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Abstract

We reformulate the equation characterising the critical points of the hypersym-
plectic action functional as solutions of a Hamiltonian system on the iterated
loop space. The intend is to gain more insight into dynamics of hyperkähler Floer
theory.

1 Introduction

Floer theory was devised by Floer [Fl1], [Fl2], [Fl3] at the end of the 1980’s with the
intend to solve Arnold’s Conjecture on the number of fixed points of a Hamiltonian
diffeomorphism. Since then, Floer theory developed into a powerful tool in symplectic
geometry, but its techniques are not limited to symplectic geometry. For instance,
in order to study 3-dimensional manifolds, Ozsváth & Szabó associated a suitable
even-dimensional manifold to a 3-dimensional manifold and imitated Floer theoretic
methods. More generally, apart from the resulting Heegaard Floer theory, there exist a
whole zoo of various Floer theories for 3-manifolds like Knot Floer homology, Seiberg-
Witten Floer homology, Embedded Contact homology etc.

On hyperkähler manifolds, Floer theory and an analogue of Arnold’s Conjecture was
established by Hohloch & Noetzel & Salamon [HNS1], [HNS2] and reproved and gen-
eralized by Ginzburg & Hein [GH]. The important difference to the previous Floer
settings is that hyperkähler Floer theory is not based on the Cauchy-Riemann resp.
pseudo-holomorphic equation, but on a ‘triholomorphic’ equation called the Cauchy-
Riemann-Fueter equation. In classical Floer theory, the critical points of the symplectic
action functional are 1-periodic Hamiltonian solutions. In hyperkähler Floer homology,
the critical points of the hypersymplectic action functional are certain ‘triholomorphic
3-manifolds’.

The aim of this short note is to reformulate the ‘triholomorphic 3-manifolds’ appear-
ing in hyperkähler Floer homology as 1-periodic solutions of a suitable Hamiltonian
system on the (iterated) loop space in case the ‘triholomorphic 3-manifold’ is a torus.
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In a subsequent work, we intend to use this approach to come up with a nice geomet-
ric interpretation for the index of the ‘triholomorphic 3-manifolds’ since their index
in Hohloch & Noetzel & Salamon [HNS1] is given abstractly by the spectral flow. In
classical Floer theory, the Conley-Zehnder index provides a nice geometric interpreta-
tion of the index and we hope to find an analogue using the Hamiltonian setting for
hyperkähler Floer homology.
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2 Hyperkähler Floer theory

In this section, we recall the setting for hyperkähler Floer theory in case the 3-
dimensional M is a torus.

A manifold is symplectic if it carries a nondegenerate closed 2-form. Such a 2-form
is called a symplectic form. Finite dimensional symplectic manifolds are even dimen-
sional.

Definition 1. A manifold X is hyperkähler if there are three complex structures I1,
I2 and I3 and a metric 〈·, ·〉 such that I1I2 = −I2I1 = I3 and 〈·, ·〉 = 〈Ii·, Ii·〉 and
ωi := 〈Ii·, ·〉 are symplectic forms for 1 ≤ i ≤ 3.

In other words, 〈·, ·〉 is Kähler w.r.t. I1, I2 and I3. Finite dimensional hyperkähler
manifolds are 4n-dimensional and the quaternions H with complex structures i, j and
k are an example. The only compact 4-dimensional hyperkähler manifolds are the
4-torus and K3-surfaces. In Berger’s classification, hyperkähler manifolds appear as
those with holonomy group Sp(n). They are Ricci-flat and thus Calabi-Yau such that
in particular the first Chern class vanishes. Flat compact hyperkähler manifolds are
4n-tori modulo a finite group action.

Now consider the 3-torus T3 = (R/Z)3 = S1 × S1 × S1 with standard coordinates t =
(t1, t2, t3), standard vector fields ∂1 := ∂

∂t1
, ∂2 := ∂

∂t2
∂3 := ∂

∂t3
and volume form σ :=

dt1 ∧ dt2 ∧ dt3. Let (aij) ∈ GL(3,R) be a constant matrix and set v1 :=
∑3

k=1 a1k∂k,
v2 :=

∑3
k=1 a2k∂k and v3 :=

∑3
k=1 a3k∂k. Note that the Lie derivative Lviσ vanishes

for 1 ≤ i ≤ 3, i.e. the (constant) vector fields v1, v2, v3 are volume preserving.
Let (X, I1, I2, I3, 〈·, ·〉) be a hyperkähler manifold and set F := {f ∈ C∞(T3, X) |
f contractible}. As explained more detailed later in Section 3, its universal cover can
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be considered as

F̃ =

(f, [F 1], [F 2], [F 3])

∣∣∣∣∣∣∣∣∣∣
f ∈ F ,
F 1 ∈ C∞(D× S1 × S1, X), F 1|T3 = f,

F 2 ∈ C∞(S1 × D× S1, X), F 2|T3 = f,

F 3 ∈ C∞(S1 × S1 × D, X), F 3|T3 = f


where D is the closed unit disk in R2. The equivalence class [F λ] is the homotopy
class of F λ relative to the boundary, i.e. F 1(e2πit1 , t2, t3) = f(t1, t2, t3) etc., and we
abbreviate F 1

t2t3 := F 1(·, t2, t3) etc. For 1 ≤ j, k ≤ 3, set

Ajk : F̃ → R, Ajk(f) := −
1∫

0

1∫
0

∫
D

(F ktµtν )∗ωjdtµdtν .

Geometrically, Ajk is the symplectic action w.r.t. ωj of the loop tk 7→ f(t) averaged
over the other two variables tµ, tν . We define the hypersymplectic action func-
tional A via

A :=
3∑

j,k=1

ajkAjk : F̃ → R.

Let H : X × T3 → R be a Hamiltonian function and define the perturbed hyper-
symplectic action functional AH via

AH(f) := A (f)−
∫
T3

H(f(t), t)dt.

Note that T3 ' S1 × S1 × S1. The definition of the hypersymplectic action functional
on a cover of the ‘torus loop space’ F is motivated by the construction of the classical
symplectic action functional on a cover of the standard loop space (see for example
McDuff & Salamon [MS], p. 154).

Remark 2. 1) The action functional descends to F if and only if it is independent
of the equivalence classes (f, [F 1], [F 2], [F 3]) of f which in turn is equivalent to X
being symplectically aspherical w.r.t. ω1, ω2 and ω3, i.e. 0 =

∫
S2 s
∗ωi for all

smooth s : S2 → X and 1 ≤ i ≤ 3.

2) For flat X, the action functional decends to F , i.e. A , AH : F → R.

Proof. Item one is clear. It remains to prove item two: If X is flat, its universal cover
is τ : R4n → X and any map s : S2 → X lifts to a map s̃ : S2 → R4n with τ ◦ s̃ = s.
Moreover, all symplectic forms on R4n are exact, i.e. there is a 1-form αi such that
τ∗ωi = dαi and we get

0 =

∫
∂S2

s̃∗αi =

∫
S2

s̃∗dαi =

∫
S2

s̃∗τ∗ωi =

∫
S2

s∗ωi.
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A vector field ξ along f can be seen as a section in the pullback bundle ξ ∈ Γ∞(f∗TX).
If we want to compute the critical points of, say, A12 we have to consider a variation
of f and F 2 in direction ξ, i.e. we consider s 7→ fs(t1, t1, t3) with d

ds |s=0f
s = ξ and

s 7→ (F 2)s(t1, z, t3) with d
ds |s=0(F

2)s|T3 = ξ and we calculate, using Cartan’s formula
and Stokes’ theorem,

dA12(f, [F
1], [F 2], [F 3]).ξ = −

1∫
0

1∫
0

1∫
0

ω1|f(t)(ξ(t), ∂2f(t))dt1dt2dt3 =

∫
T3

〈ξ, I1∂2f〉dt.

For f ∈ F and the vector fields v1, v2, v3 on T3, we set ∂vif := df(vi) for 1 ≤ i ≤ 3.
Thus for A =

∑3
j,k=1 ajkAjk, the critical points Crit(A ) are maps f ∈ F̃ with

/∂f := I1∂v1f + I2∂v2f + I3∂v3f = 0 (3)

and f ∈ Crit(AH) satisfies

/∂Hf := /∂f − gradH(f) = 0 (4)

where the gradient gradH(f)|t := gradH(f(t), t) is taken w.r.t. the X-valued vari-
able of H and the metric 〈·, ·〉. It is some kind of Dirac type equation. A solution is
called nondegenerate if the linearized operator for this equation is bijective. By elliptic
regularity, every W 1,p solution of the above equations is in fact smooth (cf. Hohloch
& Noetzel & Salamon [HNS1], Theorem 3.1).

Since the notion of a compact Cartan hypercontact manifold will appear only in the
next two (quoted) theorems, we omit the definition here and refer the interested
reader to Hohloch & Noetzel & Salamon [HNS1], [HNS2] for details. Note that the
hypersymplectic action functional looks different in case of a Cartan hypercontact
manifold, but its critical points are described by the same equation as above.

Theorem 5 (Hyperkähler Arnold Conjecture, [HNS1, HNS2]). Let M be either a
compact Cartan hypercontact 3-manifold (with Reeb vector fields vi) or the 3-torus
(with a constant frame vi). Let X be a compact flat hyperkähler manifold. Then the
space of solutions of /∂Hf = 0 is compact. Moreover, if the contractible solutions are all
nondegenerate, then their number is bounded below by the sum of the Z2-Betti numbers
of X. In particular, /∂Hf = 0 has a contractible solution for every H.

Theorem 5 relies on the construction of Floer theory and its computation:

Theorem 6 ([HNS1, HNS2]). Let M and X be as in Theorem 5 and fix a class
τ ∈ π0(C∞(M,X)). Then, for a generic perturbation H : X ×M → R, there is a nat-
ural Floer homology group HF∗(M,X, τ ;H) associated to a chain complex generated
by the solutions of /∂Hf = 0. The Floer homology groups associated to different choices
of H are naturally isomorphic. Moreover, for the component τ0 of the constant maps
there is a natural isomorphism HF∗(M,X, τ0;H) ∼= H∗(X;Z2).
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Theorem 5 inspired Ginzburg & Hein [GH] to reprove the hyperkähler Arnold con-
jecture on compact flat hyperkähler manifolds using Conley & Zehnder’s method of
finite dimensional approximation. They established also the degenerate version. Sala-
mon [Sa] reformulated and relaxed certain conditions in the construction of Hohloch
& Noetzel & Salamon [HNS1, HNS2].

3 The infinite dimensional Hamiltonian system on the
iterated loop space

In this section, we will reformulate the solutions of (3) and (4) as 1-periodic solutions
of a Hamiltonian system on the iterated loop space.

Let (X, I1, I2, I3, 〈·, ·〉) be a 4n-dimensional hyperkähler manifold with symplectic
forms ωi := 〈Ii·, ·〉 for 1 ≤ i ≤ 3. The space of smooth contractible loops of X is
given by L (X) := {c ∈ C∞(S1, X) | c contractible}. Its universal cover can be seen
as

L̃ (X) =
{

(c, [C])
∣∣ c ∈ C∞(S1, X), C ∈ C∞(D, X), C|S1 = c

}
for the following reason: there exists the homotopy group relation πk(L (X)) '
πk+1(X) which reduces for k = 1 to π1(L (X)) ' π2(X). Moreover, for the universal

cover holds L (X) ' L̃ (X)/π1(L (X)) which simplifies to L (X) ' L̃ (X)/π2(X),

i.e. π2(X) acts on L̃ (X) via building the connected sum of a 2-sphere with a disk
which yields again a disk (see also McDuff & Salamon [MS], p. 154, for a ‘smaller’
covering space of the loop space used in classical Floer theory).

The twice iterated loop space can be seen as L (L (X)) ' L 2(X) = C∞(S1 × S1, X)
and its universal cover is

L̃ 2(X) =

(γ, [G1], [G2])

∣∣∣∣∣∣∣
γ ∈ C∞(S1 × S1, X),

G1 ∈ C∞(D× S1, X), G1|S1×S1 = γ,

G2 ∈ C∞(S1 × D, X), G2|S1×S1 = γ

 .

L 2(X) carries three symplectic forms Ωi with 1 ≤ i ≤ 3 given by

Ωi|γ(v, w) :=

1∫
0

1∫
0

ωi|γ(s,r)
(
v(s, r), w(s, r)

)
dsdr

where v and w are vector fields along γ, i.e. v, w ∈ TγL̃ 2(X) ' Γ∞(γ∗TX). Moreover,
there are three complex structure Ii defined via

(Ii|γv)(s, r) := Ii|γ(s,r)v(s, r)

for 1 ≤ i ≤ 3. We have a metric

� v, w � |γ := Ωi|γ(Iiv, w)

5



for 1 ≤ i ≤ 3. Replacing γ by (γ, [G1], [G2]) defines these symplectic forms, complex

structures and the metric also on L̃ 2(X).

Theorem 7. Equations (3) and (4) can be written as solutions of a Hamiltonian

system on L̃ 2(X). If X is flat then the construction descends to L 2(X).

Proof. Let H : X × T3 → R be a smooth Hamiltonian function and abbrevite G1
ti :=

G1(·, ti) and G2
ti := G2(ti, ·). We define the (autonomous) Hamiltonian functions

Hjkl : L̃ 2(X)× S1 → R, Hjkl((γ, [G1], [G2]), tl) := −ajk

1∫
0

∫
D

(Gktµ)∗ωjdtµ

where µ 6= k. Let ξ ∈ Γ∞(γ∗TX) be a vector field along γ and s 7→ γs a variation of γ
with d

ds |s=0γ
s = ξ and s 7→ (Gk)s a variation with d

ds |s=0(G
k)s|S1×S1 = ξ. We compute

dHjkl(γ, [G
1], [G2]).ξ = −ajk

d

ds
|s=0

1∫
0

∫
D

((Gktµ)s)∗ωjdtµ = −ajk

1∫
0

1∫
0

ωj(ξ, ∂kγ)dtkdtµ

=

1∫
0

1∫
0

〈ξ, ajkIj∂kγ〉dtkdtµ = −Ωl(ξ, Il(ajkIj∂kγ)).

Thus the Hamiltonian vector field of Hjkl w.r.t. Ωl is Il(ajkIj∂kγ) and the Hamiltonian
equation becomes

∂lf = Il(ajkIj∂kf) ⇐⇒ ajkIj∂kf + Il∂lf = 0

for f : R → L̃ 2(X), tl 7→ ftl(·, ·). In particular for the linear independent, constant
vectors w1 = (a11, a12, 0), w2 := (a21, a22, 0), w3 := (0, 0, 1) and the Hamiltonian
H113 + H123 + H213 + H223 we obtain

I1∂w1f + I2∂w2f + I3∂w3f = 0. (8)

Since det(w1, w2, w3) 6= 0 6= det(v1, v2, v3) and the wi and vi preserve the volume form
dt1 ∧ dt2 ∧ dt3, we can make a change of variables transforming (8) into

/∂f = I1∂v1f + I2∂v2f + I3∂v3f = 0.

If we consider instead of Hjkl the perturbed, nonautonomous Hamiltonian

Hjkl −
1∫

0

1∫
0

H(γ(t1, t2), (t1, t2, t3))dt1dt2

the Hamiltonian equation becomes

ajkIj∂kf + Il∂lf − gradH(f) = 0.
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If we consider in particular the nonautonomous Hamiltonian

H113 + H123 + H213 + H223 −
1∫

0

1∫
0

H(γ(t1, t2), (t1, t2, t3))dt1dt2

we obtain

I1∂w1f + I2∂w2f + I3∂w3f − gradH(f) = 0

which can be transformed into (4). Contractible 1-periodic solutions of this equation
are elements of

L̃ 3(X) =

[f, F 1, F 2, F 3]

∣∣∣∣∣∣∣∣∣∣
f ∈ C∞(S1 × S1 × S1, X),

F 1 ∈ C∞(D× S1 × S1, X), F 1|S1×S1×S1 = f,

F 2 ∈ C∞(S1 × D× S1, X), F 2|S1×S1×S1 = f,

F 3 ∈ C∞(S1 × S1 × D, X), F 3|S1×S1×S1 = f


which we can identify with the space F̃ on which our original action functional A
lives.
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