = x0} is closed.
Therefore, (x0, y0) ∈ lε as required. �

Remark 4.20 In general, it is not true that lε is closed in R2, for
xsup, xinf may belong to Rr J(M).

The notation Sε is suggestive of the fact that there exists a carto-
graphic homeomorphism fε : B → R2 such that (fε, Sε) is a carto-
graphic pair for (M,ω,Φ = (J,H)). Before stating and proving the
precise existence statement, we prove some further properties of Sε (cf.
Figure 4.2).

Lemma 4.21. The subset Sε is path-connected if and only if εi ≥ εj
for all i > j with xi = xj.

Proof. Suppose first that Sε is path-connected and let i > j ∈ I be such
that xi = xj. Let (x1, y1), (x2, y2) ∈ Sε be points with x1 < xi < x2.
Such points exist because focus-focus values are contained in Int(B).
Since Sε is path-connected, there exists a path in Sε starting at (x1, y1)
and ending at (x2, y2). Therefore, there exists a point (xi, y

′) ∈ Sε and
thus εi ≥ εj.

Conversely, suppose that ε satisfies the condition that εi ≥ εj for
all i > j with xi = xj. First we show that, for all x1 ∈ J(M),
{(x, y) | x = x1} ∩ Sε 6= ∅ and that the set is path-connected. If
x1 /∈ pr1(Bff), one obtains

{(x, y) | x = x1} ∩ Sε = {(x, y) | x = x1} ∩B
and the result follows from the fact that (M,ω,Φ = (J,H)) is a ver-
tical almost-toric system. Suppose, therefore, that x1 ∈ pr1(Bff). By
property (V4) and Proposition 4.14, there are finitely many focus-focus
values (x1, yi1), . . . , (x1, yiN ) lying on the vertical line {(x, y) | x = x1}.
Set

y+ := inf{yik | εik = +1},
y− := sup{yik | εik = −1}.

Since ε satisfies the condition in the statement, it follows that y+ > y−
and therefore,

{(x, y) | x = x1} ∩ Sε = {(x, y) | x = x1 , y+ > y > y−} ,
which shows that {(x, y) | x = x1}∩Sε is path-connected. By Corollary
4.19, Sε is open in B. Thus Sε satisfies all the hypotheses of Proposition
4.7 and, therefore, the subsystem of (M,ω,Φ = (J,H)) relative to Sε
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is vertical almost-toric. By Corollary 4.5, Sε is contractible and, in
particular, path-connected. �

Corollary 4.22. The subset Sε is path-connected if and only if it is
contractible.

Corollary 4.23. There exists a choice of ε making Sε path-connected.

Proof. The choice of εi = +1 for all i ∈ I satisfies the condition of
Lemma 4.21. �

Having established the above preliminary results, we can state and
prove existence of cartographic homeomorphisms for simple vertical
almost-toric systems.

Theorem 4.24. Let (M,ω,Φ = (J,H)) be a simple vertical almost-
toric system with Bff = {ci}i∈I 6= ∅. For any ε ∈ {+1,−1}I , there

exists a cartographic pair (fε, Sε), where fε(x, y) =
(
x, f

(2)
ε (x, y)

)
, sat-

isfying the following properties

(C1) the quantity sgn
(
∂f

(2)
ε

∂y
(x, y)

)
=: sgn(fε) is constant for all (x, y) ∈

Sε;
(C2) for all (x, y) ∈ Blt,

(4.3) lim
(x,y)→(x,y)

x<x

Dfε(x, y) =

(
1 0

sgn(fε)jε(x, y) 1

)
lim

(x,y)→(x,y)
x>x

Dfε(x, y).

In particular, fε(B) is locally convex.

Any cartographic homeomorphism fε : B → R2 satisfying the prop-
erties in Theorem 4.24 is said to be associated to ε.

The proof of Theorem 4.24 is split into two cases: when Sε is path-
connected and when it is not.

Proof of Theorem 4.24 if Sε is path-connected. Suppose that Sε is path-
connected; by Corollary 4.23, a choice of ε whose associated set Sε is
path-connected exists. The idea is to argue as in Pelayo & Ratiu &
Vũ Ngo.c [33, Steps 2 – 4 in the proof of Theorem B] recalling and
adjusting it as much as necessary for our purposes.

By construction Sε ⊂ Blt. Now let q : B̃lt → Blt denote the universal
covering. By Corollary 4.22, Sε is contractible and, in particular, sim-
ply connected. Therefore, there exists a smooth section σ : Sε → B̃lt

of q. Consider a developing map dev : B̃lt → R2 constructed by fixing
basepoints x0 ∈ Sε and x̃0 ∈ σ (Sε). Set fε := dev ◦ σ : Sε → R2.
Arguing as in the proof of Lemma 4.17, it is possible to choose dev

so that fε(x, y) =
(
x, f

(2)
ε (x, y)

)
for any (x, y) ∈ Sε. Fix such a
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choice. Following the arguments in Pelayo & Ratiu & Vũ Ngo.c [33,
Step 4 of the proof of Theorem B], fε can be extended to an embed-
ding B → R2 which, by abuse of notation, is also denoted by fε. By
construction and by density of Sε ⊂ B, (fε, Sε) is a cartographic pair

with fε(x, y) =
(
x, f

(2)
ε (x, y)

)
. Thus for all (x, y) ∈ Sε, ∂f

(2)
ε

∂y
(x, y) 6= 0.

Since Sε is path-connected, property (C1) follows.
To complete the proof, there are two cases to consider, depending on

whether sgn(fε) = +1 or sgn(fε) = −1. In the first case, property (C2)
and local convexity of fε(B) can be proved as in Vũ Ngo.c [46, Steps 5
and 6 of the proof of Theorem 3.8]. Thus suppose that sgn(fε) = −1.

Setting f̂ε := ( 1 0
0 −1 ) ◦ fε,

(
f̂ε, Sε

)
is a cartographic pair which can be

constructed as above satisfying sgn(f̂ε) = +1. (This corresponds to
adjusting the above choice of developing map by composing on the left
with the map (( 1 0

0 −1 ) , ( 0
0 )) ∈ Vert(2;Z), cf. Remark 4.18.) Fix (x, y) ∈

Blt. Then, using property (C2) for f̂ε and the fact that sgn(fε) = −1,

lim
(x,y)→(x,y)

x<x

Dfε(x, y) =

(
1 0
0 −1

)
lim

(x,y)→(x,y)
x<x

Df̂ε(x, y)

=

(
1 0
0 −1

)(
1 0

jε(x, y) 1

)
lim

(x,y)→(x,y)
x>x

Df̂ε(x, y)

=

(
1 0

sgn(fε)jε(x, y) 1

)(
1 0
0 −1

)
lim

(x,y)→(x,y)
x>x

Df̂ε(x, y)

=

(
1 0

sgn(fε)jε(x, y) 1

)
lim

(x,y)→(x,y)
x>x

Dfε(x, y),

This proves property (C2) in general.

Finally, observe that f̂ε(B) is locally convex and that Z-affine maps
preserve this property. Thus fε(B) is locally convex as required. �

Now we turn to the case of Sε not being path-connected. There exist
proofs for such cases in the literature (cf. for instance Pelayo & Ratiu
& Vũ Ngo.c [33, Step 5 of the proof of Theorem B]). The argument
presented below, however, uses different techniques.

Before delving into the proof, we introduce some useful notions and
notation. For any x ∈ J(M), set

(4.4) Nx := |{i ∈ I | xi = x}| .
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By property (V4) and Proposition 4.14, Nx is finite for any x ∈ J(M).
Moreover, for a fixed ε ∈ {+1,−1}I , set

(4.5) N±x (ε) := ± |{i ∈ I | xi = x and εi = ±1}| .

Observe that, for any x ∈ J(M) and any ε ∈ {+1,−1}I ,

Nx = N+
x (ε)−N−x (ε).

Moreover, for any (x, y) ∈ Blt and any ε ∈ {+1,−1}I ,

jε(x, y) = N+
x (ε) +N−x (ε).

Fix x ∈ J(M) with Nx 6= 0. Then, by property (V4) and Proposition
4.14, there exist finitely many indices i1 < i2 < . . . < iNx in I with
xij = x. Observe that, by definition of the ordering on Bff ,

{(x, y) | x = x} ∩Blt ⊂ {(x, y) | x = x and y < yi1}

∪
Nx−1⋃
j=1

{
(x, y) | x = x and yij < y < yij+1

}
∪
{

(x, y) | x = x and y > yiNx

}
.

Lemma 4.25. For any ε ∈ {+1,−1}I and for all x ∈ J(M) with
Nx 6= 0, the function jε(x, ·) : {(x, y) | x = x} ∩Blt → Z satisfies

• jε(x, y) = N−x (ε) for all (x, y) ∈ {(x, y) | x = x and y < yi1};
• jε(x, y) = N−x (ε) + k = N+

x (ε)−Nx + j for all k = 1, . . . , Nx− 1 and
for all (x, y) ∈

{
(x, y) | x = x and yik < y < yik+1

}
;

• jε(x, y) = N+
x (ε) for all (x, y) ∈

{
(x, y) | x = x and y > yiNx

}
.

Hereby, i1 < i2 < . . . < iNx are the elements of I such that xij = x. In
particular, the function jε(x, ·) only depends on N±x (ε).

Proof. Fix ε ∈ {+1,−1}I and consider (x, y) ∈ Blt such that Nx 6= 0.
Suppose first that y < yi1 . This means that (x, y) is ‘below’ all focus-
focus values on the vertical line {(x, y) | x = x}. By definition of the
ordering on Bff and of the cuts associated to ε, for all k ∈ {1, . . . , Nx},
if εik = −1 then (x, y) ∈ lεik , while if εik = +1, then (x, y) /∈ lεik . Thus

jε(x, y) = − |{i ∈ I | xi = x and εi = −1}| = N−x (ε)

as required. Similarly, if y > yiNx
, then jε(x, y) = N+

x (ε), for (x, y) is
‘above’ all focus-focus values on the vertical line {(x, y) | x = x}.

It remains to prove the intermediate cases for which we proceed by
induction on k. The base case is y < yi1 , which has already been
proved. Suppose that the required statement holds for all m < k and
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let yik < y < yik+1
. Set, for any (x̄, ȳ) ∈ Blt,

j±ε (x̄, ȳ) :=
∑

{i∈I|(x̄,ȳ)∈lεi and εi=±1}

εi.

Clearly, for any (x̄, ȳ) ∈ Blt, jε(x̄, ȳ) = j+
ε (x̄, ȳ) + j−ε (x̄, ȳ). Fix some

(x, y′) ∈ Blt with yik−1
< y′ < yik . The inductive hypothesis im-

plies jε(x, y
′) = N−x (ε) + k − 1. There are two cases to consider,

depending on whether εik = +1 or εik = −1. In the former case,
observe that j+

ε (x, y) = j+
ε (x, y′) + 1, while j−ε (x, y) = j−ε (x, y′). Thus,

jε(x, y) = jε(x, y
′) + 1 = N−x (ε) + k as required. The latter case is

proved analogously swapping the roles of j+
ε (x, y) and j−ε (x, y). �

With the above results at hand, we finish the proof of Theorem 4.24.

Proof of Theorem 4.24 if Sε is not path-connected. Suppose that Sε is
not path-connected. The idea is to reduce this situation to the path-
connected case by appealing to the following result.
Lemma 4.26. There exists a unique ε̂ ∈ {+1,−1}I such that

• Sε ⊂ Sε̂;
• for all (x, y) ∈ Blt, jε(x, y) = jε̂(x, y);
• Sε̂ is path-connected.

Assume Lemma 4.26, whose proof is below. Let ε̂ be as in Lemma 4.26
and let fε̂ : B → R2 be a cartographic homeomorphism associated to
ε̂. Set fε := fε̂. Since Sε ⊂ Sε̂, Corollary 4.19 implies that (fε, Sε)
is a cartographic pair; property (C1) holds by construction. Property
(C2) holds because Lemma 4.26 implies that jε(x, y) = jε̂(x, y) for all
(x, y) ∈ Blt. Moreover, sgn(fε) = sgn(fε̂) holds by definition. Local
convexity of fε(B) = fε̂(B) is also true as fε̂ is associated to ε̂ in the
sense of Proposition 4.24. This finishes the proof of Theorem 4.24 for
the case that Sε is not path-connected. �

Proof of Lemma 4.26. Since Sε is not path-connected, Lemma 4.21 im-
plies that there exists x ∈ pr1 (Bff) with {(x, y) | x = x} ∩ B ⊂ lε. De-
note the set of such x by Disc(ε) ⊂ pr1 (Bff); since Bff is countable, so
is Disc(ε). The idea is to define ε̂ ∈ {+1,−1}I as follows:

• If i ∈ I is such that xi /∈ Disc(ε) then ε̂i := εi.
• If i ∈ I is such that xi ∈ Disc(ε) set x = xi and let i1 < i2 < . . . < iNx

be the elements in I such that xij = x. Then
– if i = ij for some j = 1, . . . , |N−x (ε)|, set ε̂i := −1;
– if i = ij for some j = |N−x (ε)|+ 1, . . . , Nx, set ε̂i := +1.

First, it is shown that ε̂ satisfies the properties itemized in Lemma 4.26.
To see that Sε̂ is path-connected, we use the criterion of Lemma 4.21.
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Suppose that there exist i > j with xi = xj. There are two cases to
consider, depending on whether xi /∈ Disc(ε) or xi ∈ Disc(ε). In the
former, observe that ε̂i = εi and ε̂j = εj. Since xi /∈ Disc(ε), it follows
that ε̂i = εi ≥ εj = ε̂j. On the other hand, if xi ∈ Disc(ε), then the
definition of ε̂ implies that ε̂i ≥ ε̂j. Thus Sε is path-connected.

Now, to show that Sε ⊂ Sε̂, consider (x, y) ∈ Sε. By definition of
the cuts, if x 6= xi for any i ∈ I, then (x, y) ∈ Sε̂. Therefore, suppose
that there exists i ∈ I with x = xi. By property (V4) and Proposition
4.14, there exist finitely many indices i0, . . . , ir ∈ I such that xij = x
for all j = 0, . . . , r. Then (x, y) ∈ Sε, implies that, for all j = 0, . . . , r,
xij /∈ Disc(ε). Thus ε̂ij = εij for all j = 0, . . . , r by definition, which
implies (x, y) ∈ Sε̂.

Finally, to show that jε(x, y) = jε̂(x, y) for all (x, y) ∈ Blt, consider
some (x, y) ∈ Blt. If x 6= xi for all i ∈ I, the above equality is trivially
true. Suppose, therefore, that there exists i ∈ I with x = xi. By
Lemma 4.25, jε(x, y) = jε̂(x, y) is equivalent to N±x (ε) = N±x (ε̂), but
the latter equality follows from the way in which ε̂ has been defined.

It remains to check that ε̂ is the unique choice of signs satisfying the
above properties. Suppose that ε̂′ is another such choice. The inclusion
Sε ⊂ Sε̂′ implies ε̂′i = εi = ε̂i for all i ∈ I such that xi /∈ Disc(ε). On
the other hand, the condition that jε(x, y) = jε̂(x, y) for all (x, y) ∈ Blt

implies, using the above argument, that ε̂′i = ε̂i for all i ∈ I such that
xi ∈ Disc(ε). This shows that ε̂′ = ε̂ as required. �

Remark 4.27 The above argument for the case of Sε not being path-
connected only works because the system (M,ω,Φ = (J,H)) is as-
sumed to be simple. If focus-focus values of higher multiplicity are
allowed, then there may be no analogue of ε̂ as in Lemma 4.26.

Remark 4.28 The argument proving the case of Theorem 4.24 when
Sε is not path-connected shows that, for a given vertical almost toric
system, the set of all cartographic homeomorphisms that satisfy the
hypotheses of Theorem 4.24 equals that of the cartographic homeo-
morphisms associated to those ε for which Sε is path-connected (cf.
Vũ Ngo.c [46, Proposition 4.1]).

4.4. The set of cartographic pairs. Given a simple vertical almost-
toric system (M,ω,Φ = (J,H)), it is natural to ask for a description
of the set of all cartographic pairs of (M,ω,Φ = (J,H)) that satisfy
the properties in Theorem 4.24. Providing such a description is the
aim of this section, which generalizes, while being heavily inspired by,
work of Vũ Ngo.c [46, Section 4]. Henceforth, fix a vertical almost-toric
system (M,ω,Φ = (J,H)). If (M,ω,Φ = (J,H)) does not have any
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focus-focus points, then Remark 4.18 describes all cartographic pairs
as in Lemma 4.17: In that case, any cartographic homeomorphism can
be obtained from a fixed one by composing on the left by an element
of Vert(2;Z).

Thus, assume that (M,ω,Φ = (J,H)) contains at least one focus-
focus point. The idea is to show that any cartographic homeomorphism
of (M,ω,Φ = (J,H)) as in Theorem 4.24 can be constructed from a
fixed one by means of composing on the left with a suitable homeomor-
phism (see Corollary 4.29 and Theorem 4.36 for precise statements).
It is convenient to consider two separate cases:

• Determine all cartographic homeomorphisms associated to a given
choice of signs (Corollary 4.29).
• Determine how cartographic homeomorphisms associated to possibly

distinct choices of signs are related (Theorem 4.36).

First, we consider the set of all cartographic homeomorphisms as-
sociated to a given choice of signs; this is described in the following
result, which is analogous to Remark 4.18.

Corollary 4.29. Fix a vertical almost-toric system (M,ω,Φ = (J,H))

and a choice of signs ε. If fε, f̂ε are cartographic homeomorphisms
associated to ε, then there exists an element h ∈ Vert(2;Z) with f̂ε =

h ◦ fε. Conversely, for any h ∈ Vert(2;Z), the map f̂ε := h ◦ fε is a
cartographic homeomorphism associated to ε.

Proof. It may be assumed without loss of generality that Sε is path-
connected since the not path-connected case can be reduced to the
path-connected one as in the proof of Theorem 4.24. Let fε, f̂ε : B →
R2 be cartographic homeomorphisms associated to ε. Then their re-
strictions to Sε are developing maps for the induced Z-affine structure
on Sε. Therefore, arguing as in Remark 4.18, there exists an element
h ∈ Vert(2;Z) with f̂ε|Sε = h ◦ fε|Sε . Since Sε ⊂ B is dense, this

implies that f̂ε = h ◦ fε as required.
Conversely, the proof of Theorem 4.24 gives that composing a carto-

graphic homeomorphism associated to ε on the left with an element of
Vert(2;Z) yields another cartographic homeomorphism associated to
ε. �

Having established Corollary 4.29, we study the problem of relating
cartographic homeomorphisms whose associated signs are not neces-
sarily equal. Before stating the main result of this section we introduce
some tools akin to those needed in Vũ Ngo.c [46, Section 4], but slightly
more involved as vertical almost-toric systems allow for the presence
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of infinitely many focus-focus points (see Remarks 4.30, 4.31 and 4.37
below).

As in Section 4.3, let I be the indexing set of the set of focus-focus
values Bff defined in equation (4.2). Also, fix the ordering on Bff as in
the paragraph following equation (4.2), so elements of Bff are denoted
by ci = (xi, yi) for i ∈ I. Henceforth, fix elements ε, ε̂ ∈ {+1,−1}I and
associated cartographic homeomorphisms fε, fε̂ : B → R2. Further-
more, fix a basepoint (x, y) ∈ Blt with the property that x0 < x < x1.
(If x0 or x1 is not defined, then only the other inequality is required.)

Remark 4.30 The above choice of basepoint agrees with that made in
Vũ Ngo.c [46, Proof of Proposition 4.1]. However, there is an important
difference that arises because of the possibility of having infinitely many
focus-focus points for vertical almost-toric systems. In what follows we
must allow for the case in which there are focus-focus values ‘to the
left’ of the basepoint, i.e., with notation as above, for the case in which
there exists i ∈ I with xi < x. (If this is the case, then by the choices
of indexing set I of equation (4.2) and of basepoint, then there are
infinitely many such indices.)

Throughout this section, set T :=

(
1 0
1 1

)
. For any i ∈ I, set

(4.6) ki(ε, ε̂) := sgn(fε̂)

(
εi − ε̂i

2

)
.

Moreover, for any i ∈ I define li,ε,ε̂ : R2 → R2 as follows:

• If i ≤ 0, let li,ε,ε̂ be the identity.
• If i > 0, let li,ε,ε̂ be the piece-wise Z-affine transformation that acts

as the identity on the half-space x < xi and as the shear T ki(ε,ε̂) on
the half-space x ≥ xi.

Analogously, for any i ∈ I define ri,ε,ε̂ : R2 → R2 as follows:

• If i ≤ 0, let ri,ε,ε̂ be the piece-wise Z-affine transformation that acts
as the shear T−ki(ε,ε̂) on the half-space x < xi and as the identity on
the half-space x ≥ xi.
• If i > 0 let ri,ε,ε̂ be the identity.

Remark 4.31 While the maps li,ε,ε̂ are those used in Vũ Ngo.c [46,
Section 4], the maps ri,ε,ε̂ are needed in the following precisely because
of the possibility of focus-focus values existing ‘to the left’ of the base-
point (cf. Remark 4.30).
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Explicitly, we have that if i > 0 then

(4.7) li,ε,ε̂ :=


id if x < xi,((

1 0

ki(ε, ε̂) 1

)
,

(
0

−ki(ε, ε̂)xi

))
if x ≥ xi,

and if i ≤ 0 then

(4.8) ri,ε,ε̂ =


((

1 0

−ki(ε, ε̂) 1

)
,

(
0

ki(ε, ε̂)xi

))
if x ≤ xi,

id if x > xi.

The maps li,ε,ε̂ and ri,ε,ε̂ are well-defined and satisfy the following
properties, the proofs of which are left to the reader.

Corollary 4.32. For each positive (respectively non-positive) i ∈ I,
the map li,ε,ε̂ (respectively ri,ε,ε̂) is a homeomorphism that fixes the
vertical line {(x, y) | x = xi} pointwise and is a Z-affine isomorphism
of R2 r {(x, y) | x = xi}.

Corollary 4.33. For any i, j ∈ I,

li,ε,ε̂ ◦ lj,ε,ε̂ = lj,ε,ε̂ ◦ li,ε,ε̂,
ri,ε,ε̂ ◦ rj,ε,ε̂ = rj,ε,ε̂ ◦ ri,ε,ε̂,
li,ε,ε̂ ◦ rj,ε,ε̂ = rj,ε,ε̂ ◦ li,ε,ε̂.

One ingredient in the construction of the homeomorphism that re-
lates fε and fε̂ is the composition of the maps li,ε,ε̂ or ri,ε,ε̂ as i range
over all indices in I. Seeing as this may involve the composition of
infinitely many maps different from the identity (as I may be infinite),
some care is needed. To this end, we first introduce notation for the
domains of these possibly infinite compositions. Set

Dsup :=

{
R2 if xsup ∈ J(M),

{(x, y) ∈ R2 | x < xsup} otherwise,

Dinf :=

{
R2 if xinf ∈ J(M),

{(x, y) ∈ R2 | x > xinf} otherwise,

where xsup, xinf ∈ R are defined as in equation (4.1). Observe that
B ⊂ Dsup ∩Dinf .

Next, we define the desired compositions. If the cardinality of I
is finite, the situation is entirely analogous to the one considered in
Vũ Ngo.c [46, Section 4]. For, with the above conventions, I being
finite implies that xsup, xinf ∈ J(M) and that I only contains positive
elements. In this case, set lε,ε̂ : Dsup = R2 → R2 and rε,ε̂ : Dinf = R2 →
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R2 to be equal to the finite compositions l|I|,ε,ε̂ ◦ l|I|−1,ε,ε̂ ◦ . . .◦ l1,ε,ε̂ and
r|I|,ε,ε̂ ◦ r|I|−1,ε,ε̂ ◦ . . . ◦ r1,ε,ε̂ respectively. Observe that the latter is,
by definition, equal to the identity. It remains to consider the case in
which I is infinite. If I has infinitely many positive elements, set, for
any (x, y) with x ≤ xi,

lε,ε̂(x, y) := li,ε,ε̂ ◦ li−1,ε,ε̂ ◦ . . . ◦ l1,ε,ε̂(x, y).

Analogously, if I has infinitely many non-positive elements, set, for any
(x, y) with x ≥ xi,

rε,ε̂(x, y) := ri,ε,ε̂ ◦ ri+1,ε,ε̂ ◦ . . . ◦ r0,ε,ε̂(x, y).

In the remaining cases, set lε,ε̂ = id = rε,ε̂.

Lemma 4.34. The maps lε,ε̂ : Dsup → Dsup and rε,ε̂ : Dinf → Dinf are
well-defined.

Proof. The result follows immediately if I is finite, and for lε,ε̂ (respec-
tively rε,ε̂) if I does not contain positive (respectively non-negative)
elements. Suppose that I contains infinitely many positive elements.
By definition of the maps li,ε,ε̂, for all i1 ≥ i2 ≥ 1, the restrictions of
li1,ε,ε̂ ◦ . . . ◦ li2,ε,ε̂ ◦ li2−1,ε,ε̂ ◦ . . . ◦ l1,ε,ε̂ and of li2,ε,ε̂ ◦ li2−1,ε,ε̂ ◦ . . . ◦ l1,ε,ε̂
to {(x, y) | x ≤ xi2} are equal. This implies that lε,ε̂ is well-defined.
The domain of lε,ε̂ is given by the subset of R2 consisting of points
(x, y) ∈ R2 for which there exists a positive i ∈ I with x ≤ xi. By
definition of xsup (see equation (4.1)), this is precisely Dsup. Moreover,
lε,ε̂ sends the first coordinate to itself, as do all li,ε,ε̂. This means that
the codomain of lε,ε̂ can be taken to be Dsup. An analogous argument
works for rε,ε̂ in the case of I containing infinitely many non-positive
elements by reversing the above inequalities. �

In fact, more is true.

Lemma 4.35. The maps lε,ε̂ : Dsup → Dsup and rε,ε̂ : Dinf → Dinf

are homeomorphisms that are Z-affine isomorphisms away from the
set

⋃
i∈I
{(x, y) | x = xi}.

Proof. As in the proof of Lemma 4.34, the only non-trivial cases to
consider are those of lε,ε̂ if I contains infinitely many positive elements
and of rε,ε̂ if I contains infinitely many non-positive elements. Consider
the former case (the latter is entirely analogous). To see that lε,ε̂ is a
homeomorphism, observe that the proof of Lemma 4.34 implies that,

for all (x, y) ∈ Dsup, lε,ε̂(x, y) =
(
x, l

(2)
ε,ε̂(x, y)

)
, for some continuous

function l
(2)
ε,ε̂ : Dsup → R. Moreover, it can be checked directly that,
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for any x < xsup, the function l
(2)
ε,ε̂(x, ·) is strictly increasing. Therefore,

lε,ε̂ is a homeomorphism onto its image. Since for any i ≥ 1 the map
li,ε,ε̂ ◦ li−1,ε,ε̂ ◦ . . . ◦ l1,ε,ε̂ sends {(x, y) | x ≤ xi} onto itself, it follows
that lε,ε̂(Dsup) = Dsup. The fact that it is a Z-affine isomorphism
away from

⋃
i∈I
{(x, y) | x = xi} follows from the fact that, for any i ≥

1, li,ε,ε̂ ◦ li−1,ε,ε̂ ◦ . . . ◦ l1,ε,ε̂ also satisfies this property (see Corollary
4.32). �

With the maps lε,ε̂ and rε,ε̂ at hand, we can state the main result of
this section.

Theorem 4.36. Let (M,ω,Φ = (J,H)) be a simple vertical almost-
toric system. Given any ε, ε̂ ∈ {+1,−1}I and any two cartographic
homeomorphisms fε, fε̂ : B → R2 associated to ε, ε̂ respectively, there
exists a transformation hε,ε̂ ∈ Vert(2;Z) such that

(4.9) fε̂ = rε,ε̂ ◦ lε,ε̂ ◦ hε,ε̂ ◦ fε.

The main idea behind Theorem 4.36 is not new; it first appears in
Vũ Ngo.c [46, Proposition 4.1] in the context of semi-toric systems.
However, the more general context of vertical almost-toric systems,
where there may be infinitely many focus-focus points, deserves to be
dealt with carefully. For instance, the transformation rε,ε̂, which is not
needed in the study of semi-toric systems, is necessary in this context
(cf. Remarks 4.30 and 4.31).

Remark 4.37 In fact, the statement and proof of Theorem 4.36 may
be of use in the study of semi-toric systems as well. The main references
for these systems make the underlying (tacit) assumption that the signs
of the cartographic homeomorphisms, as in Theorem 4.24, are positive
(cf. Pelayo & Vũ Ngo.c, Vũ Ngo.c [34, 35, 37, 46]).

Proof of Theorem 4.36. The proof is split into three steps:

• Construct the map hε,ε̂ ∈ Vert(2;Z).
• Reduce to the simpler case in which ε and ε̂ differ in precisely one

component.
• Prove the simpler case.

Step 1: constructing the map hε,ε̂ ∈ Vert(2;Z). As above, fix a base-
point (x, y) ∈ Blt with the property that x0 < x < x1. (If x0 or x1

is not defined, then only the other inequality is required.) Denote by
S the connected component of Sε ∩ Sε̂ containing (x, y). Since both
Sε and Sε̂ are open, so is S. Moreover it is path-connected by defi-
nition. Furthermore, it can be checked that S intersects any vertical
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line either in an empty or in a connected set. Therefore, by Proposi-
tion 4.7, the subsystem of (M,ω,Φ = (J,H)) relative to S is vertical
almost-toric and contains (x, y). Moreover, by construction, it contains
no focus-focus value. By Corollary 2.49, the maps fε|S and fε̂|S are
cartographic homeomorphisms for the subsystem of (M,ω,Φ = (J,H))
relative to S. Therefore, by Remark 4.18, there exists hε,ε̂ ∈ Vert(2;Z)
such that fε̂|S = hε,ε̂|fε(S) ◦ fε|S. The map hε,ε̂ is the desired one.

Step 2: reducing to a simpler case. Observe that, by Corollary 4.29,
the map hε,ε̂ ◦ fε is a cartographic homeomorphism associated to ε.
Moreover, the above argument shows that fε̂|S = (hε,ε̂ ◦ fε) |S. Thus,
in order to prove the result in the statement of the theorem, it suffices
to prove that, if fε̂|S = fε|S, then fε̂ = rε,ε̂ ◦ lε,ε̂ ◦ fε. Henceforth,
assume that fε̂|S = fε|S, which implies sgn (fε̂) = sgn (fε). In fact,
we can simplify the argument further: it suffices to prove the claimed
result under the assumption that all but one of the components of ε, ε̂
are equal. For, if the latter holds, we can argue as follows. Consider
a sequence of choices of signs εs, for s ∈ {1, 2, . . .} ∪ {∞}, such that
ε1 = ε, ε∞ = ε̂, and, for any s ≥ 1, all but one component of εs and
εs+1 are equal. Moreover, if ε, ε̂ differ in finitely components, say in r
components, choose the above sequence so that for all s ≥ r+1, εs = ε̂.
For each s ≥ 1, fix a choice of cartographic homeomorphism fεs with
the property that fεs|S = fε|S. Moreover, require that fε1 = fε, that
fε∞ = fε̂, and that, if ε, ε̂ differ in precisely r components, then for all
s ≥ r + 1, fεs = fε̂ . Using the above sequence of signs and associated
cartographic homeomorphisms and the fact that the claimed result
holds when all but one component of the signs are equal, we obtain,
for all s ≥ 1, maps lεs,εs+1 , rεs,εs+1 satisfying

(4.10) fεs+1 = rεs,εs+1 ◦ lεs,εs+1 ◦ fεs .
Therefore, iterating equation (4.10), for all s ≥ 1,

(4.11) fεs+1 = rεs,εs+1 ◦ lεs,εs+1 ◦ rεs−1,εs ◦ lεs−1,εs ◦ . . . ◦ rε1,ε2 ◦ lε1,ε2 ◦ fε,
where we use the fact that fε = fε1 . If ε and ε̂ differ in precisely r
components, then, by construction, for all s ≥ r + 1,

rεs,εs+1 = id = lεs,εs+1 .

Therefore, in this case, equation (4.11) yields that

fε̂ = rεr,εr+1 ◦ lεr,εr+1 ◦ rεr−1,εr ◦ lεr−1,εr ◦ . . . ◦ rε1,ε2 ◦ lε1,ε2 ◦ fε.
Because the homeomorphisms in the above composition commute (cf.
Corollary 4.33), by definition of lε,ε̂ and rε,ε̂,

(4.12) fε̂ = rε,ε̂ ◦ lε,ε̂.
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Thus the result is proved if ε and ε̂ differ in finitely many compo-
nents.

The case in which they differ by infinitely many components is en-
tirely analogous, as we can consider the composite of infinitely many
maps of the above form on, say, any compact subset of B (cf. the proof
of Lemma 4.34) and use a compact exhaustion of B. Thus, assuming
that the result holds when the choices of signs differ in precisely one
component, the result holds in general.

Step 3: proving the simple case. Assume that fε̂|S = fε|S and that ε
and ε̂ differ in precisely one component. Under these assumptions the
result can be proved exactly as in Vũ Ngo.c [46, Proposition 4.1], whose
key ideas are explained below. Suppose that ε and ε̂ differ precisely in
the ith component. By Corollary 2.52, fε̂ ◦ f−1

ε is a homeomorphism
that is piecewise Z-affine. Using the proof of Theorem 4.24, it may be
assumed without loss of generality that Sε and Sε̂ are path-connected.
As both sets are dense, it suffices to check the desired equality on
Sε ∩ Sε̂. Since ε and ε̂ differ in precisely one component, it follows
that Sε∩Sε̂ has two connected components, S and S′, which are open
and satisfy the assumptions of Proposition 4.7. Thus the subsystems of
(M,ω,Φ = (J,H)) relative to S and S′ are vertical almost-toric. By
Corollary 2.49, the restrictions of fε, fε̂ to S and S′ are cartographic
homeomorphisms for the respective subsystems of (M,ω,Φ = (J,H)).
By construction, these subsystems contain no focus-focus points. Thus,
Remark 4.18 implies that there exist hS, hS′ ∈ Vert(2;Z) with fε̂|S =
hS ◦ fε|S and fε̂|S′ = hS′ ◦ fε|S′ .

By assumption, fε̂|S = fε|S, so hS = id; on the other hand, the
above assumptions imply that (rε,ε̂ ◦ lε,ε̂) |S = id. Thus the desired
equality holds on S. It remains to check that it does on S′. Using
property (C2) for fε and fε̂ and the fact that sgn (fε) = sgn (fε̂), it can
be shown that the linear parts of hS′ and of (rε,ε̂ ◦ lε,ε̂) |S′ are equal.
To see that their translational components are equal, observe that the
piecewise Z-affine transformation given on fε (S) and on fε (S′) by hS
and hS′ , respectively, extends uniquely to a topological embedding of
fε (B) onto fε̂ (B) (which equals fε̂ ◦ f−1

ε ). In particular, it acts as
the identity on the vertical line containing the ith focus-focus value.
This implies that the translational component of hS′ equals that of
(rε,ε̂ ◦ lε,ε̂) |S′ . �

4.5. η-cartographic vertical almost-toric systems. Let (M,ω,Φ = (J,H))
be a simple vertical almost-toric system. The presence of a focus-
focus point implies that no vertical almost-toric system isomorphic to
(M,ω,Φ = (J,H)) has a cartographic moment map (cf. Section 2.7).
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On the other hand, Theorem 4.24 provides cartographic homeomor-
phisms associated to choices of vertical cuts. Fix any such cartographic
homeomorphism fε; while it is tempting to think of (M,ω, fε ◦ Φ) as an
integrable system, the lack of smoothness of fε prevents it from being
one. (If we were to adopt the non-standard convention of Harada &
Kaveh [17, Definition 2.1], (M,ω, fε ◦ Φ) would be an integrable sys-
tem.) The aim of this section is to show that, in some sense, the next
best scenario holds: Given a choice of signs ε with Sε connected, any
cartographic homeomorphism associated to ε can be modified in an
arbitrarily small neighborhood of the cuts associated to ε so that it be-
comes everywhere smooth (see Theorem 4.48 for a precise statement).
This smoothing of cartographic homeomorphisms generates representa-
tives in the isomorphism class of a simple vertical almost-toric system,
which we call η-cartographic, that are particularly useful when defin-
ing surgeries on (isomorphism classes of) simple vertical almost-toric
systems (cf. the forthcoming [20]). Moreover, we show that carto-
graphic homeomorphisms are, in some sense, limits of what we call
η-cartographic embeddings (see Proposition 4.52).

Throughout the rest of this section, a simple vertical almost-toric
system (M,ω,Φ = (J,H)) containing at least one focus-focus singular
point is fixed. As above, set B = Φ(M), let {ci} ⊂ Int(B) denote the
set of focus-focus values of (M,ω,Φ), while lε denotes the union of the
vertical cuts in B associated to a choice of signs ε ∈ {+1,−1}I . Also
let Sε = B r lε denote the complement of those cuts. Finally, assume
a cartographic homeomorphism has positive sign (cf. Theorem 4.24)
unless otherwise stated.

4.5.1. Admissible half-strips for simple vertical almost-toric systems.
First, we define the (closed) neighborhoods of vertical half-lines that
we use to construct the smoothing of a given cartographic homeomor-
phism.

Definition 4.38. Fix ε ∈ {+1,−1}, (x0, y0) ∈ R2, η > 0, and a
continuous map γ :

[
x0 − η

2
, x0 + η

2

]
→ R satisfying εy0 > εγ(x) for

all x ∈
[
x0 − η

2
, x0 + η

2

]
. A half-strip centered at (x0, y0) of sign ε and

width η with bounding curve γ is the following closed subset of R2:

σεη,γ(x0, y0) :=
{

(x, y) | x0 −
η

2
≤ x ≤ x0 +

η

2
and εy ≥ εγ(x)

}
(see Figure 4.3). The vertical line {(x, y) | x = x0} is called the center
line of the half-strip. When the center point (x0, y0) and the bounding
curve γ are not of particular concern, the half-strip is denoted by σεη.
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The base of a half-strip σεη,γ(x0, y0) is the subset

σεη,γ(x0, y0) ∩
{

(x, y) | εy < εy0 +
η

2

}
.

Consider a choice of (countably many) points {(xi, yi)}i∈I , of signs
ε ∈ {+1,−1}I , of positive numbers η ∈ {ηi}i∈I I, and of continuous
curves γ = {γi}i∈I . Let σεiηi,γi(xi, yi) be the half-strip centered at (xi, yi)
of sign εi and width ηi > 0 with bounding curve γi. Moreover, set

σεη,γ :=
⋃
i

σεiηi,γi(xi, yi),

and denote the above choices of signs, widths and curves by the triple
(ε,η,γ).

Definition 4.39. Suppose B ⊂ R2 has the property that its inter-
section with any vertical line is either empty or path-connected, and
consider a countable set of points {(xi, yi)}i∈I therein. A triple (ε,η,γ)
as above is admissible for the subset B relative to the points {(xi, yi)}i∈I
if it satisfies the following conditions:

• For all i, the base of the half-strip σεiηi,γi(xi, yi) is contained in Int (B).

• If (xi, yi) ∈ σ
εj
ηj ,γj(xj, yj) for i 6= j, then xi = xj.

• Whenever the half-strips σεiηi,γi(xi, yi) and σ
εj
ηj ,γj(xj, yj) share the same

center line, ηi = ηj.
• The intersection of any two distinct half-strips is either empty or

equal to one of the half-strips.

In this case, the corresponding half-strips are called admissible for B
relative to the points {(xi, yi)}i∈I .

Examples of admissible half-strips are sketched in Figure 4.3 (a) and
(b).

Definition 4.40. Consider a simple vertical almost-toric system (M,ω,Φ = (J,H))
whose set of focus-focus values is indexed by I as in equation (4.2). A
triple (ε,η,γ) as in Definition 4.39 and their corresponding half-strips
are admissible for (M,ω,Φ = (J,H)) if they are admissible for B rela-
tive to the set of focus-focus values Bff = {ci}i∈I .

Before establishing the existence of admissible half-strips for any
simple vertical almost-toric system (Proposition 4.42), we derive the
following necessary condition. Recall that the focus-focus values of a
simple vertical almost-toric system are ordered as in Section 4.3.

Proposition 4.41. If (ε,η,γ) is an admissible triple for (M,ω,Φ = (J,H)),
then Sε = B r lε is contractible.
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εi = +1

εj = +1

εi = +1

εj = −1 εj = +1

εi = −1?

?

?

?

(b) (c)(a)

?

?

Figure 4.3. The symbol ? indicates the points at which
the half-strips are centered. Figures (a) and (b) show
admissible half-strips with the same center line. Figure
(c) shows half-strips that are not admissible.

Proof. Fix an admissible triple (ε,η,γ). By Lemma 4.21 and Corollary
4.22, it suffices to check that, if i > j and there are focus-focus points
ci = (xi, yi), cj = (xj, yj) with xi = xj, then εi ≥ εj. Suppose not, then
the half-strips σεiηi,γi(xi, yi), σ

εj
ηj ,γj(xj, yj) intersect, but neither is con-

tained in the other (cf. Figure 4.3 (c)), thus contradicting admissibility
of the given triple. �

Recall that, by Corollary 4.22, Sε is path-connected if and only if it
is contractible. The next result establishes the converse to Proposition
4.41.

Proposition 4.42. Given a simple vertical almost-toric system (M,ω,Φ = (J,H))
with at least one focus-focus value and any choice ε ∈ {+1,−1}I
making Sε path-connected, there exist a choice of positive numbers
η = {ηi}i∈I and of continuous curves γ = {γi}i∈I such that the triple
(ε,η,γ) is admissible for (M,ω,Φ = (J,H)).

Proof. Fix a choice of ε ∈ {+1,−1}I as above and let {ci = (xi, yi)}i∈I
denote the set of focus-focus values of (M,ω,Φ = (J,H)). By Propo-
sition 4.14, the set of first coordinates of focus-focus values is a subset
of the set of critical values of J , which, by property (V3), does not
contain any limit point in J(M). Moreover, focus-focus values are dis-
crete in B and, by property (V4), there are finitely many of them on a
given vertical line. The above facts imply that there exists a choice of
positive numbers η = {ηi}i∈I such that

• if xi = xj, ηi = ηj,
• if, for i 6= j, xj ∈

[
xi − ηi

2
, xi + ηi

2

]
, then xi = xj, and
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• for all i,
[
xi − ηi

2
, xi + ηi

2

]
×
]
εiyi − ηi

2
, εiyi + ηi

2

[
is contained in Int(B).

For each i ∈ I, define γi :
[
xi − ηi

2
, xi + ηi

2

]
→ R to be γi(x) := yi−εi η2 ,

and set γ = {γi}i∈I . It can be checked that the triple (ε,η,γ) is
admissible for (M,ω,Φ = (J,H)). �

Remark 4.43 The choice of widths η in the proof of Proposition 4.42
can be made so that the following property also holds: If a half-strip σεiηi
contains a corner of B, then it contains precisely one, and that corner
lies on the center line of the half-strip. Henceforth, any admissible
triple for a simple vertical almost-toric system is assumed to satisfy
this property unless otherwise stated.

Fix an admissible triple (ε,η,γ) for (M,ω,Φ = (J,H)). The next
results can be interpreted as showing that the complement of the cor-
responding half-strips in B behaves like Sε.

Lemma 4.44. If (ε,η,γ) is admissible for a simple vertical almost-
toric system (M,ω,Φ), then B r σεη,γ is open in B.

Proof. As in the proof of Corollary 4.19, it suffices to show that σεη,γ
is closed in B. Let {(xn, yn)} ⊂ σεη,γ be a sequence that converges to
(x0, y0) ∈ B and consider the sequence {xn} = pr1 ({(xn, yn)}) which
converges to x0 ∈ J(M). Since J(M) is locally compact, there exists
a compact neighborhood K ⊂ J(M) of x0. Since xn → x0, it follows
that all but finitely many of the xn are contained in K. Since K is
compact and the critical values of J are discrete in J(M) by property
(V3), K contains at most finitely many critical values of J . Therefore,
by property (V4) and Proposition 4.14, there are at most finitely many
focus-focus values contained in pr−1

1 (K) ∩ B. Hence, all but finitely
many of the (xn, yn) are contained in the union of finitely many ad-
missible half-strips, each of which is a closed subset of R2 and, hence,
of B. Thus (x0, y0) belongs to this union of finitely many admissible
half-strips and so to σεη,γ . �

Corollary 4.45. If (ε,η,γ) is admissible for a simple vertical almost-
toric system (M,ω,Φ), then B r σεη,γ is contractible.

Proof. By Lemma 4.44 the subset B r σεη,γ is open in B. If the in-
tersection of B r σεη,γ with every vertical line were either empty or
connected, then Proposition 4.7 would imply that the subsystem rela-
tive to Brσεη,γ would be vertical almost-toric, after which Corollary 4.5
would ensure that B r σεη,γ , the moment map image of that vertical
almost-toric subsystem, would be contractible. Thus it suffices to show
that the intersection of Brσεη,γ with every vertical line is either empty
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or connected. Fix x0 ∈ pr1(B); if x0 /∈ pr1(σεη,γ),(
B r σεη,γ

)
∩ {(x, y) | x = x0} = B ∩ {(x, y) | x = x0} ,

and the result follows from the fact that (M,ω,Φ) is vertical almost-
toric. Suppose that x0 ∈ pr1(σεη,γ) and call a half-strip σεkηk,γk(xk, yk)

maximal if it is not a proper subset of σ
εj
ηj ,γj(xj, yj) for any j 6= k. Be-

cause the triple (ε,η,γ) is admissible for (M,ω,Φ), there are at most
two maximal half-strips σεiηi,γi(xi, yi), σ

εj
ηj ,γj(xj, yj) with the property

that for s = i, j, x0 ∈
[
xs − ηs

2
, xs + ηs

2

]
. These half-strips are, by defi-

nition, disjoint and their bases are contained in Int(B). That property
is sufficient to ensure that

(
B r σεη,γ

)
∩ {(x, y) | x = x0} is connected,

as desired. �

Finally, we note that admissible triples behave well under isomor-
phisms and taking saturated subsystems.

Corollary 4.46. Let (ε,η,γ) be an admissible triple for the verti-
cal almost toric system (M,ω,Φ). Then any vertical almost-toric sys-
tem isomorphic to (M,ω,Φ) inherits an admissible triple, as does any
subsystem whose image contains every half-strip of σεη,γ that it inter-
sects. Moreover, for any cartographic homeomorphism fε associated to
ε, (ε,η, thetripleγ) induces an admissible triple for fε(B) relative the
image of the focus-focus values {fε(ci)}i∈I .

Proof. Let (M ′, ω′,Φ′) be a vertical almost-toric system isomorphic to
(M,ω,Φ) via the isomorphism (Ψ, ψ). The choices ε′ = sgn (detDψ) ε,
η′ = η and γ′ = ψ ◦ γ := {ψ ◦ γi}i∈I define an admissible triple for
(M ′, ω′,Φ′) because of the special form of ψ (cf. Definition 4.1) and
the connectedness of B, ensuring that sgn (detDψ) is constant. Any
vertical almost system whose image contains the half-strips of σεη,γ
that it intersects inherits an admissible triple simply by restriction. Fi-
nally, given a cartographic homeomorphism fε, the signs ε̃ = sgn (fε) ε,
widths η̃ = η and continuous curves γ̃ = fε ◦ γ := {fε ◦ γi}i∈I define
an admissible triple for fε(B) relative to {fε(ci)}i∈i. �

Remark 4.47 In fact, an admissible triple on the cartographic mo-
ment map image induces an admissible triple for the system by revers-
ing the above construction.

4.5.2. Smoothing. With admissible half-strips at hand, we can state
and prove the main result of this section.

Theorem 4.48. Let (M,ω,Φ = (J,H)) be a simple vertical almost-
toric system and let ε be a choice of signs such that Br lε is connected.
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Given any cartographic homeomorphism fε : B → R2, there exists a
smooth embedding Fε : B → R2 of the form

Fε(x, y) =
(
F (1)
ε , F (2)

ε

)
(x, y) =

(
x, F (2)

ε (x, y)
)

agreeing with fε on the complement of an arbitrarily small neighborhood
of lε.

Proof. Let ε be as in the statement and fix an admissible triple (ε,η,γ)
for (M,ω,Φ). The map fε is smooth on the complement of the cuts.
As in the proof of Corollary 4.45, say that a half-strip is maximal if it
is not a proper subset of any other half-strip. It is sufficient to modify
fε in the interior of maximal admissible half-strips, and since maximal
half-strips are pairwise disjoint, it suffices to construct the modified
map in the interior of each one separately.

Consider a maximal admissible half-strip, say σ
εj
ηj ,γj(xj, yj). Without

loss of generality assume that εj = +1 so as to drop the notational
dependence of the half-strip on εj. Moreover, fix an admissible triple
(ε,η′,γ ′) for (M,ω,Φ = (J,H)), where, if i 6= j, η′i = ηi and γ′i = γi,
and if i = j and η′j < ηj and γ′j(x) > γj(x) whenever both make sense.

There are two cases to consider, namely if η′j can be chosen so that
∂∞B ∩ ση′j ,γ′j = ∅ or not. Suppose that the former holds; then the

set Wj = B ∩ Int(ση′j ,γ′j) is open in R2. The situation is sketched

in Figure 4.4 (a). Let Γj be an embedded curve in Wj of the form
Γj(x) = (x, hj(x)), where hj is a smooth function, that is disjoint from
the cut lεj and is such that WjrΓj has two components. Let Kj, Lj be
the closures in Wj of the two components of Wj rΓj, so Kj ∩Lj = Γj,
and assume without loss of generality that the cut lεj lies in Kj.

Recall that the cartographic homeomorphism fε is orientation-preserving
and of the special form

fε(x, y) = (f (1)
ε (x, y), f (2)

ε (x, y)) = (x, f (2)
ε (x, y)).

Therefore, f ◦ Γj(x) = (x, f
(2)
ε (x, hj(x))) and, since εj = +1, if (x, y) ∈

Kj then y ≥ hj(x) and f
(2)
ε (x, y) ≥ f

(2)
ε (x, hj(x)), as fε is orientation-

preserving. Define gj : Kj → R2 by

gj(x, y) := (x, y + f (2)
ε (x, hj(x))− hj(x)),

which is an orientation-preserving diffeomorphism of Kj onto its image
that satisfies

gj(x, hj(x)) = fε(x, hj(x)).

Now consider the map

F ′εj : Int(ση′j ,γ′j) ∩B → R2,

{
fε(x, y) if (x, y) ∈ Lj
gj(x, y) if (x, y) ∈ Kj.

,
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which is a homeomorphism onto its image. Furthermore, because F ′εj
is a diffeomorphism on the complement of Γj, which is a closed sub-
manifold of Wj, F

′
εj

can be isotoped to be a diffeomorphism onto the

image F ′εj(Wj) via an isotopy that is supported in an arbitrarily small

neighborhood of Γj and is the identity in Lj (cf. Hirsch [18, Chapter
8]). By construction, F ′εj extends to all of σηj ,γj as a diffeomorphism,
say Fεj , on σηj ,γj that agrees with fε on σηj ,γj r Kj. The map Fεj is
the desired smoothing.

It remains to consider the case in which an admissible triple (ε,η′,γ ′)
as above does not exist, i.e., for any choices of η′j and γ′j as above, the
corresponding half-strip also intersects ∂∞B (cf. Figure 4.4 (b)). In this
case, modify the argument as follows. Let Γj ⊂ B∩Int(σηj ,γj) be chosen
as above, and so that any boundary point p of Γj also lies in path-
connected component of ∂∞B0∩Int(σηj ,γj). Because fε is, by definition,
smooth at p, the map fε and the smooth curve Γj can be extended to
a neighborhood of p ∈ R2. Make such an extension near the one or two
boundary points of Γ, and let Wj be an open tubular neighborhood of
the extended curve Γj. Let Kj and Lj be defined as in the first case
(enlarged as per the extension just described), with the map F ′εj defined
as above. But to apply the smoothing argument, restrict attention to
Kj ∩Wj and Lj ∩Wj so that Γj is a closed submanifold of an open
manifold, in this case the tubular neighborhood Wj. �

(a) (b)

σj

σ′j

σj

σ′j

?

?

?

?

?

?

Γj Γj

Figure 4.4. Consider the curve Γj as ‘seam’ and glue
the diffeomorphisms smoothly along Γj. (a) sketches the
case ∂∞B0 ∩ σ′j = ∅ and (b) sketches ∂∞B0 ∩ σ′j 6= ∅.
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Remark 4.49. Given an admissible triple (ε,η,γ), a map Fε as con-
structed in Theorem 4.48 is referred to as an η-cartographic embed-
ding. Moreover, if the dependence on η is to be remembered, an η-
cartographic embedding is denoted by Fε,η.

Theorem 4.48 motivates introducing the following notion.

Definition 4.50. A simple vertical almost-toric system is η-cartographic
if it admits an admissible triple (ε,η,γ) and a cartographic homeo-
morphism fε whose restriction to the complement of the union of the
corresponding admissible half-strips is the identity. If the choice of
(ε,η,γ) is to be remembered, the system is said to be η-cartographic
with respect to (ε,η,γ).

The first application of Theorem 4.51 is the following result.

Theorem 4.51. Any simple vertical almost-toric system (M,ω,Φ) is
isomorphic to an η-cartographic one.

Proof. Fix an admissible triple (ε,η,γ) for (M,ω,Φ) and let fε :
B → R2 be the cartographic homeomorphism associated to ε. Let
Fε : B → R2 be the associated smooth η-cartographic embedding
constructed in the proof of Theorem 4.48. The form of Fε implies
that, by construction, (M,ω, Fε ◦ Φ) is a vertical almost-toric system
isomorphic to (M,ω,Φ). Moreover, since Fε is orientation-preserving,
(M,ω, Fε ◦ Φ) inherits an admissible triple (ε,η, Fε ◦ γ) by Corollary
4.46. The map fε ◦ F−1

ε : Fε(B) → R2 is a cartographic homeomor-
phism for (M,ω, Fε ◦ Φ), which, by definition of Fε, is the identity on
the complement of the admissible half-strips for (M,ω, Fε ◦ Φ) corre-
sponding to (ε,η, Fε ◦ γ). Therefore, (M,ω, Fε ◦ Φ) is η-cartographic
as required. �

To conclude this section, we show that the image of a cartographic
homeomorphism can be seen as a ‘limit’ of the moment map images of
η-cartographic systems. To make the above precise, let (M,ω,Φ = (J,H))
be a simple vertical almost-toric system, fix a choice of signs ε for which
Sε is path-connected, and fix a cartographic homeomorphism fε asso-
ciated to ε. Consider the set consisting of quadruples (ε,η,γ, Fε,η),
where (ε,η,γ) is an admissible triple for (M,ω,Φ = (J,H)) and Fε,η
is an η-cartographic embedding constructed starting from the carto-
graphic homeomorphism fε. On this set, we define a partial order �
by setting

(ε,η,γ, Fε,η) � (ε, η̃, γ̃, Fε,η̃) ,

if and only if ηj ≥ η̃j for all j, and Fε,η(σεη,γ) ⊇ Fε,η̃(σεη̃,γ̃). Note that �
is reflexive and transitive. Moreover, for any two elements (ε,η,γ, Fε,η)
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and (ε, η̃, γ̃, Fε,η̃), there exists an element
(
ε, ˜̃η, ˜̃γ, Fε, ˜̃η

)
such that

(ε,η,γ, Fε,η) �
(
ε, ˜̃η, ˜̃γ, Fε, ˜̃η

)
and (ε, η̃, γ̃, Fε,η̃) �

(
ε, ˜̃η, ˜̃γ, Fε, ˜̃η

)
,

as the construction of Fε,η and Fε,η̃ shows. Thus � turns the set
of quadruples (ε,η,γ, Fε,η) into a directed set.

Proposition 4.52. A cartographic moment map image of a simple
vertical almost-toric system associated to a choice of signs whose cor-
responding cuts do not disconnect the moment map image is the direct
limit of η-cartographic moment map images.

Proof. As above, fix a vertical almost-toric system (M,ω,Φ = (J,H)),
a choice of signs εmaking Sε path-connected, and a cartographic home-
omorphism fε associated to ε. The set of quadruples (ε,η,γ, Fε,η) is a
directed set with the above partial order�. The condition (ε,η,γ, Fε,η) �
(ε, η̃, γ̃, Fε,η̃) implies that

(4.13) Fε,η(B r σεη,γ) ⊆ Fε,η̃(B r σεη̃,γ̃)

such that fε(B r lε) coincides with the direct limit in the category of
topological spaces given by

lim
−→

Fε,η(B r σεη,γ) =

(⊔
η

Fε,η(B r σεη,γ)

)/
∼,

where z ∈ Fε,η(B rσεη,γ) ∼ z̃ ∈ Fε,η̃(B rσεη̃,γ̃) if z and z̃ get mapped
under the corresponding inclusions in (4.13) to the same point. �
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[24] Y. Le Floch, Á. Pelayo, S. Vũ Ngo.c, Inverse spectral theory for semiclassical
Jaynes-Cummings systems, Math. Ann., 364 (2014), no. 3 – 4, 1393 – 1413.

[25] N. C. Leung, M. Symington, Almost toric symplectic four-manifolds, J. Sym-
plectic Geom., 8 (2010), no. 2, 143187.
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