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Abstract. We show how any labeled convex polygon associated to a com-

pact semi-toric system, as defined by Vũ Ngo.c, determines Karshon’s labeled
directed graph which classifies the underlying Hamiltonian S1-space up to iso-

morphism. Then we characterize adaptable compact semi-toric systems, i.e.
those whose underlying Hamiltonian S1-action can be extended to an effec-

tive Hamiltonian T2-action, as those which have at least one associated convex

polygon which satisfies the Delzant condition.

1. Introduction. This paper studies the relation between a certain family of com-
pletely integrable Hamiltonian systems on closed 4-dimensional symplectic mani-
folds and Hamiltonian S1-actions on these spaces. As such, it lies at the intersection
of the theory of Hamiltonian torus actions on closed symplectic manifolds and the
classification of completely integrable Hamiltonian systems. The former is a special
case of Hamiltonian actions in symplectic and Poisson geometry, an area of mathe-
matics which brings together algebraic geometry, Lie theory, Poisson geometry and
differential topology amongst others. Of particular prominence for the purposes
of this work is Karshon’s monograph [12] on Hamiltonian circle actions on closed
4-dimensional symplectic manifolds, whose results have been extended to higher
dimensions (cf. Karshon & Tolman [14, 15, 16]). The classification of completely
integrable Hamiltonian systems is a driving question in Hamiltonian mechanics with

2010 Mathematics Subject Classification. Primary: 37J05, 37J35, 53D20.
Key words and phrases. Hamiltonian circle actions, Integrable Hamiltonian systems, Semi-toric

systems.
S. Sabatini was partly supported by the FCT postdoctoral fellowship SFRH/BPD/86851/2012.

D. Sepe was partly supported by the FCT postdoctoral fellowship SFRH/BPD/77263/2011, by
the ERC starting grant 279729, and by the NWO Veni grant 639.031.345.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 SONJA HOHLOCH AND SILVIA SABATINI AND DANIELE SEPE

many different aspects to it, which, for the sake of brevity, are not mentioned here
(cf. Bolsinov & Oshemkov [3] and Pelayo & Vũ Ngo.c [22] for further details). This
article is concerned with topological and symplectic aspects of completely integrable
Hamiltonian systems, which have been studied since the work on constant energy
surfaces by Fomenko [10] and his school. From the point of view of integrable
systems, at the heart of this paper lie both the work on local normal forms near
non-degenerate singular points by Eliasson [8, 9], and by Miranda & Zung [19], and
ideas which underpin Pelayo & Vũ Ngo.c’s recent classification of generic semi-toric
systems (cf. [20, 21, 25, 26]). Moreover, the perspective of Symington [24] and of
Leung & Symington [18] on a larger family of integrable Hamiltonian systems has
also influenced the approach in this article.

Throughout this introduction, let (M,ω) be a connected, closed, symplectic 4-
manifold. A Hamiltonian S1-space consists of a triple (M,ω, J), where J : M →
R is the moment map of an effective Hamiltonian S1-action (details in Section 2.1).
Such spaces are classified, up to a suitable notion of isomorphism, by Karshon [12],
and their invariants are encoded in certain ‘labeled directed graphs’.

On the other hand, a semi-toric system consists of a triple

(M,ω,Φ = (J,H)) with Φ : (M,ω)→ R2,

where Φ defines a completely integrable Hamiltonian system whose singularities
are non-degenerate in a suitable sense, and such that (M,ω, J) is a Hamiltonian
S1-space (details in Section 2.2). These systems are introduced and studied by Vũ
Ngo.c [26], whose main motivation came from the example of two coupled angu-

lar momenta considered by Sadovskíı & Zĥilinskíı [23]. Semi-toric systems have
been classified under a weak generic condition (cf. condition 3.2 in Pelayo & Vũ
Ngo.c [20]), up to symplectomorphisms that respect the structure of the system, by
Pelayo & Vũ Ngo.c [20, 21]. The present paper focuses on the case of semi-toric
systems on closed manifolds, henceforth referred to as compact semi-toric sys-
tems; Pelayo and Vũ Ngo.c’s classification includes non-compact manifolds, while
Karshon’s classification concerns only closed manifolds. At any rate, Vũ Ngo.c
[26] already associates to a semi-toric system (M,ω,Φ) a family of labeled convex
polygons, i.e. convex polygons together with some marked interior points. This is
in analogy with Delzant’s [5] classification of symplectic toric manifolds, i.e.
triples (M,ω, µ), where µ = (µ1, µ2) : (M,ω)→ R2 is the moment map of an effec-
tive Hamiltonian T2-action (cf. Definition 2.5). The invariants of a triple (M,ω, µ)
are encoded in a so-called Delzant polygon which is the image of the moment map
(cf. Definition 2.14). The labeled convex polygons of semi-toric systems generalize
Delzant’s polygons associated to symplectic toric manifolds. However, there are
two significant differences, both due to the richer behaviour of semi-toric systems
caused by the presence of focus-focus singular points (cf. Section 2.2.1, or Vũ Ngo.c
[25] and Zung [29] for a definition). On the one hand, there may be several labeled
convex polygons associated to a semi-toric system, as there are choices involved (cf.
the discussion leading to Theorem 2.30); on the other, semi-toric systems are not
classified by their associated labeled convex polygons, as subtler symplectic invari-
ants appear (cf. Pelayo & Vũ Ngo.c [20, 21]).

Given a compact semi-toric system (M,ω,Φ = (J,H)), there is an underlying
Hamiltonian S1-space (M,ω, J) obtained by ‘forgetting’ H. This begs the following
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intriguing question: What is the minimal set of invariants of (M,ω,Φ) needed to
recover the labeled directed graph of (M,ω, J)? This question has been asked in
Pelayo & Vũ Ngo.c [20, Remark 6.2] and its answer is the main result of the present
paper, stated loosely below (cf. Theorem 3.1 for a precise version).

Main Result. Any labeled convex polygon associated to a compact semi-toric sys-
tem (M,ω,Φ) yields the labeled directed graph associated to the underlying Hamil-
tonian S1-space (M,ω, J).

The idea of the proof is to exploit the similarities between symplectic toric man-
ifolds and compact semi-toric systems. For the former, Karshon [12] shows how
to recover the labeled directed graph of the associated Hamiltonian S1-space (cf.
Remark 3.2). Thus the aim is to mimic Karshon’s ideas in the compact semi-toric
case. However, compact semi-toric systems allow for focus-focus singular points
which do not occur in the symplectic toric category; this difficulty is overcome by
using (a) the so-called Eliasson-Miranda-Zung local normal form which gives con-
trol over the geometry of the system near such singularities (cf. Section 2.2.1) and
(b) the connectedness of the fibers of Φ, an important fact proved by Vũ Ngo.c [26].

Illustrating Examples.

1. Following Pelayo & Vũ Ngo.c [21], the polygons shown in Figure 1.1 are
two semi-toric polygons associated to the same compact semi-toric system
(M,ω,Φ) on CP 2, with one focus-focus point and the Taylor series invariant
associated to the focus-focus critical point is taken to be 0 (cf. Pelayo & Vũ
Ngo.c [20, 21] for details). The graph below each polygon is the corresponding
labeled graph for the underlying Hamiltonian S1-space, where the edge is a
Z2-sphere, which corresponds to the “upper chain” of edges in each polygon
(cf. Section 3.2.2), and the isolated vertex is the focus-focus point (cf. Section
3.1).

1
1

2 2

Figure 1.1.

2. For an example that has a fixed sphere, take the polygon with its (unlabeled)
graph in Figure 1.2. For more details about the polygon, see also Figure 4.3.

Semi-toric systems can be naturally divided in two families: those whose under-
lying Hamiltonian S1-action can be extended to an effective Hamiltonian T2-action
(cf. Definitions 2.16 and 3.11), and the rest. The former are called adaptable, while
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Figure 1.2.

the latter are non-adaptable. Once the main result is proved, this article turns to
obtaining a characterization of adaptable systems, stated below.

Theorem.

(1) A compact semi-toric system (M,ω,Φ) is adaptable if and only if one of its
associated labeled convex polygons is Delzant.

(2) Let (M,ω,Φ) be an adaptable system and denote by (M,ω, J) its underlying
Hamiltonian S1-space. The family of labeled convex polygons associated to
(M,ω,Φ) contains all Delzant polygons whose corresponding symplectic toric
manifolds have (M,ω, J) as their associated Hamiltonian S1-space.

Part (1) is Theorem 4.1; part (2) corresponds to Theorem 4.5 and Corollary
4.6 and is in fact used to prove one of the two implications of Theorem 4.1. It
generalizes a phenomenon that occurs in all examples of adaptable compact semi-

toric systems in the literature (cf. Sadovskíı & Zĥilinskíı [23]). The other implication
of Theorem 4.1 is obtained by giving a characterization of non-adaptable systems
both near fibers containing focus-focus points and globally (cf. Proposition 4.10).
Moreover, an explicit example of a non-adaptable system is constructed in Example
4.12, which, to the best of our knowledge, is the first of its kind.

Organization of the paper. After the introduction, Section 2 recalls the defini-
tion and properties of both Hamiltonian S1-spaces and compact semi-toric systems;
many results are quoted with references where to find the proofs and more details.
Section 3 states and proves the main result of the article. The proof of Theorem 3.1
is broken down into several steps. Section 4 studies adaptable and non-adaptable
compact semi-toric systems, which are characterized by Theorem 4.1, Theorem 4.5,
and Propositions 4.10 and 4.16.

Conventions. In the whole article, (M,ω) denotes a connected, closed symplectic
manifold. Unless otherwise stated, group actions on manifolds are effective, i.e.
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there are no non-trivial elements of the group which act trivially on the whole
space. The identification S1 = R/2πZ is used throughout.

2. Hamiltonian S1-spaces and compact semi-toric systems. Let (M,ω) be
a closed 2n-dimensional symplectic manifold. Since ω is non-degenerate, it induces
an isomorphism of vector bundles

ω# : T∗M → TM

α 7→ Xα,
(2.1)

where ω(Xα, ·) = −α. Let C∞(M) denote the vector space of smooth functions
and let d be the exterior differential. The Hamiltonian vector field associated
to F ∈ C∞(M) is defined as XF = ω#(dF ). The Poisson bracket {·, ·} : C∞(M)×
C∞(M)→ C∞(M) induced by ω is given by

{F1, F2} := ω(XF1 , XF2).

Definition 2.1 (Hamiltonian Rk-actions). A Hamiltonian Rk-action on (M,ω)
is a smooth map Φ := (F1, . . . , Fk) : M → Rk satisfying

{Fi, Fj} = 0 for all 1 ≤ i, j ≤ k. (2.2)

The triple (M,ω,Φ) is henceforth referred to as a Hamiltonian Rk-space, and Φ is
the moment map.

To see that Definition 2.1 yields an Rk-action, let XF1 , . . . , XFk be the Hamil-
tonian vector fields associated to F1, . . . , Fk, and denote by ϕ1

t , . . . , ϕ
k
t the corre-

sponding flows. These exist for all t ∈ R by compactness of M . Moreover, property
(2.2) implies that they pairwise commute. Then the Rk-action is given by

Rk ×M →M

(t1, . . . , tk) · p := ϕ1
t1 ◦ · · · ◦ ϕ

k
tk

(p).

Two families of Hamiltonian Rk-spaces play an important role in this paper,
namely

• completely integrable Hamiltonian systems when k = n in Definition
2.1.

• Hamiltonian Tk-spaces if the flows of XF1 , . . . , XFk are periodic, and the
induced torus action is effective.

In both examples, the following additional condition holds:

(∗) dF1 ∧ . . . ∧ dFk 6= 0 almost everywhere.

Henceforth (M,ω) is taken to be 4-dimensional, unless otherwise stated.

2.1. Hamiltonian S1-spaces. The aim of this subsection is to introduce Hamil-
tonian S1-spaces and describe their invariants, as constructed in Karshon [12].

Definition 2.2 (Hamiltonian S1-spaces). The category HamS1 is defined by:

• Objects: Hamiltonian S1-spaces (M,ω, J).
• Morphisms: symplectomorphisms Ψ: (M1, ω1)→ (M2, ω2) making the follow-

ing diagram

(M1, ω1)
Ψ //

J1 ##

(M2, ω2)

J2{{
R



6 SONJA HOHLOCH AND SILVIA SABATINI AND DANIELE SEPE

commute.
These are henceforth denoted by Ψ : (M1, ω1, J1)→ (M2, ω2, J2) and referred
to as isomorphisms of Hamiltonian S1-spaces.

Remark 2.3. Observe that commutativity of the above diagram implies that the
symplectomorphism Ψ is equivariant.

Example 2.4. Consider CP2 with homogeneous complex coordinates [z0 : z1 : z2]
and the (standard) Fubini-Study symplectic form ωFS . The map J : CP2 → R
defined by

[z0 : z1 : z2] 7→ −1

2

(
|z1|2

|z0|2 + |z1|2 + |z2|2
+ 2

|z2|2

|z0|2 + |z1|2 + |z2|2

)
is the moment map of the following effective Hamiltonian S1-action

λ · [z0 : z1 : z2] = [z0 : λz1 : λ2z2],

where λ ∈ S1. Thus the triple (CP2, ωFS , J) defines an object in HamS1 .

A source of interesting examples of Hamiltonian S1-spaces is provided by sym-
plectic toric manifolds, which are defined below.

Definition 2.5 (Symplectic toric manifold). A symplectic toric manifold is a
Hamiltonian T2-space (M,ω, µ), where µ = (µ1, µ2) : (M,ω)→ R2.

Remark 2.6. Given a symplectic toric manifold, there are several ways to obtain
a Hamiltonian S1-space, corresponding to restricting the action to a subgroup S1 ⊂
T2. Throughout this paper, the triple (M,ω, µ1) is henceforth referred to as the
Hamiltonian S1-space associated to (M,ω, µ = (µ1, µ2)). It is important to notice
that not all Hamiltonian S1-spaces arise in this fashion (cf. Example 2.17).

Karshon’s classification. The classification of Hamiltonian S1-spaces up to iso-
morphism has been carried out in Karshon [12], and is recalled below without proofs
in order to introduce ideas and notation used in the rest of the paper.

Let (M,ω, J) be a Hamiltonian S1-space. For each subgroup G ⊂ S1, let MG

be the set of points in M whose stabilizer is G. The connected components of

MS1

are symplectic submanifolds, hence either points or surfaces (since the action
is effective); this follows from the following local normal form (presented below
without proof, cf. Karshon [12, Cor. A.7] as a reference).

Lemma 2.7 (Chaperon [4]). For each p ∈ MS1

there exist neighborhoods U ⊂ M
of p, U0 ⊂ C2 of (0, 0), and a symplectomorphism Ψ: (U, ω) → (U0, ω0), where
ω0 = i

2 (dz1 ∧ dz̄1 + dz2 ∧ dz̄2) making the following diagram commute

(U, ω)
Ψ //

J ""

(U0, ω0)

J0{{
R,

with J0(z1, z2) = J(p) + m1

2 |z1|2 + m2

2 |z2|2.

Remark 2.8. Since the action is effective, the integers m1 and m2 are relatively
prime and are called the isotropy weights at p.
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An important role in the classification of Hamiltonian S1-spaces is played by the
subsets which are stabilized by Zk := Z/2πkZ ⊂ S1, the cyclic subgroup of order
k > 1.

Lemma 2.9 (Karshon [12], Lemma 2.2). The closure of each connected component
of MZk is a symplectic sphere on which S1/Zk acts with two fixed points, which are

isolated fixed points in MS1

.

Such submanifolds are called Zk-spheres, k being the isotropy weight, and the
minimum (respectively maximum) of J on a Zk-sphere is called south (respectively
north) pole.

The work in Karshon [12] provides an algorithm which associates a labeled
directed graph Γ = (V,E) to (the isomorphism class of) (M,ω, J):

Vertex set V : To every component in MS1

associate a vertex. Those as-
sociated to surfaces are drawn as ‘fat vertices’.

Labeling of V : Label each vertex by the value of J on the corresponding
component of the fixed point set. If it is extremal (maximal
or minimal), call the vertex extremal (maximal or minimal).
To a fat vertex add the genus of the corresponding surface
Σ and its normalized symplectic area 1

2π

∫
Σ
ω as additional

labels.
Edge set E: Every Zk-sphere gives rise to a directed edge going from its

south to its north pole.
Labeling of E: Label each edge with the isotropy weight of the correspond-

ing Zk-sphere.

Remark 2.10. Not every labeled directed graph arises as the one associated to
some (M,ω, J). For instance fat vertices can only occur at the minimum or max-
imum of J , and there are no edges incidents to them (cf. Karshon [12, Section
2.1]).

Such labeled directed graphs classify Hamiltonian S1-spaces up to isomorphism:

Theorem 2.11 (Karshon [12], Theorem 4.1). Two Hamiltonian S1-spaces are iso-
morphic if and only if their associated directed labeled graphs are equal.

Example 2.12. The Karshon graph associated to the S1-Hamiltonian space de-
scribed in Example 2.4 is drawn in Figure 2.1.

2

Figure 2.1.

Remark 2.13. An important role in the proof of Theorem 2.11 is played by the
so-called gradient spheres, whose definition is recalled below. Fix (M,ω, J) and
let g be a compatible metric, i.e. an S1-invariant Riemannian metric such that
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the endomorphism J : TM → TM defined by g(u, v) = ω(u,J (v)) is an almost
complex structure. Thus the gradient vector field of the moment map J satisfies

grad(J) = −J (XJ).

By invariance of the metric, the flow generated by J (XJ) commutes with the circle
action, thus obtaining an R × S1 ' C×-action. The closure of each C×-orbit is a
topological sphere, called a gradient sphere; as above, the minimum (respectively
maximum) of J along one such sphere is called the south (respectively north) pole.
A gradient sphere is free if its stabilizer is trivial. A chain of gradient spheres is a
sequence C1, . . . , Cl of gradient spheres such that the south pole of C1 is a minimum
of J , the north pole of Ci−1 coincides with the south pole of Ci, for every i = 2, . . . , l,
and the north pole of Cl is a maximum for J . A chain of gradient spheres is trivial
if it consists only of one free gradient sphere, and non trivial otherwise.

In Karshon [12] particular attention is given to the relation between Hamiltonian
S1-spaces and symplectic toric manifolds. The latter have been classified in Delzant
[5], where a special role is played by a family of convex polygons defined below.

Definition 2.14 (Delzant polygon).

• A convex polygon ∆ ⊂ R2 is simple if there are exactly 2 edges meeting at
each vertex.

• A simple polygon ∆ is rational if all edges have rational slope, i.e. they are
subsets of straight lines of the form x + sui for x ∈ R2, ui ∈ Z2 primitive,
s ∈ [0,∞[ and i = 1, 2.

• A vertex of a simple, rational, convex polygon is smooth if Z〈u1,u2〉 = Z2.

A simple, rational, convex polygon whose vertices are smooth is said to be Delzant.

Given a symplectic toric manifold (M,ω, µ), the image µ(M) := ∆ is a Delzant
polygon and, conversely, any Delzant polygon ∆ determines (up to T2-equivariant
symplectomorphisms preserving the moment map) a symplectic toric manifold (cf.
Delzant [5]). A natural question to ask is which Hamiltonian S1-spaces arise as those
associated to symplectic toric manifolds (cf. Remark 2.6). To this end, Karshon [12]
proves the following.

Theorem 2.15 (Karshon [12], Prop. 5.16 and 5.21). Given a Hamiltonian S1-space
(M,ω, J), the following are equivalent:

(E1) The S1-action extends to an effective Hamiltonian 2-torus action with moment
map given by (J,H) : M → R2, i.e. the triple (M,ω, (J,H)) is a symplectic
toric manifold.

(E2) Each fixed surface has genus zero and each non-extremal level set of J contains
at most two non-free orbits.

(E3) Each fixed surface has genus zero and there is a compatible metric for which
there are no more than two non-trivial chains of gradient spheres.

Definition 2.16 (Extendable Hamiltonian S1-spaces). A Hamiltonian S1-
space (M,ω, J) is said to be extendable if it satisfies any of the conditions of Theorem
2.15.

Example 2.17. There are Hamiltonian S1-spaces which are not extendable (cf.
Remark 2.6). For instance, endow CP1 × CP1 with the standard symplectic form
and consider the S1-action given by λ · ([z0 : z1], [z2 : z3]) = ([z0 : λmz1], [z2 : z3]),
for some fixed m ∈ Z \ {0}. Blow up S1-equivariantly three points lying on {[0 :
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1]} × CP1 by the same amount and consider the resulting Hamiltonian S1-space
(M,ω, J). Its associated (unlabeled) graph is as in Figure 2.2; seeing that there are
three fixed points with the same moment map value, this space is not extendable
by condition (E2) in Theorem 2.15.

Figure 2.2.

The following theorem of Karshon gives a sufficient condition for a Hamiltonian
S1-space to be extendable.

Theorem 2.18 (Karshon [12], Theorem 5.1). Let (M,ω, J) be a Hamiltonian S1-
space whose fixed points are isolated. Then (M,ω, J) comes from a Kähler toric
variety by restricting the action of the 2-torus to a sub-circle.

2.2. Compact semi-toric systems. The aim of this section is to introduce the
category of compact semi-toric systems, to provide some examples, and to describe
how to associate a family of polygons to such a system, following Vũ Ngo.c [26].

2.2.1. Almost toric singularities. Let (M,ω,Φ = (J,H)) be a completely integrable
Hamiltonian system. A point p ∈ M is singular or critical if Φ fails to be a sub-
mersion at p. In this case, the rank of p is defined to be rkDpΦ. Working with
arbitrary types of singular points is beyond the scope of this paper. To this end,
all singular points are henceforth assumed to be non-degenerate in the sense of
Williamson [27], i.e. a generalization of the Morse-Bott condition in the symplectic
category (cf. Zung [28] for a precise definition). This notion is generic and naturally
extends to singular orbits of the R2-action, i.e. if an orbit O contains a singular non-
degenerate point, then all points in O are non-degenerate. Moreover, the singular
points considered here are not of hyperbolic type, as these are of an intrinsically dif-
ferent nature to the other ones (cf. Symington [24]). These are henceforth referred
to as almost toric. This is no standard notation, introduced here for convenience.
For the purposes of this paper, non-degeneracy amounts to controlling the local
behavior of the action near compact singular orbits (cf. Eliasson [8], Miranda &
Zung [19]). This can be made precise as follows and is henceforth referred to as the
Eliasson-Miranda-Zung local normal form. The above assumptions imply that
there are three types of singular orbits, two of rank 0 (i.e. fixed points) and one of
rank 1 (i.e. a circle).

Fixed points: Let (x, y, ξ, η) denote Darboux coordinates on (R4, ω0).

Elliptic-elliptic point: A point p ∈ M is said to be of elliptic-elliptic type if
there exist open neighbourhoods U ⊂ (M,ω) of p, U0 ⊂ (R4, ω0) of 0 ∈ R4, a
symplectomorphism Ψ : (U, ω) → (U0, ω0) such that Ψ(p) = 0, and a local dif-
feomorphism ψ : R2 → R2 satisfying ψ(Φ(p)) = (0, 0), which make the following
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diagram commute

(U, ω)

Φ

��

Ψ // (U0, ω0)

Φee

��
R2

ψ
// R2,

(2.3)

where Φee = (q1, q2) and q1 = 1
2 (x2 + ξ2), q2 = 1

2 (y2 + η2).

Focus-focus point: A point p ∈ M is said to be of focus-focus type if there exist
U,U0,Ψ, ψ as above making the diagram in equation (2.3) commute with respect
to the map Φff = (q1, q2), where q1 = xη − yξ, q2 = xξ + yη.

Rank 1 orbits: Let (x, y, a, θ) denote Darboux coordinates on (R2 × T∗S1, ω0).

Elliptic-regular orbits: An orbit O is said to be of elliptic-regular type if there
exist open neighbourhoods U ⊂ (M,ω) of O, U0 ⊂ (R2 × T∗S1, ω0) of the circle
C = {x = y = a = 0}, a symplectomorphism Ψ : (U, ω) → (U0, ω0) such that
Ψ(O) = C, and a local diffeomorphism ψ : R2 → R2 satisfying ψ(Φ(O)) = (0, 0),
which make the following diagram commute

(U, ω)

Φ

��

Ψ // (U0, ω0)

Φer

��
R2

ψ
// R2,

where Φer = (q1, q2) and q1 = 1
2 (x2 + y2), q2 = a.

2.2.2. The category ST . With the above definitions in hand, it is now possible to
define the category of compact semi-toric systems.

Definition 2.19 (Compact semi-toric systems, Pelayo and Vũ Ngo.c [20]). The
category ST is defined by

• Objects: completely integrable Hamiltonian systems (M,ω,Φ = (J,H)) whose
singular points are almost toric and such that (M,ω, J) is a Hamiltonian S1-
space. These are henceforth called compact semi-toric systems.

• Morphisms: pairs (Ψ, ψ), where Ψ : (M1, ω1) → (M2, ω2) is a symplectomor-
phism and ψ : Φ1(M1) ⊂ R2 → Φ2(M2) ⊂ R2 is a locally defined diffeo-
morphism of the form ψ(x, y) = (ψ(1), ψ(2))(x, y) = (x, ψ(2)(x, y)) making the
following diagram commute

(M1, ω1)
Ψ //

Φ1

��

(M2, ω2)

Φ2

��
R2

ψ
// R2.

These are henceforth denoted by (Ψ, ψ) : (M1, ω1,Φ1) → (M2, ω2,Φ2) and are
referred to as isomorphisms of compact semi-toric systems.
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Remark 2.20. In the original definition, semi-toric systems are defined on man-
ifolds which are not necessarily compact, but J is asked to be proper (cf. Pelayo
& Vũ Ngo.c [20, 21]). Semi-toric systems on non-compact manifolds, while beyond
the scope of the present paper, are of great interest in mathematical physics, i.e.
in the study of the Jaynes-Cummings model from quantum optics, cf. Babelon &
Doucot [2].

Intuitively, compact semi-toric systems lie at the intersection of completely in-
tegrable Hamiltonian systems and Hamiltonian S1-spaces, as formalized by the
following remark.

Remark 2.21. Definitions 2.2 and 2.19 imply that there is a functor F : ST →
HamS1 defined on objects and morphisms by

(M,ω,Φ = (J,H)) 7→ (M,ω, J)

(Ψ, ψ) 7→ Ψ.

This is a well-defined functor because ψ may only change the second component.
Given (M,ω,Φ), F(M,ω,Φ) is said to be the underlying Hamiltonian S1-space.

Example 2.22. Symplectic toric manifolds (cf. Definition 2.5) are, in particular,
compact semi-toric. The only singular orbits of toric systems are either elliptic-
elliptic points or elliptic-regular orbits.

Example 2.23. The first examples of honest (i.e. with focus-focus points) compact
semi-toric systems appeared in the study of coupled angular momenta carried out

in Sadovskíı & Zĥilinskíı [23]. More generally, the methods of Pelayo & Vũ Ngo.c
[21] allow to construct compact semi-toric systems by specifying some initial data.

Remark 2.24. Semi-toric systems share an important property with symplectic
toric manifolds, namely connectedness of the fibers of the moment map. In the
toric category, this fact is used to prove the Atiyah-Guillemin-Sternberg convexity
theorem (cf. Atiyah [1], Guillemin & Sternberg [11]), while in the semi-toric case,
this follows from Vũ Ngo.c [26, Theorem 3.4].

The simplest invariant of the isomorphism class of a semi-toric system (M,ω,Φ)
is the number of focus-focus critical points mf ∈ N ∪ {0} (cf. Pelayo & Vũ
Ngo.c [20, Lemma 3.2]); when compared to symplectic toric manifolds, this is a new
invariant.

Semi-toric polygons. In analogy with the case of symplectic toric manifolds, it
is possible to associate a family of simple, rational, convex polygons to (the isomor-
phism class of) a compact semi-toric system (cf. Vũ Ngo.c [26]). However, there are
two differences: first, not all vertices need to be smooth, and, second, this family
consists of more than one element. These polygons, called semi-toric, play an
important role in the proof of the main result of this paper (cf. Theorem 3.1); as
such, their construction is recalled below in some detail (cf. Vũ Ngo.c [26] for proofs).

Throughout this section, fix a compact semi-toric system (M,ω,Φ) with mf

focus-focus critical points. The image B := Φ(M) is called the curved polygon
with marked interior points (often abbreviated to curved polygon) associated to
(M,ω,Φ), where the marked interior points are critical values of Φ whose fiber
contains focus-focus points (see Figure 2.3). These are called focus-focus values
and are denoted by c1, c2, . . . , cmf

.
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Remark 2.25. Note that the number of focus-focus points in any semi-toric system
(not necessarily compact) is always finite, cf. Vũ Ngo.c [26, Cor. 5.10].

Remark 2.26. Note that there may exist i 6= j such that ci = cj . Any interior
marked point ci is displayed in figures with its multiplicity, i.e. the integer j(ci) :=
|{j ∈ {1, . . . ,mf} | cj = ci}|, which is equal to the number of focus-focus critical
points in Φ−1(ci), see Figure 2.3.

Since B ⊂ R2, it makes sense to consider the boundary ∂B := B \ B̊ (note that
B ⊂ R2 is closed). A point s ∈ ∂B is either an elliptic-elliptic value (if Φ−1(s) is
an elliptic-elliptic point), or an elliptic-regular value (if Φ−1(s) is an elliptic-regular
orbit). The former occur as vertices of B as shown in Figure 2.3. The segments
in ∂B joining vertices are called curved edges and consist of elliptic-regular values
(except for the vertices). Points in Breg := B̊ \ {c1, c2, . . . , cmf

} are called regular
values and their fibers are tori. This description follows from connectedness of the
fibers and the Eliasson-Miranda-Zung local normal form of Section 2.2.1 (cf. Vũ
Ngo.c [26]).

Remark 2.27. The curved polygon B has further properties which are proved in
Vũ Ngo.c [26, Theorem 3.4].

JJmin

H

j(c1)

j(c2)

j(c3)

Figure 2.3. Part of the curved polygon.

The subset B \ {c1, c2, . . . , cmf
} inherits the structure of a manifold with cor-

ners endowed with an integral affine structure, defined below for two dimensional
manifolds.

Definition 2.28 (Integral affine structures). An integral affine structure on N
is a smooth atlas A := {(Ui, φi)}, with φi : Ui ⊂ N → R2 such that the change
of coordinates φj ◦ φ−1

i : φi(Ui ∩ Uj) ⊂ R2 → φj(Ui ∩ Uj) ⊂ R2 is an element of
AGL(2;Z) := GL(2;Z) nR2.

The integral affine structure A on B is defined by taking the action coordinates
given by the Liouville-Arnol’d theorem near regular values (cf. Duistermaat [6]), and
by the Eliasson-Miranda-Zung local normal form of Section 2.2.1 near the boundary.

Remark 2.29. In integral affine coordinates the boundary ∂B ⊂ B is locally
defined by hyperplanes whose normals have integer coefficients.
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It is interesting to note that the integral affine structure A on B\{c1, c2, . . . , cmf
}

is not the one coming from the inclusion B ⊂ R2 unless mf = 0 (cf. Zung [29]).
In order to bypass this issue, Vũ Ngo.c [26] introduces vertical cuts on B in such
a way that the resulting subset is a simply connected integral affine manifold with
corners. These can be defined as follows. Let p1, . . . , pmf

∈ M be the focus-
focus singular points of (M,ω,Φ) and order the corresponding focus-focus values
c1 = (x1, y1), . . . , cmf

= (xmf
, ymf

) ∈ R2 so that x1 ≤ · · · ≤ xmf
. Note that it may

be possible that ci = cj for some i 6= j (cf. Remark 2.26). For εi ∈ {+1,−1}, set

lεii := {(x, y) ∈ R2 | x = xi, εiy ≥ εiyi} ∩B.
For εi = 1 (respectively −1) this is the closed vertical segment between ci and the
upper (respectively lower) boundary of B. For ε = (ε1, . . . , εmf

) ∈ {+1,−1}mf , set

lε =

mf⋃
i=1

lεii ;

denote the open vertical segments by

l̊εii := lεii \ ({ci} ∪ (lεii ∩ ∂B)).

Each point s ∈ l̊ε is labeled by the integer

j(s) :=
∑

i with s∈ lεii

εij(ci),

where j(ci) is the multiplicity of the focus-focus critical value ci (cf. Remark 2.26).
A choice of cuts ε determines a convex polygon Pε (these are henceforth called
semi-toric) associated to (M,ω,Φ) in the following fashion.

Theorem 2.30 (Vũ Ngo.c [26], Theorem 3.8). For any ε ∈ {+1,−1}mf there exists
a homeomorphism f : B → f(B) =: Pε ⊂ R2 such that

(1) f restricted to B \ lε is a diffeomorphism onto its image.
(2) f restricted to B \ lε is integral affine for the standard integral affine structure

on R2.
(3) f is of the form f(x, y) = (x, f (2)(x, y)).

(4) For all 1 ≤ i ≤ mf and all points s ∈ l̊εii , there is an open ball D around s
such that the restriction of f to B\lε has a smooth extension to {(x, y) ∈ D |
x ≤ xi} and {(x, y) ∈ D | x ≥ xi} and

lim
(x,y)→s
x<xi

df(x, y) =
(

1 0
j(s) 1

)
lim

(x,y)→s
x>xi

df(x, y).

(5) Pε is a simple, rational, convex polygon.

Remark 2.31. In fact, any other semi-toric polygon associated to the same choice
of cuts ε differs from Pε by composition with an element of

T := {
((

1 0
j 1

)
, ( 0
t )
)
| j ∈ Z , t ∈ R} ⊂ AGL(2;Z),

i.e. the subgroup of integral affine transformations preserving vertical lines. This is
because, once a choice of cuts ε ∈ {+1,−1}mf is fixed, the homeomorphism f of
Theorem 2.30 is completely determined by a specific choice of action-angle variables
near a regular level set of Φ (cf. Pelayo & Vũ Ngo.c [21, Section 2.2] and Vũ Ngo.c
[26, Step 2, Theorem 3.8]). The adjective ‘specific’ refers to the fact that the first
component J of Φ is chosen as an action coordinate (equivalently, the first standard
coordinate x on R2 is chosen as an integral affine coordinate on B), since it generates
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an effective Hamiltonian S1-action. Moreover, upon choosing an orientation on R2,
f can always be chosen so that the top (respectively bottom) boundary of B is
sent to the top (respectively bottom) boundary of Pε by changing the sign of its
second component. Henceforth, whenever referring to the semi- toric polygon Pε

associated to (M,ω,Φ) and ε ∈ {+1,−1}mf , it is understood that a choice of action
variables (equivalently local integral affine coordinates on B) as above is fixed and
that f is chosen to be orientation preserving (upon a choice of orientation on R2),
unless otherwise stated.

Remark 2.32. Let ε, ε′ be two choices of cuts for (M,ω,Φ) and denote the corre-
sponding semi-toric polygons by Pε, Pε′ . Then there exists a continuous piecewise
integral affine transformation τ such that Pε′ = τ(Pε) with the property that τ
preserves vertical lines, i.e. on each region on which it is defined by an integral
affine transformation it is given by a restriction of an element in T. This can be
used to give a geometric interpretation of the action of {+1,−1}mf on the space of
semi-toric polygons associated to (M,ω,Φ) (cf. Vũ Ngo.c [26, Prop. 4.1]).

H

JJmin

l+1

JJmin

f (2)(J,H)

fj(c1) j(c1)

Figure 2.4. From B = Φ(M) to Pε

Fix a choice of cuts ε ∈ {+1,−1}mf and let Pε be the associated semi-toric
polygon. The vertices of Pε fall into three categories, as described below.

Definition 2.33 (Types of vertices of Pε, Def. 4.1 in Pelayo & Vũ Ngo.c [21]).
A vertex v of Pε is said to be

• Delzant if it is the image of a vertex of B which has no cuts ‘into’ it;
• hidden Delzant if it is the image of a vertex of B which has at least one cut

‘into’ it;
• fake: if it is the image of a point in ∂B which is not a vertex.

For a hidden Delzant or fake vertex v, its degree nv ≥ 1 is the number of cuts that
go into f−1(v), while its sign εv ∈ {+1,−1} is the sign of any cut going into f−1(v).

Remark 2.34. Henceforth, Delzant, hidden Delzant and fake vertices are displayed
in figures by •, � and ◦ respectively.

Definition 2.35 (Labeling on Pε). The labeling of Pε consists of marking the
image f(ci) of each focus-focus critical value ci ∈ B with its multiplicity j(ci) (cf.
Remark 2.26), as illustrated in Figure 2.4, and by labeling each vertex with one of
the symbols •, � and ◦, according to whether it is Delzant, hidden Delzant and
fake.
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Henceforth, Pε is also used to denote the labeled semi-toric polygon.

Remark 2.36. From the labeled semi-toric polygon it is possible to recover the
total number of focus-focus points mf , since it is the sum of the multiplicities j(ci)
for all i.

Remark 2.37. Note that the preimage (f ◦ Φ)−1(v) is an elliptic-elliptic point
if (and only if) v is Delzant or hidden Delzant, while it is a circle (consisting of
elliptic-regular points) otherwise.

Let Jmin (respectively Jmax) denote the minimum (respectively maximum) value
taken by J . By construction of f , vertices lying on Pε ∩ {(x, y) | x = Jmin}
(respectively Jmax) are Delzant (cf. Vũ Ngo.c [26, proof of Theorem 3.8]). Fix
a vertex v of Pε strictly between the vertical lines between Jmin and Jmax. By
Theorem 2.30, the edges incident to v have integral tangent vectors; denote their
primitives with positive first component by u,w ∈ Z2. Throughout, u (respectively
w) denotes the primitive tangent to the edge on the ‘left’ (respectively ‘right’) of
v (the orientation is chosen so that J does not decrease going from left to right).
As mentioned above, Z〈u,w〉 does not need to be the standard Z2 ⊂ R2, i.e. the
vertex does not need to be smooth. However, using the results of Vũ Ngo.c [26], the
lemma below proves some conditions on u,w, which generalise Pelayo & Vũ Ngo.c
[21, Def. 4.1 & Lemma 4.4].

Lemma 2.38. If the vertex v is

• Delzant, then Z〈u,w〉 = Z2,
• hidden Delzant, then Z〈u, Avw〉 = Z2,
• fake, then Z〈u, Avw〉 = Z〈u〉,

where

Av :=

(
1 0

εvnv 1

)
,

nv, εv being the degree and sign of v respectively.

Proof. If v is Delzant, then f ◦Φ defines a Hamiltonian T2-action near (f ◦Φ)−1(v)
which commutes with the Hamiltonian action defined by Φ. Thus, in this case, the
result follows because the action is locally toric. If v is either hidden Delzant or
fake, consider a semi-toric polygon Pε′ associated to the choice of cuts ε′, which
agrees with ε except that it changes the sign of the cuts going into f−1(v). Let
f ′ : B → Pε′ denote the homeomorphism associated to ε′ as in Theorem 2.30.
Then, by construction of f ′, we have f ′(f−1(v)) = v. If v was hidden Delzant for
Pε, then v is Delzant for Pε′ , while if it was fake for Pε, it is not a vertex for Pε′ .
The result in both cases follows from the fact that Pε′ = τv(Pε), where τv is a
piecewise integral affine transformation, which is the identity on the half-space to
the left of the vertical line containing v and Av on the half-space to the right (cf.
Remark 2.32 and Vũ Ngo.c [26, Prop. 4.1]).

Any semi-toric polygon Pε associated to (M,ω,Φ = (J,H)) contains information
about an invariant of the underlying Hamiltonian S1-space (M,ω, J).

Definition 2.39 (Duistermaat-Heckman measure, [7]). The push forward of
the Liouville measure ω2 under J is called the Duistermaat-Heckman measure µJ
of the Hamiltonian S1-action defined by J . Its density function ρJ is called the
associated Duistermaat-Heckman function.
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In analogy with symplectic toric manifolds, Pε determines the derivative of the
Duistermaat-Heckman function of (M,ω, J) as stated in the theorem below. This
is an important fact which is used in the proof of the main result.

Theorem 2.40 (Vũ Ngo.c [26], Theorem 5.3). Let x ∈ R. If x is not a critical
value of J , then the derivative of the Duistermaat-Heckman function is given by

ρ′J(x) = α+(x)− α−(x),

where α±(x) denotes the slope of the top (respectively bottom) edge of Pε intersecting
the vertical line through x. Otherwise,

ρ′J(x+ 0)− ρ′j(x− 0) = −e+ − e− − jx (2.4)

where e+ (respectively e−) is zero if there is no top (respectively bottom) vertex
whose first coordinate is x, or e± = − 1

a±b± , where a±, b± are the isotropy weights

of the S1-action at the corresponding vertices, and jx is the number of focus-focus
critical points of Φ lying in J−1(x) ⊂M .

3. The main theorem: from semi-toric polygons to labeled directed graphs.
Recall that there is a functor F : ST → HamS1 , which sends a compact semi-toric
system (M,ω,Φ = (J,H)) to its underlying Hamiltonian S1-space (M,ω, J) (cf. Re-
mark 2.21). A natural question to ask is to describe how to recover the invariants
of (the isomorphism class of) a Hamiltonian S1-space underlying (the isomorphism
class of) a compact semi-toric system from the invariants of the latter. On the one
hand, isomorphism classes of Hamiltonian S1-spaces are classified by their associ-
ated labeled directed graphs (cf. Section 2.1 and Karshon [12]); on the other, there
is no theorem classifying isomorphism classes of semi-toric systems in full generality
(cf. Pelayo & Vũ Ngo.c [20, 21] for the classification of generic semi-toric systems).
However, all that is needed to recover the labeled directed graphs of Hamiltonian
S1-spaces underlying compact semi-toric systems are the labeled associated semi-
toric polygons introduced in Section 2.2: this is the content of the main theorem of
this paper, stated below.

Theorem 3.1. Let (M,ω,Φ) be a compact semi-toric system, and let (M,ω, J) de-
note the underlying Hamiltonian S1-space. For any choice of cuts ε ∈ {+1,−1}mf ,
the associated labeled semi-toric polygon Pε determine the labeled directed graph Γ,
thus classifying (M,ω, J) up to isomorphisms in the HamS1 category.

Throughout this section, fix a compact semi-toric system (M,ω,Φ) along with
a labeled semi-toric polygon Pε, and denote its underlying Hamiltonian S1-space
by (M,ω, J) unless otherwise stated. This automatically sets the homeomorphism
f : B = Φ(M) → Pε given by Theorem 2.30. Recall that the labeled directed
graph Γ associated to (M,ω, J) is determined by the vertex set V and its labeling

(i.e. the connected components of the fixed point set MS1

, and their topological
and symplectic properties respectively), and the edge set E and its labeling (i.e.
Zk-spheres). Recovering V and its labeling from Pε is the aim of Section 3.1, while
Section 3.2 deals with ‘seeing’ Zk-spheres from Pε. The proof of Theorem 3.1 is
then given in Section 3.3, which brings everything together.

The scheme of the proof of Theorem 3.1 mimics the relation between symplectic
toric manifolds and their associated Hamiltonian S1-spaces, which is recalled below.
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Remark 3.2 (Karshon [12], Section 2.2). The following table shows how to pass
from a Delzant polygon ∆ associated to a symplectic toric manifold (M,ω, µ) to
the labeled directed graph Γ of its associated Hamiltonian S1-space. This serves as
a guide to follow the ideas of the forthcoming sections.

Vertex set V: Each vertex v∆ of ∆ which is not incident to a vertical edge
corresponds to a vertex vΓ of Γ. A vertical edge evert

∆ of ∆
gives rise to a fat vertex vfat

Γ of Γ.
Labeling of V: Each vertex vΓ (respectively vfat

Γ ) in V is labeled with the
value of the first coordinate of the corresponding vertex
v∆ (respectively of the corresponding vertical edge evert

∆ ) in
∆. Fat vertices are also labeled with 0 for the genus of the
corresponding fixed surfaces (they are all spheres) and with
the length of the corresponding vertical edge of ∆ for its
normalised symplectic area.

Edge set E: An edge e∆ of ∆ whose primitive tangent vector is of the
form (k, b) ∈ Z2 (for k ≥ 2) gives rise to an edge eΓ in Γ
joining the vertices in V corresponding to the vertices of ∆
of e∆ (note that these vertices can never be fat).

Labeling of E: Each edge eΓ of Γ is labeled with the integer k ≥ 2, where
(k, b) ∈ Z2 is a primitive tangent vector to the correspond-
ing edge e∆ of ∆.

3.1. Fixed point set MS1

: vertex set V and its labeling. This section de-
scribes how to construct and label the vertex set V of Γ from Pε. By definition,

vertices of Γ correspond to connected components of MS1

, the fixed point set of
the S1-action whose moment map is J . Any point p ∈ M which is fixed by this
S1-action satisfies dJ(p) = 0. Thus p is also a critical point of Φ. The next lemma,
which is probably well-known, characterizes isolated fixed points of the S1-action in
terms of critical points of Φ. However, since a suitable reference cannot be traced,
a proof is included.

Lemma 3.3. The isolated fixed points in MS1

are either

(V1) focus-focus critical points of Φ, or
(V2) elliptic-elliptic critical points of Φ whose image in Pε is not a vertex of a

vertical edge.

Proof. This uses the Eliasson-Miranda-Zung local normal form (cf. Section 2.2.1).

First, observe that any isolated fixed point p ∈ MS1

cannot be of elliptic-regular
type, since, if so, all points in Φ−1(Φ(p)) (= the orbit of p of the Hamiltonian R2-
action whose moment map is Φ) have the same stabilizer. Thus p needs to satisfy
rkDpΦ = 0. It follows again from the Eliasson-Miranda-Zung local normal form

theorem that the isolated fixed points in MS1

are precisely rank 0 points satisfying
conditions (V1) and (V2).

Having dealt with isolated fixed points in MS1

, consider the fixed surfaces, which,
by the following proposition, are precisely as in the case of symplectic toric manifolds
(cf. Remark 3.2).

Proposition 3.4. Let Σ be a connected surface which is fixed by the S1-action.
Then either Σ = J−1(Jmin) or Σ = J−1(Jmax), where Jmin (respectively Jmax) is
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the minimum (respectively maximum) value of J on M . Moreover, Σ is a symplectic
sphere.

Proof. By a standard argument which uses local normal forms (cf. Karshon [12,
Cor. A.7]), Σ is a symplectic surface which is a local minimum or maximum for
J . Since J is a moment map for an S1-action, by the Atiyah-Guillemin-Sternberg
convexity theorem, a local minimum or maximum is global, and is connected (cf.
Atiyah [1], Guillemin & Sternberg [11]). From this it follows that Σ = J−1(Jmin)
or Σ = J−1(Jmax).

It remains to prove that Σ is a sphere. Without loss of generality suppose that

Σ = J−1(Jmin). Then there exists x0 > Jmin such that Σ = MS1 ∩ J−1([Jmin, x0[),
A = Φ(J−1([Jmin, x0[)) ⊂ R2 is simply connected, and A contains no focus-focus
critical values (this follows from the Eliasson-Miranda-Zung local normal form and
connectedness of the fibers of Φ). Thus there exist global action coordinates on
J−1([Jmin, x0[) such that J can be taken to be the first action coordinate (cf. Vũ
Ngo.c [26, Prop. 2.12]). In other words, f ◦ Φ(Σ) corresponds to a vertical edge of
Pε and, near Σ, the second component of f ◦ Φ is the moment map of an effective
Hamiltonian S1-action, which can be restricted to Σ by the Eliasson-Miranda-Zung
local normal form. Hence Σ is a symplectic surface with an effective Hamiltonian
circle action, which implies that it is a sphere.

Remark 3.5. The arguments in the proof of Proposition 3.4 imply that f ◦Φ(Σ) ⊂
Pε is a vertical edge, and its normalized symplectic area is the length of the corre-
sponding vertical edge, just as in the symplectic toric case.

Remark 3.6. The Eliasson-Miranda-Zung local normal form implies that no focus-
focus point lies on J−1(Jmin) or on J−1(Jmax). It is well-known that J is an S1-
invariant Morse function, with critical points equal to the fixed points of the S1

action. Thus, by the previous argument, the Morse index of J at any such point is
2. (Note that the Morse indices of an S1-invariant Morse function are always even.)
Following Kirwan [17], this allows to place the following bound on mf ,

mf ≤ rk H2(M ;Z),

where the equality holds if and only if there are no fixed surfaces at the minimum
of maximum of J , and no elliptic-elliptic points in J−1(]Jmin, Jmax[).

Moreover, Proposition 3.4 implies that Hodd(M ;Z) = 0, as all fixed surfaces are
simply connected.

3.2. Zk-spheres: edge set E and its labeling. Recall that the edges in the
labeled directed graph Γ associated to (M,ω, J) correspond to symplectic spheres
in M which are stabilized by a finite subgroup Zk ⊂ S1 with k ≥ 2; these are known
as Zk-spheres. Fix one such symplectic sphere Σ; the action of S1 on Σ has two fixed

points (called the poles of the sphere), which are isolated fixed points in MS1

(cf.

Karshon [12]). An isolated fixed point in MS1

is a pole of a Zk-sphere if and only if
one of its isotropy weights equals k in absolute value (cf. Remark 2.8). By Lemma

3.3, the isolated fixed points in MS1

are either focus-focus or elliptic-elliptic critical
points satisfying property (V2). Thus, before trying to ‘see’ Zk-spheres from Pε,
it is necessary to understand how to obtain the isotropy weights of isolated fixed

points in MS1

from Pε. This is the aim of the next subsection.
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3.2.1. Isotropy weights from Pε. Lemma 3.3 proves that isolated fixed points in

MS1

satisfy either property (V1), i.e. they are of focus-focus type, or (V2), i.e. they
are of elliptic-elliptic type with an extra condition. Note that the former do not
arise when considering symplectic toric manifolds and, as such, need to be dealt
differently. To this end, each of the two cases is discussed separately below.

Let p ∈ MS1

be a focus-focus critical point for Φ. Recall that the Eliasson-
Miranda-Zung local normal form gives

• open neighbourhoods U ⊂M of p, U0 ⊂ R4 of 0;
• a symplectomorphism Ψ : (U, ω) → (U0, ω0), where ω0 is the standard sym-

plectic form on R4, and a local diffeomorphism ψ : R2 → R2 satisfying
Ψ(p) = 0, ψ(Φ(p)) = (0, 0);

which make the following diagram commute

(U, ω)
Ψ //

Φ

��

(U0, ω0)

Φff

��
R2

ψ
// R2,

where Φff = (q1, q2), q1 = xη − yξ, q2 = xξ + yη, and ω0 = dx ∧ dξ + dy ∧ dη.

Definition 3.7 (Local system preserving actions). An S1-action on U is said
to be local system preserving if for all λ ∈ S1 and all p ∈ U , Φ(λ · p) = Φ(p).

Remark 3.8. Local system preserving actions play a crucial role in the topological
and symplectic classification of completely integrable Hamiltonian systems devel-
oped in Zung [28].

In what follows it is shown that the isotropy weights at any focus-focus critical
point are ±1. The proof is broken down into two steps: first it is shown that, near
a focus-focus critical point, there is a unique (up to sign) local system preserving
effective Hamiltonian S1-action, which in the above local normal form has moment
map given by q1 (cf. Zung [30, Theorem 1.2] and Proposition 3.9). Since for any
compact semi-toric system (M,ω,Φ = (J,H)), J is the moment map of an effective
local system preserving Hamiltonian S1-action, it follows that the isotropy weights
of any two focus-focus points are equal, because they are both equal to the isotropy
weights of the origin in the above local model. Therefore, these weights can be
calculated in a single example, which is conveniently chosen to be an adaptable
compact semi-toric system (cf. Definition 3.11 and Proposition 3.12).

Proposition 3.9. There exists a unique (up to sign) local system preserving effec-
tive Hamiltonian S1-action defined in a neighbourhood of a focus-focus point.

Proof. Using the Eliasson-Miranda-Zung local normal form, it suffices to prove
the result for the linear model (U0, ω0,Φff = (q1, q2)) described above. Let h :
(R4, ω0)→ R be the momentum map for an effective Hamiltonian S1-action which
is system preserving. By definition, for i = 1, 2,

dqi(X
h) = 0, (3.1)

whereXh denotes the Hamiltonian vector field of h. Equation (3.1) has the following
two consequences:

(1) For all z ∈ R4, Xh(z) ∈ kerDzΦ0.
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(2) {qi, h}0 = 0, where {·, ·}0 is the Poisson bracket induced by ω0 on U0.

Since for all z ∈ R4 \ {0}, kerDzΦ0 = 〈Xq1(z), Xq2(z)〉, (1) implies that there exist
smooth functions F1, F2 : U0 \ {0} → R such that, for all z ∈ U0 \ {0},

Xh(z) = F1(z)Xq1(z) + F2(z)Xq2(z). (3.2)

Consequence (2) implies that, for i = 1, 2,

[Xqi , Xh] = 0.

By equation (3.2) and [Xq1 , Xq2 ] = 0, for i = 1, 2 and for all z ∈ U0 \ {0}, the
following holds

0 = [Xqi , Xh](z) = [Xqi , F1X
q1 + F2X

q2 ](z)

= ((XqiF1)(z))Xq1(z) + ((XqiF2)(z))Xq2(z).

Therefore, for i, j = 1, 2 and for all z ∈ U0 \ {0},

(XqiFj)(z) = 0.

The above equation implies that the functions F1, F2 are basic, i.e. there exist
smooth functions G1, G2 : R2 \ {(0, 0)} → R such that Fj = Φ∗ffGj for j = 1, 2.

Consider the flow of Xh, which is periodic with period 2π. Since the functions Fj
are basic, they are constant along orbits of Xh, as they only depend on the values
on the image of Φ0 and the latter is constant on the orbits of Xh. Using the fact
that [Xq1 , Xq2 ] = 0, it therefore follows that the flow of Xh is given by

ϕth(w1, w2) = (e(iF1+F2)tw1, e
(iF1−F2)tw2), (3.3)

where w1 = x+ iξ, w2 = y + iη, and F1, F2 are smooth functions of z1, z2 (in fact,
of q1, q2). Since ϕ2π

h = id, (3.3) implies that

e(iF1+F2)2π = 1 e(iF1−F2)2π = 1,

which implies that F2 ≡ 0 and that 2πF1 ∈ 2πZ. Since the S1-action is effective, it
follows that |F1| ≡ 1. Thus, up to sign, h = q1 on U0 \ {0}; since both functions
extend smoothly at 0, it follows that, up to sign, h = q1 + const on U0, which
completes the proof.

Since J is the moment map of a system preserving effective Hamiltonian S1-
action near p, it follows that its isotropy weights at p equal those of the origin
in R4 with respect to the Hamiltonian S1-action whose moment map is q1 in the
above local normal form. In particular, all focus-focus critical points have the same
isotropy weights for the S1-action; these are known to be {+1,−1} (cf. Zung [30,
Theorem 1.2]).

Remark 3.10. In order to calculate the isotropy weights of an S1-action at a fixed
point, an S1-invariant almost complex structure J has to be fixed. Observe that
the (integrable!) almost complex structure used in the proof of Proposition 3.9 is
not invariant under the S1-action and, as such, cannot be used to compute the
weights.

Below a different proof of the fact that focus-focus critical points have isotropy
weights {+1,−1} is given; it uses the close relation between a special class of com-
pact semi-toric systems and symplectic toric manifolds.
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Definition 3.11 (Adaptable compact semi-toric systems). A compact semi-
toric system (M,ω,Φ) is called adaptable if the underlying Hamiltonian S1-space
(M,ω, J) is extendable (cf. Definition 2.16).

Fix an adaptable system (M,ω,Φ) and denote the underlying Hamiltonian S1-
space by (M,ω, J). Theorem 2.15 implies that for all x ∈ R, J−1(x) contains at most

two isolated critical points in MS1

. Let (M,ω, µ = (J, H̃)) denote a symplectic toric
manifold whose Hamiltonian T2-action extends the one defined by J (this exists by
Definition 2.16), and let ∆ be the associated Delzant polygon. With this notation
in hand, the following proposition, already proved in Zung [30], can be deduced by
exploiting the properties of adaptable compact semi-toric systems.

Proposition 3.12. The isotropy weights of the S1-action at isolated fixed points

in MS1

which are of focus-focus type for Φ are {+1,−1}.

Proof. Any isolated fixed point in MS1

of focus-focus type for Φ corresponds to a
vertex of ∆ (see Figure 3.1 below).

x x

1

Figure 3.1. The image of a focus-focus point, and the correspond-
ing image in the toric extension.

In light of Proposition 3.9 and the subsequent discussion, it suffices to consider an
adaptable compact semi-toric system which has only one focus-focus point, e.g. the

system considered in Sadovskíı & Zĥilinskíı [23] or that one constructed in Example
3.17. Fix such a system and let x ∈ R be such that J−1(x) contains the only focus-
focus point. The Eliasson-Miranda-Zung local normal form implies that Jmin < x <
Jmax, where, as above, Jmin (respectively Jmax) denote the minimum (respectively
maximum) value of J . Let ρ denote the Duistermaat-Heckman function associated
to the S1-action (cf. Definition 2.39). Theorem 2.40 gives that

ρ′J(x+ 0)− ρ′J(x− 0) = −1. (3.4)

Applying Theorem 2.40 to the symplectic toric manifold (M,ω, µ = (J, H̃)), obtain
that

ρ′J(x+ 0)− ρ′J(x− 0) = −e+(x), (3.5)

where e+(x) = 1
a+b+ , and a+, b+ are the isotropy weights at p of the S1-action

defined by J (note that p is an elliptic-elliptic point for (M,ω, µ = (J, H̃))). Observe
that the left hand sides of (3.4) and (3.5) are equal, as they depend on the S1-action
defined by J . Therefore, a+b+ = −1, which implies that {a+, b+} = {+1,−1} as
required.
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Having found that the isotropy weights at focus-focus critical points are equal to
1 in absolute value, the following corollary is immediate.

Corollary 3.13. Let (M,ω,Φ) be a compact semi-toric system. The poles of a
Zk-sphere of the underlying S1-action are necessarily elliptic-elliptic critical points
satisfying condition (V2).

Corollary 3.13 begs the question of whether Pε can be used to calculate the

isotropy weights of isolated fixed points in MS1

which are elliptic-elliptic critical
points for Φ. Recall that such points are mapped to either Delzant or hidden Delzant
vertices of Pε by f ◦ Φ (cf. Remark 2.37).

Remark 3.14. Given (M,ω, µ = (µ1, µ2)) is a symplectic toric manifold, its
Delzant polygon ∆ can be used to calculate the isotropy weights of the isolated
fixed points of the Hamiltonian S1-action of the associated Hamiltonian S1-space
(M,ω, µ1) as follows. By Remark 3.2, such a point maps to a vertex v∆ of ∆ not
incident to a vertical edge. Let u,w be the primitive integral tangent vectors to
the edges incident to v∆ which come out of it. Then the isotropy weights of the
chosen S1 action at the corresponding isolated fixed point are given by taking the
first coordinates of u,w.

Let v be a Delzant or hidden Delzant vertex of Pε satisfying condition (V2)
and choose primitive integral tangent vectors u,w to the edges incident to v as in
Remark 3.14. The next proposition proves that the isotropy weights of the corre-

sponding isolated fixed point in MS1

can be calculated as in the case of symplectic
toric manifolds described by Remark 3.14 above.

Proposition 3.15. With the notation as above, the isotropy weights of the isolated
fixed point corresponding to v are given by the first coordinates of u and w.

Proof. If v is a Delzant vertex, then locally f ◦ Φ defines a Hamiltonian T2-action
which extends the S1-action whose moment map is J . Thus in this case the result
follows, as the action is locally toric and the observations made in Remark 3.14
hold. On the other hand, if v is hidden Delzant for Pε, then there exists a different
choice of cuts ε′ such that v is a Delzant vertex for Pε′ (ε′ agrees with ε except
that there are no cuts going into f−1(v), cf. proof of Lemma 2.38). If u,w are the
primitive integral tangent vectors to the edges of Pε chosen as in Remark 3.14, then
u, Avw are the corresponding ones for Pε′ , where Av =

(
1 0

εvnv 1

)
, εv, nv being the

sign and degree of v (cf. proof of Lemma 2.38 and Vũ Ngo.c [26, proof of Prop. 4.1]).
Since the first coordinate of w agrees with that of Avw, the result follows from the
Delzant case.

3.2.2. Zk-spheres. Corollary 3.13 and Proposition 3.15 allow to find poles of Zk-
spheres; what this section is concerned with is to show that, in analogy with the case
of symplectic toric manifolds (cf. Remark 3.2), these are mapped to the boundary
of Pε under f ◦ Φ. Recall that B = Φ(M) is a curved polygon with curved edges
(cf. Section 2.2.2).

Proposition 3.16. Let Σ ⊂ M be a Zk-sphere for k ≥ 2. Then Φ(Σ) is a curved
edge of B.

Proof. Let p, q ∈ Σ be fixed by the S1-action. By the local normal form of Lemma
2.7, p and q can be chosen so that one of the isotropy weights of p (respectively q) is
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k (respectively −k). Corollary 3.13 implies that Φ(p),Φ(q) are vertices of B. Sup-

pose that B̊ ∩Φ(Σ) 6= ∅ and consider s ∈ B̊ ∩Φ(Σ). Suppose that s is a focus-focus
critical value, then Σ∩Φ−1(s) does not contain focus-focus critical points and, there-
fore, consists only of regular points. However by Proposition 3.9, the Hamiltonian
S1-action whose moment map is J is the unique local system preserving effective
such, and hence its action is free on regular points lying on Φ−1(s). This leads to a
contradiction, as points on Σ are stabilized by Zk ⊂ S1. Therefore, s is not a focus-
focus critical value, which implies that s is regular. Since r ∈ Σ ∩Φ−1(s), then the
isotropy of the S1-action at r is Zk; however, since the S1-action commutes with the
Hamiltonian R2-action induced by the compact semi-toric system, it follows that all
points on Φ−1(s) are fixed by Zk. The Liouville-Arnol’d theorem implies that, lo-
cally near Φ−1(s), there exists a free Hamiltonian T2-action; since the Hamiltonian
S1-action defined by J is effective and commutes with the Hamiltonian R2-action
defined by the compact semi-toric system, the free local Hamiltonian T2-action can
be chosen to extend the one defined by J . This leads to a contradiction, which
implies that B̊ ∩ Φ(Σ) = ∅. Thus Φ(Σ) ⊂ ∂B and Σ consists of elliptic-elliptic and
elliptic-regular critical points for Φ.

It remains to prove that Φ(Σ) consists of the whole of a curved edge. This is
a consequence of the Eliasson-Miranda-Zung local normal form, as outlined below.
Suppose that s′ ∈ Φ(Σ) is not a vertex of B and let e denote the curved edge
containing s′. Since focus-focus critical values are isolated, there exists an open
neighbourhood W ⊂ B of e such that the Hamiltonian action defined by Φ on
(Φ−1(W ), ω) descends to a Hamiltonian T2-action, i.e. there exists a diffeomorphism
f̄ : W → F (W ) ⊂ R2 onto its image such that f̄ ◦ Φ : (Φ−1(W ), ω) → R2 is the
moment map of a Hamiltonian T2-action. Choose f̄(x, y) = (x, f̄ (2)(x, y)), i.e. fix
the Hamiltonian vector field of J |Φ−1(W ) to be an infinitesimal generator of the

Hamiltonian T2-action. The Eliasson-Miranda-Zung local normal form implies that
f̄(e) is a straight line with integral tangent vector (cf. Remark 2.29). Given the
above choices, it follows that a primitive tangent vector u for f̄(e) is of the form
(k, b), for some b 6= 0 (cf. Remark 3.14). It is standard to check that (f̄◦Φ)−1(f̄(e)) is
a Zk-sphere (cf. Karshon [12]); since ((f̄ ◦Φ)−1(f̄(e)))∩Σ is not empty and contains
a point that is not a pole of Σ, it follows that Σ = (f̄ ◦Φ)−1(f̄(e)) = Φ−1(e), which
completes the proof.

Unlike the case of symplectic toric manifolds, it is not necessarily true that a Zk-
sphere Σ of the underlying Hamiltonian S1-space (M,ω, J) of a compact semi-toric
system (M,ω,Φ) is the preimage of an edge in Pε. This is because some of the
cuts may break the curved edge in B whose preimage under Φ equals Σ, thereby
introducing fake vertices (cf. Definition 2.33). This is illustrated by the following
example.

Example 3.17 Following Pelayo & Vũ Ngo.c [21], the polygons shown in Figure 3.2
are two semi-toric polygons associated to a compact semi-toric system (M,ω,Φ),
where mf = 1 and the Taylor series invariant associated to the focus-focus critical
point is taken to be 0 (cf. Pelayo & Vũ Ngo.c [20, 25] for details). The top edge,
going from (0, 0) to (2, 1), of the polygon in Figure 3.2 (b) corresponds to a Z2-
sphere; however, the same Z2-sphere is the preimage of the union of the top edges
of the polygon in Figure 3.2 (a).
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(a)

1

(b)

1

Figure 3.2.

In general, a Zk-sphere is the preimage of a chain of consecutive edges e1, . . . , eN
joining two vertices v, v′ in Pε, whose ‘initial’ (respectively ‘final’) vertex v ∈ e1

(respectively v′ ∈ eN ) is Delzant or hidden Delzant, has one of its isotropy weights
equals to k (respectively −k), and whose other vertices are all fake. Note that
the isotropy weights at v and v′ can be calculated using Proposition 3.15. The
adjectives ‘initial’ and ‘final’ refer to direction of increasing first coordinate, which
corresponds to the flow of the negative gradient of J with respect to a compatible
metric (cf. Remark 2.13).

3.3. Proof of Theorem 3.1. Sections 3.1 and 3.2 allow to describe an algorithm
to construct the labeled directed graph Γ of the Hamiltonian S1-space (M,ω, J) un-
derlying a compact semi-toric system (M,ω,Φ) from the labeled semi-toric polygon
Pε. This is explained in the proof of the main theorem below.

Proof of Theorem 3.1. As in Remark 3.2, all that is needed is how to construct the
vertices and the edges of Γ and their labeling.

Vertex set V: Each Delzant or hidden Delzant vertex vPε of Pε satisfying
property (V2) corresponds to a vertex vΓ of Γ; moreover,
there are another mf vertices of Γ each corresponding to
one focus-focus critical point of Φ (cf. Lemma 3.3). A ver-
tical edge evert

Pε
of Pε give rise to a fat vertex vfat

Γ of Γ (cf.
Remark 3.5).

Labeling of V: Each vertex vΓ (respectively vfat
Γ ) in V is labeled with the

value of the first coordinate of the corresponding vertex
vPε (respectively of the corresponding vertical edge evert

Pε
)

in Pε. Fat vertices are also labeled with 0 for the genus of
the corresponding fixed surfaces (cf. Proposition 3.4) and
with the length of the corresponding vertical edge of Pε for
its normalised symplectic area (cf. Remark 3.5).
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Edge set E: Suppose that vΓ ∈ V has an isotropy weight equal to k ≥ 2
(note that Corollary 3.13 implies that vΓ does not corre-
spond to a focus-focus critical point). By Proposition 3.15
this happens if and only if the corresponding vertex of vPε

of Pε has an ‘outgoing’ edge e1 (in the direction of increas-
ing J) whose primitive tangent vector is of the form (k, b),
for some b ∈ Z. Construct a chain C of consecutive edges
e1, e2, . . . , eN by moving along e1 in the direction of in-
creasing J until a Delzant or hidden Delzant vertex v′Pε

is
reached (this process need terminate). Let v′Γ ∈ V denote
the corresponding vertex. Note that by Proposition 3.16,
(f ◦Φ)−1(C) is a Zk-sphere; thus join vΓ to v′Γ with an edge
eΓ.

Labeling of E: Each edge eΓ of Γ is labeled with the integer k ≥ 2, where
(k, b) ∈ Z2 is a primitive tangent vector to the edge e1 in
the corresponding chain C of edges e1, . . . , eN of Pε.

Example 3.18 The compact semi-toric system whose associated semi-toric poly-
gons are shown in Figure 3.2 is defined on (CP2, ωFS), where ωFS is the standard
Fubini-Study symplectic form. In fact, the underlying Hamiltonian S1-space is
described by Example 2.4.

4. Adaptable and non-adaptable compact semi-toric systems. As remarked
above and in the literature, compact semi-toric systems share many properties with
symplectic toric manifolds (cf. Remark 2.24, the proof of Theorem 3.1, and Pelayo
& Vũ Ngo.c [20, 21], Vũ Ngo.c [26]). In light of the classification of symplectic toric
manifolds carried out in Delzant [5], it is natural to ask whether compact semi-toric
systems admit a semi-toric polygon which is Delzant in the sense of Definition 2.14.
Note that property (5) of Theorem 2.30 implies that a semi-toric polygon Pε may
fail to be Delzant only if some vertices are not smooth (cf. Definition 2.14).

Recall that (M,ω,Φ) is adaptable if and only if its underlying Hamiltonian S1-
space (M,ω, J) is extendable, which in turn means that the S1-action can be ex-
tended to an effective Hamiltonian T2-action on (M,ω) (cf. Definitions 2.16 and
3.11, and Theorem 2.15). The aim of this section is to prove the following result.

Theorem 4.1. A compact semi-toric system (M,ω,Φ) admits a Delzant semi-toric
polygon Pε if and only if (M,ω,Φ) is adaptable.

The proof of Theorem 4.1 is obtained by considering the cases of adaptable and
non-adaptable compact semi-toric systems separately (in Sections 4.1 and 4.2 re-
spectively), and is obtained by combining Corollary 4.9 and Proposition 4.16. In
fact, Corollary 4.9 follows from Theorem 4.5, which proves a stronger property
of adaptable compact semi-toric systems: Let (M,ω,Φ) be adaptable, denote by
(M,ω, J) its underlying Hamiltonian S1-space, and let (M,ω, µ) be a symplectic
toric manifold whose associated Hamiltonian S1-space (in the sense of Remark 2.6)
is (M,ω, J). Then there exists a choice of cuts ε such that Pε = ∆, where ∆ is
the Delzant polygon classifying (M,ω, µ). In other words, the family of semi-toric
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polygons associated to (M,ω,Φ) contains all the Delzant polytopes classifying sym-
plectic toric manifolds whose associated Hamiltonian S1-space is (M,ω, J).

Henceforth, fix a compact semi-toric system (M,ω,Φ). Let Pε be a semi-toric
polygon associated to (M,ω,Φ). The following lemma gives a necessary and suffi-
cient condition for vertices of Pε to be smooth.

Lemma 4.2. A vertex v of Pε is smooth if and only if v is either

(a) Delzant, or
(b) fake with degree 1 and not lying on a chain of edges corresponding to a Zk-

sphere (cf. Definition 2.33 and Section 3.2).

Proof. The idea is to use Lemma 2.38 to prove the result. Smoothness of Delzant
vertices follows directly from Lemma 2.38; thus it remains to show that hidden
Delzant vertices are never smooth and that fake vertices are smooth if and only
if they satisfy property (b) above. Let v be a vertex of Pε and let u,w ∈ Z2 be
the primitive tangents to the left and right edges of Pε incident to v with positive
first component (the convention is the same as that in the discussion leading to
Lemma 2.38). Suppose that v is hidden Delzant. Then Lemma 2.38 gives that
Z〈u, Avw〉 = Z2, where

Av =

(
1 0

εvnv 1

)
,

and εv and nv are the sign and the degree of v respectively. Let (u w) denote the
matrix whose columns are u,w. Then, if u = (u1, u2)T and w = (w1, w2)T , a
simple calculation shows that

det(uAvw) = εvnvu1w1 + det(u w). (4.1)

Since εvnvu1w1 6= 0, it follows that, if v is smooth, then the signs of det(uAvw)
and det(u w) are opposite. Recall that u, Avw are the left (respectively right) prim-
itive tangent vectors to the edges incident to v in a distinct semi-toric polygon Pε′

whose choice of cuts agrees with ε except that there are no cuts into v (so that v is
a Delzant vertex for Pε′). Moreover, Pε′ = τv(Pε), where τv is a piecewise integral
affine transformation which is the identity on the left of vertical line through v and
Av on the right (cf. Vũ Ngo.c [26, Prop. 4.1]). This transformation preserves con-
vexity of the semi-toric polygon and, thus, the sign of det(u w) agrees with that of
det(uAvw). If v is smooth as a vertex of Pε, this leads to a contradiction.

It remains to check that fake vertices are smooth if and only if they satisfy
property (b). Suppose v is fake and let u,w ∈ Z2 be as above. Lemma 2.38 gives
that det(uAvw) = 0; thus equation (4.1) implies that

det(u w) = −εvnvu1w1.

The vertex v is smooth if and only if |det(u w)| = 1, which is equivalent to
nV , u1, w1 = 1 (since they are all positive integers). The first component of u,w
is equal to 1 if and only if v does not lie on a chain of edges corresponding to a
Zk-sphere (cf. proof of Theorem 3.1). This completes the proof.

4.1. Adaptable compact semi-toric systems. By condition (E2) in Theorem
2.15, (M,ω,Φ) is adaptable if and only if every non-extremal level set of J contains
at most 2 non-free orbits and all fixed surfaces are spheres. By Proposition 3.4, the
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latter is always satisfied. The only possibilities for non-free orbits of the S1-action
which are not extremal are:

• elliptic-elliptic points not lying on a symplectic sphere fixed by the S1-action,
• focus-focus points,

• points lying on a Zk-sphere but not in MS1

(in light of Proposition 3.16, these
lie on elliptic-regular orbits stabilized by a subgroup Zk ⊂ S1).

Note that in all the above cases, the non-free orbits of the S1-action consist of
critical points of Φ. As before, let Jmin, Jmax denote the minimum and maximum
values of J respectively, and let x ∈ ]Jmin, Jmax[. If J−1(J(x)) does not contain a
focus-focus point, then it contains at most two non-free orbits (cf. Vũ Ngo.c [26,
Theorem 3.4]). Thus, in order to see whether (M,ω,Φ) is adaptable or not, it
suffices to check that each J−1(J(x)) containing at least one focus-focus point does
not contain more than two non-free orbits of the S1-action. This happens if and
only if J−1(J(x)) contains either

(A1) exactly one rank 0 critical point of Φ, which is of focus-focus type, and at
most one elliptic-regular orbit lying on a Zk-sphere, or

(A2) exactly two rank 0 critical points of Φ, which can be either both of focus-focus
type, or one of focus-focus type and the other of elliptic-elliptic type, and no
point lying on a Zk-sphere.

Remark 4.3. The proof of Theorem 3.1 implies that any semi-toric polygon Pε

associated to (M,ω,Φ) can be used to check that the system is adaptable, i.e. to
check that conditions (A1) and (A2) hold.

Until the end of this section, assume that (M,ω,Φ) is adaptable with mf focus-
focus critical points, and denote by (M,ω, J) its underlying Hamiltonian S1-space.
By definition, (M,ω, J) is extendable, which, by condition (E3) in Theorem 2.15, is
equivalent to the existence of an S1-invariant metric with at most two non-trivial
chains of gradient spheres (cf. Remark 2.13). In fact, the method employed in
Karshon [12, Prop. 5.16] to construct a symplectic toric manifold (M,ω, µ) whose
associated Hamiltonian S1-space is (M,ω, J) is completely determined by

(K1) a choice of an S1-invariant metric as above,
(K2) a suitable toric extension of the S1-action near the minimum of J .

Here ‘suitable’ indicates that the moment map associated to the toric extension
near the minimum has components (J, H̃) as in Theorem 2.15. This construction
consists of building the two sequences of directed edges e1, . . . , er and e′1, . . . , e

′
r′

starting at the minimum of J and ending at the maximum defining (the boundary
of) a Delzant polygon; in particular for each i > 1, the tangent to ei (respectively e′i)
is completely determined by the S1-weights of its ‘initial vertex’ (in the direction of J
increasing), the direction of ei−1 (respectively e′i−1) and the convexity of the Delzant
polygon. Analogously, a semi-toric polygon associated to (M,ω,Φ) is completely
determined by

(VN1) a choice of cuts ε ∈ {+1,−1}mf ,
(VN2) a choice of suitable local action-angle coordinates around the minimum of J .

Here ‘suitable’ implies that the angles are defined using the Hamiltonian vector

fields XJ , Xf(2)(J,H) for some smooth function f (2) as in Theorem 2.30. Equiva-
lently, (VN1) and (VN2) determine the homeomorphism f : Φ(M) ⊂ R2 → R2 onto
its image Pε uniquely.



28 SONJA HOHLOCH AND SILVIA SABATINI AND DANIELE SEPE

It is clear that (K2) and (VN2) are entirely analogous, since a choice of suitable
local action-angle coordinates gives a suitable toric extension of the S1-action de-
fined by J . The relation between (K1) and (VN1) is explored in the theorem below.
Fix choices for (K1) and (K2), so as to obtain a symplectic toric manifold (M,ω, µ)
classified by the Delzant polygon ∆.

Remark 4.4. Observe that a different choice for (K1) and (K2) yields a different
symplectic toric manifold (M ′, ω′, µ′), whose Delzant polygon ∆′ is related to ∆ by
a transformation in T (cf. Remark 2.31).

Theorem 4.5. Let (M,ω,Φ) be adaptable and (M,ω, J) its underlying Hamiltonian
S1-space. Then there exist choices of cuts ε ∈ {+1,−1} and of suitable local action-
angle coordinates around the minimum of J such that Pε = ∆.

Before proceeding to the proof of theorem 4.5, note that different choices of met-
rics satisfying (K1) and different choices of toric extensions near the minimum of
J , as in (K2), give rise to all symplectic toric manifolds whose associated Hamil-
tonian S1-spaces are all isomorphic to (M,ω, J). Thus an immediate consequence
of Theorem 4.5 is the following corollary.

Corollary 4.6. The family of semi-toric polygons associated to an adaptable system
(M,ω,Φ) contains all Delzant polygons classifying the symplectic toric manifolds
whose associated Hamiltonian S1-space is (M,ω, J).

Example 4.7 Corollary 4.6 generalises a phenomenon that occurs for coupled an-

gular momenta on S2 × S2: Consider Sadovskíı & Zĥilinskíı [23, Figure 3] where
the Delzant polygons are the ones on the leftmost and rightmost picture and those
obtained by composing those pictures with the transformation (x, y) 7→ (x,−y).

Remark 4.8. In order to obtain all Delzant polygons in Corollary 4.6, the homeo-
morphism f : B ⊂ R2 → Pε ⊂ R2 may have to be chosen to be orientation-reversing
(once an orientation in R2 is fixed), as illustrated by Example 4.7.

The main idea behind the proof of Theorem 4.5 is that

the chosen metric determines the cuts.

thus illustrating the relation between (K1) and (VN1). The proof itself proceeds by
induction on the number of vertical lines on which the cuts lie. Given the standard
coordinates x, y on R2, let x1 ≤ x2 ≤ . . . ≤ xmf

denote the x-coordinates of the
focus-focus critical values, and let Jmin (respectively Jmax) denote the minimum
(respectively maximum) value of J . Note that Jmin < x1 and that xmf

< Jmax.
Set N := |{x1, . . . , xmf

}| ≤ mf and let x1 = x1 < x2 < . . . < xN = xmf
denote

the distinct values of the x-coordinates of the focus-focus critical values. For i =
0, . . . , N , define the slice Si of Φ(M) by

S0 := Φ(M) ∩ {(x, y) ∈ R2 | Jmin ≤ x < x1}
Si := Φ(M) ∩ {(x, y) ∈ R2 | xi < x < xi+1} for i = 1, . . . N − 1

SN := Φ(M) ∩ {(x, y) ∈ R2 | xN < x ≤ Jmax}.

Proof of Theorem 4.5. Recall that choices of (K1) and (K2) are fixed, so as to obtain
a Delzant polygon ∆ classifying a symplectic toric manifold (M,ω, µ). Note that
focus-focus critical points for (M,ω,Φ) map to vertices of ∆ which are not extremal
with respect to J . Moreover, the x coordinate of the vertices of ∆ is given by the
value of J at the corresponding critical point of Φ; in particular, if cj = (xj , yj) is
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a focus-focus critical value, for j = 1, . . . ,mf , then the corresponding vertex of ∆
has coordinates (xj , y

′
j). In analogy with the definition of slices given above, define

for i = 0, . . . , N the ∆-slices by
S∆

0 := ∆ ∩ {(x, y) ∈ R2 | Jmin ≤ x < x1}
S∆
i := ∆ ∩ {(x, y) ∈ R2 | xi < x < xi+1} for i = 1, . . . N − 1

S∆
N := ∆ ∩ {(x, y) ∈ R2 | xN < x ≤ Jmax}.

Note that there is a one-to-one correspondence between slices S0, . . . , SN and ∆-
slices S∆

0 , . . . , S
∆
N , which preserves the labeling as illustrated by the figure below.

xmin

H

Jxmax

S1 S2S0

Φ(M)

xmin Jxmax

∆
S∆

1
S∆

0 S∆
2

x1 x2

x2x1

H̃

Figure 4.1. Slices and ∆-slices

The proof proceeds by induction on the number of slices of the curved poly-
gon. If there is only one slice then there is nothing to prove, since the system is
of toric type in the sense of Vũ Ngo.c [26, Def. 2.1 and Cor. 3.5]. Suppose there
are slices S0, . . . , SN for N ≥ 1 of the curved polygon. Firstly, observe that the
homeomorphism f0 := f |S0

can be defined in such a way that f0(S0) = S∆
0 ; this

follows from the fact that the action of T (cf. Remark 2.31) on S∆
0 gives all suitable

toric extensions of the S1-action defined by J near the minimum and f0 is one such.
This is nothing but restating the fact that choices (K2) and (VN2) are equivalent.
Therefore the following may be assumed.
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Inductive hypothesis: A choice of cuts has been made so that f is defined on( k−1⋃
i=0

S̄i

)
∪ Sk and that, for all i = 0, . . . , k, f(Si) = S∆

i .

The idea behind the construction of f is to define it slice by slice, at each stage
making a choice of cuts so as to obtain a unique extension to the next slice (cf.
Theorem 2.30). Thus the inductive step consists of choosing the cut(s) along the
vertical line {(x, y) | x = xk+1} in Φ(M) so that the resulting extension of f on( k⋃
i=0

S̄i

)
∪ Sk+1 satisfies f(Sk+1) = S∆

k+1. In order to check this last equality, it

suffices to check that the edges incident to the vertices in f
(( k⋃

i=0

S̄i

)
∪ Sk+1

)
cre-

ated by the cuts have primitive tangent vectors equal to those of the corresponding
vertices in ∆ (up to sign). Note that the choice of cuts is going to be such that there

will be a one-to-one correspondence between vertices of f
(( k⋃

i=0

S̄i

)
∪Sk+1

)
and of

∆ along the vertical line {(x, y) | x = xk+1}. Since the compact semi-toric system
is adaptable, condition (E2) of Theorem 2.15 implies that J−1(xk+1) contains at
most two non-free orbits of the S1-action, one of which must be of focus-focus type
for Φ by definition of xk+1. There are two distinct cases to consider, depending on
conditions (A1) and (A2) described above.

Case (A1): exactly one critical point of rank 0 for Φ in J−1(xk+1). There is only one
vertex v of ∆ whose first coordinate equals xk+1; this follows from the description

of the isolated fixed points of MS1

(cf. Lemma 3.3 and Theorem 2.15). Moreover,
since this critical point is of focus-focus type (by definition of xk+1), its isotropy
weights for the S1-action are +1,−1 (cf. Proposition 3.12). By construction of ∆,
the primitive tangent with positive first coordinate u ∈ Z2 (respectively w ∈ Z2)
to the left (respectively right) edge incident to v is of the form (1, u2)T (respec-
tively (1, w2)T ). Choose the (only!) cut so that v is a vertex of the image of the

extension of f defined on
( k⋃
i=0

S̄i

)
∪ Sk+1. This can be achieved as follows. By

assumption, there is (part of!) a curved edge in Φ(M) ∩ Sk which, under f , maps
to the edge incident to v on the left (in the direction of increasing J). Directing the
cut towards this edge is the required choice; extend f to Sk+1 using the method of
Theorem 2.30. Observe that, by assumption and by the fact that f is continuous,

the vertex of
(( k⋃

i=0

S̄i

)
∪ Sk+1

)
with first coordinate equal to xk+1 equals v, i.e.

they have the same coordinates. Note that the curved edge mapping to the edge
incident to v on the left is not a Zk-sphere, for, otherwise, any primitive tangent
vector of its image would have first component equal to k ≥ 2 in absolute value (cf.
the proof of Theorem 3.1). However, any such vector equals ±u = (±1,±u2)T . In
particular, this implies that v is a fake vertex satisfying condition (b) of Lemma 4.2
and, thus, it is smooth ( for the resulting semi-toric polygon). Since both ∆ and

f
(( k⋃

i=0

S̄i

)
∪ Sk+1

)
are convex, it follows that the edges incident to v on the right

in ∆ and f
(( k⋃

i=0

S̄i

)
∪ Sk+1

)
have equal primitive tangent vectors (up to a sign).
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Case (A2): exactly two critical points of rank 0 for Φ in J−1(xk+1). Lemma 3.3 and

Theorem 2.15 imply that ∆ has exactly two vertices v, v′ whose first coordinate is
xk+1. The corresponding critical points of rank 0 for Φ are either both of focus-
focus type, or one is of focus-focus type and the other is elliptic-elliptic. Accordingly,
either Φ(M) has no vertex with first coordinate equal to xk+1, or exactly one. In
the first case, choose the two cuts to go in opposite directions, while in the second,
choose the only cut so that it does not go into the vertex of Φ(M). Extend f as

in Theorem 2.30. Observe that in either case f
(( k⋃

i=0

S̄i

)
∪ Sk+1

)
has exactly two

vertices with first coordinate equal to xk+1; by assumption and by continuity of f ,
it follows that one of these is equal to v, while the other is equal to v′, i.e. they have

the same coordinates. In all cases, the vertices in f
(( k⋃

i=0

S̄i

)
∪ Sk+1

)
lying on the

vertical line {(x, y) | x = xk+1} satisfy either property (a) (the image of the vertex of
Φ(M) with first coordinate x = xk+1) or (b) (all other) of Lemma 4.2 and, thus, they

are smooth. Moreover, the left edges incident to these vertices in f
(( k⋃

i=0

S̄i

)
∪Sk+1

)
have primitive tangent vectors which agree (up to sign) with those of the edges

incident to v, v′ in ∆. Again, convexity of ∆ and of f
(( k⋃

i=0

S̄i

)
∪Sk+1

)
imply that

the same hold for the edges on the right of these vertices.

The following corollary, which follows at once from Theorem 4.5, proves the first
part of Theorem 4.1.

Corollary 4.9. An adaptable compact semi-toric system (M,ω,Φ) admits a Delzant
semi-toric polygon.

4.2. Non-adaptable compact semi-toric systems. In order to complete the
proof of Theorem 4.1, this section proves that compact semi-toric systems which
fail to be adaptable (henceforth referred to as non-adaptable) do not admit any
semi-toric polygon whose vertices are all smooth. This is shown via a sequence of
simple observations.

Before doing so, a useful characterization of non-adaptable compact semi-toric
systems is provided below; this includes both a local and a global condition. Let
Σ be an embedded surface in M and denote by IΣ its self-intersection, i.e. IΣ :=∫

Σ
PD[Σ], where PD[Σ] is the Poincaré dual of Σ in M .

Proposition 4.10. A compact semi-toric system (M,ω,Φ) is non-adaptable if and
only if

1. Global: There exists a sphere Σ in MS1

(either at the minimum or maximum
of J) with IΣ 6= −1.

2. Local: There exists x ∈ ]Jmin, Jmax[ such that J−1(x) contains at least three
non-free orbits of the S1-action generated by J .

Proof. (If) By Theorem 2.15 (E2), condition (2) implies that the system is non-
adaptable.

(Only if) If the compact semi-toric system is non-adaptable, then by Theorem
2.18 the S1 action must have fixed surfaces which, by Proposition 3.4, are symplectic
spheres which coincide either with J−1(Jmin) or J−1(Jmax). Moreover, (2) follows
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from Theorem 2.15. Suppose that each of the S1-fixed spheres has self-intersection
−1; the idea is to derive a contradiction by constructing a Hamiltonian S1 space
with isolated fixed points whose S1 action is not extendable to a T2 action which,
by Theorem 2.18, is impossible.

Indeed, let Σ be an S1-fixed sphere with IΣ = −1 and suppose that Σ =

J−1(Jmin). Let x0 > Jmin be such that Σ = MS1 ∩J−1([Jmin, x0[), and let M1 ⊂M
be the open S1-invariant symplectic submanifold of M given by J−1([Jmin, x0[).
Since the set of regular values of Φ in Φ(M1) is simply-connected, the S1 action
on M1 extends to an effective Hamiltonian T2 action with moment map µ1 =
(J,H1) : M1 → R2 (cf. Vũ Ngo.c [26, Prop. 2.12]). Thus Σ is a T2-invariant sym-
plectic sphere and µ1(Σ) is a vertical segment. Let w = (w1, w2) and w′ = (w′1, w

′
2)

be the primitive tangent vectors to the edges in µ1(M1) coming out from µ1(Σ) with
positive first coordinate (see Figure 4.2). Endow C2 with the standard symplectic

form, and with a T2 action given by (λ1, λ2)·(z1, z2) = (λw1
1 λw2

2 z1, λ
w′1
1 λ

w′2
2 z2). Since

IΣ = −1, by the equivariant Darboux-Weinstein theorem M1 is equivariantly sym-
plectomorphic to a neighborhood of the exceptional divisor in the standard blow
up of C2. As such, M can be equivariantly blown down along Σ, thus obtaining

a new Hamiltonian S1-space (M̃, ω̃, J̃) with an S1-invariant open symplectic sub-

manifold M2 ⊂ M̃ where the S1 action extends to a Hamiltonian T2 action with
moment map µ2 = (J̃ , H2) : M2 → R2 with exactly one fixed point p whose image
is v (see Fig. 4.2), and such that there exists an S1 equivariant symplectomorphism

between M \M̄1 and M̃ \M̄2, where M̄i denotes the closure of Mi for i = 1, 2. Note

that property (2) still holds for the Hamiltonian S1-space (M̃, ω̃, J̃). By repeating
the same argument at J−1(Jmax) if necessary, this procedure yields a Hamiltonian
S1-space with isolated fixed points such that the pre-image of a non-extremal value
of the S1 moment map contains at least three non free-orbits which, by Theorem
2.15, implies that the S1 action is non-extendable. However, by Theorem 2.18, this
is impossible.

v

w

w′

µ2(M2)

µ1(M1)

Figure 4.2.

Remark 4.11. It can be proved that |IΣ| = |det(w w′)|. Hence the smoothness of
v in µ2(M2) is related to the self-intersection of Σ.

The following example illustrates a non-adaptable compact semi-toric system.
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Example 4.12. Consider CP 1 ×CP 1 blown up at two points with a Hamiltonian
T2 action such that the image of the moment map is as in Figure 4.3 (a).

By performing a nodal trade as in Symington [24, Lemma 6.3], the polygon in
Figure 4.3 (b) gives rise to a compact semi-toric system. This can also be seen
in a different fashion. The polygon in Figure 4.3 (c) is a (representative of a)
Delzant semi-toric polygon of complexity 1 as in Pelayo & Vũ Ngo.c [21, Def. 4.3].
Setting the Taylor series invariant associated to the interior marked point to be 0
(cf. Pelayo & Vũ Ngo.c [20]), the resulting decorated polygon gives rise to a compact
semi-toric system using Pelayo & Vũ Ngo.c [21, Theorem 4.6]. The claim follows
by noticing that the polygons in Figure 4.3 (b) and (c) differ by an appropriate
piecewise integral affine transformation (cf. Vũ Ngo.c [26, Prop. 4.1]). Note that
the vertex (1, 3) in Figure 4.3 (c) is hidden Delzant. By blowing up the vertex (0, 0)
we obtain the generalized polygon in Figure 4.3 (d), corresponding to a compact
semi-toric system Φ = (J,H) : M → R2 with two elliptic-elliptic points and a focus
focus point on J−1(1). Note that the self-intersection of Σ = J−1(Jmin) is −2,
whereas the one of Σ′ = J−1(Jmax) is −1; so only Σ′ could be blown down.
Observe that the labeled graph associated to the underlying Hamiltonian S1-space
(with the appropriate choice of symplectic form and moment map) is the same as
the one of Example 2.17, thus making these two spaces isomorphic in the HamS1

category.
Iterating the above procedure, one can prove the existence of a compact semi-

toric system with two elliptic-elliptic points and an arbitrary number of focus focus
points in J−1(x0), for some x0 ∈ ]Jmin, Jmax[.

(0, 0) (1, 0)

(1, 3) (2, 3)

(2, 1)

(0, 2)

(a) (b) (c) (d)

Figure 4.3.

For each x ∈ R, denote by Ex, FFx the number of elliptic-elliptic and focus-focus
critical points of Φ in J−1(x). Moreover, let Sx denote the number of elliptic-regular
orbits of Φ stabilized by a subgroup Zk ⊂ S1 in J−1(x), where k ≥ 2.

Lemma 4.13. Let (M,ω,Φ) be a compact semi-toric system and let x ∈ R. Then
Ex ≤ 2 and Sx ≤ 2.

Proof. Lemma 3.3 implies that if p ∈MS1

is an isolated fixed point for the S1-action
defined by J , then p is either a critical point of focus-focus type or of elliptic-elliptic
type for Φ. Since Φ(J−1(x)) contains at most two vertices of Φ(M) and the fibres
of Φ are connected, it follows that Ex ≤ 2. The second inequality follows easily by
Vũ Ngo.c [26, Theorem 3.4] and by observing that the image of a Zk-sphere is, by
Proposition 3.16, a curved edge of Φ(M).
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For non-adaptable compact semi-toric systems, the following lemma provides
some further bounds on the quantities Ex, FFx, Sx introduced above.

Lemma 4.14. Let (M,ω,Φ) be non-adaptable. Let x ∈ R be a point such that
Ex + FFx + Sx ≥ 3. Then

(i) If Ex + FFx ≥ 3 then FFx ≥ 1.
(ii) Ex + Sx ≤ 2.

Proof. (i) This follows from Lemma 4.13.
(ii) By Lemma 4.13 it is sufficient to prove that we cannot have Ex = 2 and Sx ≥ 1,
or Sx = 2 and Ex ≥ 1. This follows easily from the fact that Φ(M) is a curved
polygon, with vertices corresponding to elliptic-elliptic points, and such that the
image of Zk-spheres correspond to edges of Φ(M) (cf. Vũ Ngo.c [26, Theorem 3.4]
and Proposition 3.16).

Using Lemma 4.14, the following corollary is immediate.

Corollary 4.15. For a non-adaptable compact semi-toric system (M,ω,Φ), there
is a point x ∈ R such that exactly one of the following holds.

(1) Ex = 0, FFx ≥ 3 and Sx = 0.
(2) Ex = 1, FFx ≥ 2 and Sx = 0.
(3) Ex = 2, FFx ≥ 1 and Sx = 0.
(4) Ex = 0, FFx ≥ 1 and Sx = 2.
(5) Ex = 0, FFx ≥ 2 and Sx = 1.
(6) Ex = 1, FFx ≥ 1 and Sx = 1.

The following proposition completes the proof of Theorem 4.1.

Proposition 4.16. Any semi-toric polygon Pε associated to a non-adaptable (M,ω,Φ)
has at least one vertex that is not smooth.

Proof. It suffices to show that for any choice of cuts ε, one of the vertices of the
corresponding semi-toric polygon Pε fails to be smooth. Let x ∈ R be such that
J−1(x) contains at least three non-free orbits for the S1-action defined by J . Then,
by Corollary 4.15, one of the situations from (1) to (6) above arises. It is easy to
check that in any of the cases (1) – (6), for any choice of cuts there is at least one
vertex that does not satisfy either condition (a) or (b) in Lemma 4.2. Thus, for
any choice of ε, the corresponding semi-toric Pε has at least one vertex that is not
smooth by Lemma 4.2.
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[20] Á. Pelayo and S. Vũ Ngo.c, Semitoric integrable systems on symplectic 4-manifolds, Invent.

Math. 177 (2009), no. 3, 571 – 597.
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