
CHARACTERIZATION OF TORIC SYSTEMS VIA TRANSPORT COSTS

SONJA HOHLOCH

Abstract. We characterize completely integrable Hamiltonian systems inducing an ef-
fective Hamiltonian torus action as systems with zero transport costs w.r.t. the time-T
map where T ∈ Rn is the period of the acting n-torus.

1. Introduction

Intuitively, integrable Hamiltonian systems in the sense of Liouville can be seen as
Hamiltonian systems with ‘sufficiently many conserved quantities’ — for the precise def-
inition we refer the reader to Section 2.2. Standard examples are the spherical pendu-
lum, coupled spin oscillators, coupled angular momenta, the spinning top etc. Integrable
systems are of interest for many reasons, among others, since they display very diverse
dynamical behaviour although their solutions are confined to lower dimensional sets and
since not all ‘nice properties’ disappear under small perturbations (cf. KAM theory).

During the last 3-4 decades, there have been several breakthroughs in terms of achiev-
ing local or global, topological or symplectic classifications of certain types of integrable
systems. Being far from exhaustive, let us just recall some (symplectic) classifications of
interest for this short note.

There is Delzant’s [12] symplectic classification of completely integrable systems on
compact symplectic manifolds that induce effective Hamiltonian torus actions, briefly
‘(compact) toric systems’. The classifying invariant of a toric system is the image of its
momentum map. It is a convex polytope, more precisely a so-called Delzant polytope.
This class of polytopes in fact represents all possible compact toric systems up to equi-
variant symplectomorphism (for more details consult e.g. the lecture notes by Audin &
Cannas da Silva & Lerman [8] and Cannas da Silva [11]). A toric system is thus in fact
determined by the finite set of data given by its ‘momentum polytope’. This makes the
class of toric systems very special within the class of all integrable systems. The singular
points of toric or toric type systems only admit elliptic and regular components, but no
focus-focus or hyperbolic components — which may occur at nondegenerate singularities
of general integrable systems (see the local normal form based on the works by Eliasson
[15, 16], Vũ Ngo. c & Wacheux [37], Miranda & Zung [25], and others).

Semitoric systems are completely integrable Hamiltonian systems on 4-dimensional
manifolds such that (a) one of the integrals is proper and in addition the momentum map
of an effective Hamiltonian S1-action and (b) the whole system admits, in addition to the
singularities occuring in toric systems, also focus-focus singularities but no hyperbolic
components. Thus semitoric systems induce an S1 × R-action and are thus ‘sandwiched
between’ toric systems (inducing an S1 × S1-action) and arbitrary completely integrable
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systems (inducing an R2-action). An overview over the most prominent features and de-
velopments can be found in the surveys by Pelayo & Vũ Ngo. c [30] and, more recently, by
Alonso & Hohloch [3]. Under certain assumptions, semitoric systems have been classified
by Pelayo & Vũ Ngo. c [28, 29]. Palmer & Pelayo & Tang [27] generalized this classifi-
cation by removing some of these assumptions. Moreover, there have been recent efforts
towards dealing with hyperbolic components, see Dullin & Pelayo [14] and Le Floch &
Palmer [22], which seems to go hand in hand with the appearance of certain degenerate
singularities. The class of semitoric systems is much richer than the one of toric systems
since the invariants in the (constructive) semitoric classification correspond to infinitely
many data needed to determine a given semitoric system. Nevertheless the class of semi-
toric systems is ‘still manageable’ since the invariants are computable (see e.g. Pelayo
& Vũ Ngo. c [31], Babelon & Douçot [9], Le Floch & Pelayo [23] for the linear term of
the so-called Taylor series, and Alonso & Hohloch & Dullin [1, 2] for parameter depen-
dence and higher order terms and the twisting index). Furthermore, the classification of
semitoric systems fits well together with existing classifications like Delzant’s [12] and
Karshon’s [21] of effective Hamiltonian S1-actions on compact symplectic 4-dimensional
manifolds as shown by Hohloch & Sabatini & Sepe [18]).

In the present note, we give a characterization of toric systems by means of ‘transport
costs’ which measure ‘how toric or nontoric’ a system is: toric systems on 2n-dimensional
manifolds are precisely those systems having zero transport costs w.r.t. the time-T map
where T ∈ Rn is the period of the acting n-torus. To be more precise, we introduce the
notion of periodicity costs (see Definition 4.2) and characterize toric systems as having
zero periodicity costs (see Proposition 4.3 and Corollary 4.4).

This approach is inspired by the techniques developed around the transport problems of
Monge [26] and Kantorovich [19, 20] where, for given cost functions, optimal transport
functions resp. transport measures are looked for. Transport problems have been vividly
studied during the last 3-4 decades. For an introduction and overview, see e.g. the lec-
ture notes by Ambrosio & Gigli [6] and Thorpe [35] and the monographs by Rachev &
Rüschendorf [32], Santambrogio [33], and Villani [36].

Since transport problems ‘live naturally’ within the calculus of variation, but integrable
systems, due to their rigidity, usually do not at all ‘fit well together’ with variational
methods, it is quite astonishing that ‘periodicity costs’ in the sense of transport costs
provide a meaningful notion within the class of integrable systems, even singling out the
subclass of toric systems.

In future projects, we hope to find an answer to e.g. the following questions:

1) Can one use the notion of periodicity costs to investigate the behaviour around
focus-focus points in semitoric systems in particular and integrable systems in
general, for instance by restricting to a neighbourhood of the focus-focus point or
of the whole focus-focus fiber?

2) Do periodicity costs relate to the symplectic invariants classifying semitoric sys-
tems, in particular to the Taylor series invariant when restricting to a neighbour-
hood of the focus-focus fiber?

3) Are there applications of periodicity costs to integrable systems with singularities
having hyperbolic components?
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4) Are there more methods and ideas from transport theory that have an application
within integrable systems?
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2. Notions and conventions

Within this section, let (M, ω) be a 2n-dimensional compact symplectic manifold.

2.1. Basic definitions and conventions. The Hamiltonian vector field X f of a smooth
function f : M → R is defined byω(X f , ·) = −d f . The flow of the associated Hamiltonian
equation z′ = X f (z) is called Hamiltonian flow of f and denoted by ϕ f . It is a smooth map
ϕ f : R × M → M where we usually write ϕ f (t, p) =: ϕ f

t (p) with t ∈ R and p ∈ M. Hence,
for all t ∈ R, we get a diffeomorphism ϕ

f
t : M → M that is in fact symplectic and often

referred to as time-t map.
Given two smooth functions f , g : M → R, their Poisson bracket induced by ω is

defined as { f , g} := ω(X f , Xg) = −d f (Xg) = dg(X f ). The smooth functions f , g : M → R
are said to Poisson commute if { f , g} = 0.

In our sign convention, the Lie bracket and the Poisson bracket are related via
[X f , Xg] = X−{ f ,g}. Poisson commutativity of f and g implies [X f , Xg] = 0 and thus com-
mutativity of their Hamiltonian flows, i.e., ϕ f

s ◦ ϕ
g
t = ϕ

g
t ◦ ϕ

f
s for all s, t ∈ R.

For more details, proofs, and further reading, we refer the interested reader e.g. to
McDuff & Salamon [24].

2.2. Integrable Hamiltonian systems. Recall that dim M = 2n. A smooth function h :=
(h1, . . . , hn) : M → Rn is said to be a (momentum map of a) 2n-dimensional completely
integrable Hamiltonian system if Xh1 , . . . , Xhn are almost everywhere linearly independent
and if {hi, h j} = 0 for all 1 ≤ i, j ≤ n.

We briefly write (M, ω, h) for a completely integrable system on (M, ω) with momen-
tum map h. We speak of a compact completely integrable system if we want to emphasize
that the underlying symplectic manifold (M, ω) is compact.

We call p ∈ M a regular point of a completely integrable systems (M, ω, h) if
dim

(
Span{Xh1(p), . . . , Xhn(p)}

)
= n and singular otherwise. We denote the set of regu-

lar points by Mreg and the set of singular points by Msing. The property almost everywhere
in the definition of an integrable system is understood w.r.t. to the measure µω induced
by the n-fold wedge product ωn of ω (which in turn is continuous w.r.t. the Lebesgue
measure and vice versa). Thus µω(M) = µω(Mreg) and µω(Msing) = 0.

Let t := (t1, . . . , tn) ∈ Rn and let α be a permutation of the set {1, . . . , n}. Commutativity
of the flows of the component functions h1, . . . , hn implies

ϕh1
t1 ◦ · · · ◦ ϕ

hn
tn = ϕ

hα(1)
tα(1)
◦ · · · ◦ ϕ

hα(n)
tα(n)

.

Thus a completely integrable system induces a welldefined (Hamiltonian) action of the
abelian group (Rn,+) on M via

Rn × M → M, (t, p) 7→ t.p := ϕh
t (p) := ϕh1

t1 ◦ · · · ◦ ϕ
hn
tn .

For details, proofs, and further reading, we refer e.g. to Bolsinov & Fomenko [10].
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2.3. Toric systems. Let T1 = S1 = R/2πZ and Tn = (S1)n and recall that a group action
is said to be effective or faithful if the identity element is the only one acting trivially.

A 2n-dimensional completely integrable system (M, ω, h = (h1, . . . , hn)) is toric if the
action induced by the flow ϕh : R × M → M is an effective (Hamiltonian) Tn-action,
i.e., ϕhk

2π = IdM for all k ∈ {1, . . . , n} and 2π is the ‘minimal common period’ of the n
Hamiltonian circle actions induced by h1, . . . , hn : M → R.

For more details, proofs, and further reading, we refer e.g. to Cannas da Silva [11].

3. Optimal transport

Let M be a compact manifold and µ− and µ+ two (positive) measures with same total
mass µ−(M) = µ+(M) < ∞. Let c : M × M → R≥0 be a ‘sufficiently regular’ function,
usually referred to as cost function.

Introductory literature on optimal transport are e.g. the lecture notes by Ambrosio &
Gigli [6] and Thorpe [35].

3.1. The Monge transport problem. Consider the space of transport maps

F (µ−, µ+) := { f : M → M | f measurable, f (µ−) = µ+}

where f (µ−) denotes the image or push forward measure of µ− under f . Formulated in
modern language, the French mathematician Monge [26] asked in 1781 if there is f ∈
F (µ−, µ+) minimizing ∫

M
c(x, f (x)) dµ−

over F (µ−, µ+). This is a nonlinear optimization problem and usually referred to as Monge
transport problem.

Note that, if µ− contains point measures, there does not necessarily exist a transport
map since the requirement f (µ−) = µ+ may force the mass of one point to be distributed
over several distinct points.

In 1979, Sudakov [34] proposed a proof of Monge’s problem in Rn with the Euclidean
distance as cost function. Unfortunately the proof turned out to have a gap (cf. Ambrosio
[4, p. 137], [5, Chapter 6]) that can only be mended under stronger assumptions.

For more details and references, we refer the reader e.g. to the monographs by Rachev
& Rüschendorf [32] and Villani [36].

3.2. The Kantorovich transport problem. Let p−, p+ : M×M → M be the projections
on the first and second factor respectively and consider the space of transport measures

M(µ−, µ+) := {µ measure on M × M | p−(µ) = µ−, p+(µ) = µ+}.

Then the search for a measure µ ∈ M(µ−, µ+) minimizing∫
M×M

c(x, y) dµ

overM(µ−, µ+) is referred to as solving the Kantorovich transport problem. It is named
after the Russian mathematician Kantorovich [19, 20] and it enjoys much more ‘analysis
friendly’ properties than Monge’s problem, for details see e.g. Rachev & Rüschendorf
[32] and Villani [36].
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Both transport problems are related as follows: If f ∈ F (µ−, µ+) is a solution of
Monge’s problem, then we have (IdM × f )(µ−) ∈ M(µ−, µ+) and find

inf
f∈F (µ−,µ+)

∫
M

c(x, f (x)) dµ− = inf
f∈F (µ−,µ+)

∫
M×M

c(x, y) d(IdM × f )(µ−)

≥ inf
µ∈M(µ−,µ+)

∫
M×M

c(x, y) dµ.

i.e., a solution of Kantorovich’s problem gives a lower bound for Monge’s problem. Under
certain convexity and growth assumptions on the cost function, Gangbo & McCann [7]
stated an explicit formula for the optimal transport map and showed that optimal transport
measures ‘lie in the graph’ of the optimal transport map.

4. Characterization of toric systems by transport costs

To ensure that the Hamiltonian flow is defined for all times and that all appearing inte-
grals are finite, we assume the 2n-dimensional symplectic manifold (M, ω) to be compact
throughout this section. M need not be connected.

We now consider the following modified transport problem: Given a cost function and
a certain type of transport maps, how does the ‘minimal’ transport map within this type of
transport maps look like?

4.1. The cost functional. Let (M, ω, h) be a completely integrable system. Let t =

(t1, . . . , tn) ∈ Rn and recall that the time-t map ϕh
t : M → M is symplectic. The n-fold

wedge product ωn of ω is a volume form on M that is invariant under the time-t map, i.e.,(
ϕh

t

)∗
ωn = ωn. When we consider ωn as measure on M we write µω. The image measure

under the time-t map satisfies ϕh
t (µω) = µω.

Let c : M ×M → R≥0 be a continuous cost function and let U ⊆ M be open. Define the
parameter depending integral

Ch
t (U, c) :=

∫
U

c(x, ϕh
t (x)) dµω.

The map
c ◦ (IdM × ϕ

h
t ) : R→ R≥0, t 7→ c(x, ϕh

t (x))
is continuous for all x ∈ M and so is R→ R≥0, t 7→ Ch

t (U, c) for all open U ⊆ M.

4.2. Characterization of toric systems. We begin with

Definition 4.1. Let M be a manifold. A function c : M × M → R≥0 is metric-like if
1) c(x, y) = 0 for x, y ∈ M if and only if x = y.
2) c(x, y) = c(y, x) for all x, y ∈ M.

For instance, the Euclidean distance is a continuous metric-like cost function. Its square
is a smooth metric-like cost function.

The functional Ch
t (U, c) can be used to measure ‘how periodic’ a given completely

integrable system is:

Definition 4.2. Let (M, ω, h) be a 2n-dimensional compact completely integrable system
and c : M × M → R≥0 a continuous metric-like cost function and T ∈ Rn. We call
Ch

T (M, c) ∈ [0,∞[ the T -periodicity costs of (M, ω, h) w.r.t. the cost function c.
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Now we will see what these notions mean for toric systems.

Proposition 4.3. Let (M, ω, h) be a 2n-dimensional compact completely integrable system
and c : M × M → R≥0 a continuous metric-like cost function. Then (M, ω, h) is toric if
and only if Ch

(2π,...,2π)(M, c) = 0 and Ch
s (M, c) > 0 for all s ∈ Rn \ {(2πk, . . . , 2πk) | k ∈ Z}.

Proof. (M, ω, h) being a toric system means that the flow ϕh is (2π, . . . , 2π)-periodic and
the action is effective, i.e., (2π, . . . , 2π) is minimal in the sense that ϕh

s , IdM for all
s ∈ [0, 2π]n \ {(0, . . . , 0), (2π, . . . , 2π)}.

‘⇒’: Since ϕh
(2π,...,2π)(x) = x for all x ∈ M we obtain c(x, ϕh

(2π,...,2π)(x)) = 0 for all
x ∈ M and thus Ch

(2π,...,2π)(M, c) = 0. Now let s ∈ [0, 2π]n \ {(0, . . . , 0), (2π, . . . , 2π)}. Since
ϕh

s , IdM there exists y ∈ M with ϕh
s(y) , y. Continuity of ϕh

s implies the existence of
an open neighbourhood U ⊆ M of y with ϕh

s(z) , z for all z ∈ U. Since c is metric-
like, c(z, ϕh

s(z)) > 0 for all z ∈ U and thus 0 < Ch
s (U, c) ≤ Ch

s (M, c). The (2π, . . . , 2π)-
periodicity of ϕh implies that this is true for all s ∈ Rn \ {(2πk, . . . , 2πk) | k ∈ Z}.

‘⇐’: Assume that ϕh
(2π,...,2π) , IdM. Then there exists x ∈ M with ϕh

(2π,...,2π)(x) , x.
Metric-likeness implies c(x, ϕh

(2π,...,2π)(x)) > 0. Hence, since c and ϕh are continuous,
there exists an open neighbourhood U of x with ϕh

(2π,...,2π)(y) , y for all y ∈ U and thus
c(y, ϕh

(2π,...,2π)(y)) > 0 for all y ∈ U. Therefore 0 < Ch
(2π,...,2π)(U, c) ≤ Ch

(2π,...,2π)(M, c)  .
Since ϕh

(2π,...,2π) = IdM, it suffices to show ϕh
s , IdM for all s ∈ [0, 2π]n \

{(0, . . . , 0), (2π, . . . , 2π)} to prove the claim for all s ∈ Rn \ {(2πk, . . . , 2πk) | k ∈ Z}.
Since Ch

s (M, c) > 0 there exists V ⊆ M with µω(V) > 0 and c(z, ϕh
s(z)) > 0 for all z ∈ V .

Because of µω(Mreg) = µω(M) we have V ∩ Mreg , ∅ and µω(V ∩ Mreg) = µω(V) > 0 and
in particular c(z, ϕh

s(z)) > 0 for all z ∈ V ∩ Mreg, i.e., ϕh
s(z) , z for all z ∈ V ∩ Mreg, i.e.,

ϕh
s , IdM. �

If a group does not act effectively then the set of elements acting trivially is a nontriv-
ial normal subgroup. Dividing the original group by this normal subgroup yields a group
inducing the same action but acting effectively. When considering torus actions and defin-
ing the acting torus in terms of periods then effectiveness translates into working with the
torus with ‘smallest possible’ (= minimal) period for the given torus action.

Thus, if we do not work with the normalization Tn = (R/2πZ)n, Proposition 4.3
amounts to

Corollary 4.4. Proposition 4.3 holds true for toric systems induced by an effectively act-
ing n-torus with period T ∈ Rn when replacing (2π, . . . , 2π) by T = (T1, . . . ,Tn) and
(2πk, . . . , 2πk) by (T1k, . . . ,Tnk).
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Hamiltonian systems. Ann. Sci. École Norm. Sup. (4), 37 (2004), 819–839.
[26] G. Monge: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des
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[37] S. Vũ Ngo.c; C. Wacheux: Smooth normal forms for integrable Hamiltonian systems near a focus-

focus singularity. Acta Math. Vietnam. 38 (2013), no. 1, 107–122.

Postal address: Sonja Hohloch
Department of Mathematics
University of Antwerp
Middelheimlaan 1
B-2020 Antwerp, Belgium

E-mail: sonja.hohloch AT uantwerpen.be

http://www.damtp.cam.ac.uk//user/mt748/Notes.pdf

	1. Introduction
	Acknowledgements

	2. Notions and conventions
	2.1. Basic definitions and conventions
	2.2. Integrable Hamiltonian systems
	2.3. Toric systems

	3. Optimal transport
	3.1. The Monge transport problem
	3.2. The Kantorovich transport problem

	4. Characterization of toric systems by transport costs
	4.1. The cost functional
	4.2. Characterization of toric systems

	References

