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Abstract. About 6 years ago, semitoric systems were classified by Pelayo & Vũ Ngo. c
by means of five invariants. Standard examples are the coupled spin oscillator on S2 ×R2

and coupled angular momenta on S2 × S2, both having exactly one focus-focus singular-
ity. But so far there were no explicit examples of systems with more than one focus-focus
singularity which are semitoric in the sense of that classification. This paper introduces a
6-parameter family of integrable systems on S2 ×S2 and proves that, for certain ranges of
the parameters, it is a compact semitoric system with precisely two focus-focus singulari-
ties. Since the twisting index (one of the semitoric invariants) is related to the relationship
between different focus-focus points, this paper provides systems for the future study of
the twisting index.

1. Introduction

An integrable system is a triple (M, ω, F) where (M, ω) is a 2n-dimensional symplec-
tic manifold and F : M → Rn is a smooth function, known as the momentum map,
whose components Poisson commute and are linearly independent almost everywhere.
The points at which the linear independence fails are known as singular points. An inte-
grable system is toric if M is compact and the Hamiltonian vector fields of the compo-
nents all have periodic flow of the same period; in this case the image of the momentum
map F(M) is a convex n-dimensional polytope (a special case of the Atiyah-Guillemin-
Sternberg Theorem [Ati82, GS82]) and additionally, by the work of Delzant [Del88],
F(M) completely determines the system (M, ω, F) up to equivariant symplectomorphism.

So-called semitoric integrable systems are a special class of integrable systems on 4-
manifolds for which one of the two components of its momentum map has a Hamiltonian
vector field with periodic flow. Specifically, a semitoric integrable system is an integrable
system (M, ω, F = (J,H)) such that J is proper with periodic flow and every singular
point is nondegenerate with no hyperbolic blocks (see Section 2 for a discussion of types
of singular points). Semitoric integrable systems can have singular points of focus-focus
type, which do not occur in toric integrable systems, and are an example of almost toric
manifolds which were introduced by Symington [Sym03].

Semitoric integrable systems were studied and classified by Pelayo & Vũ
Ngo. c [PVuN09, PVuN11a]. The classification is in terms of five invariants: the number
of focus-focus points (which is finite according to Vũ Ngo. c [VuN07]); an infinite fam-
ily of polygons known as a semitoric polygon; a Taylor series in two variables for each
focus-focus point; the height of the focus-focus value in the semitoric polygon; and the
twisting index, which, roughly, is an integer for each pair of focus-focus points describ-
ing the ‘twist’ of the singular Lagrangian fibration between them. Semitoric systems are
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rigid enough to admit a classification, but flexible enough to appear more frequently in
physical examples and to admit more interesting dynamics. The main reason semitoric
systems exhibit more interesting behavior than toric systems is the presence of the focus-
focus points and the monodromy that these singularities can produce in the integral affine
structure of the momentum map image F(M).

While the Pelayo-Vũ Ngo. c classification predicts many systems and gives certain prop-
erties of those systems, one thing that has thus far been lacking are explicit examples of
semitoric systems giving the symplectic manifold (M, ω) and the momentum map F. Le
Floch & Pelayo [LFP] explicitly describe the coupled angular momenta system (origi-
nally described in [SZ99], see Example 2.12) and details of the coupled spin oscillator
(see Example 2.13) are spread over several papers. These systems each have exactly one
focus-focus singularity. In the present work we describe semitoric systems on M = S2×S2

which have two focus-focus singular points, generalizing the system from [LFP]. More
precisely, the main result of this paper is the following.

Theorem 1.1. Let M = S2 × S2 be equipped with the symplectic form ω = −(R1ωS2 ⊕

R2ωS2) where ωS2 is the standard volume form on the sphere and 0 < R1 < R2 are real
numbers. For ~R := (R1,R2) and ~t := (t1, t2, t3, t4) ∈ R4 define J~R,H~t : M → R by

(1)

J~R(x1, y1, z1, x2, y2, z2) := R1z1 + R2z2,

H~t (x1, y1, z1, x2, y2, z2) := t1z1 + t2z2 + t3(x1x2 + y1y2) + t4z1z2

where (xi, yi, zi) are Cartesian coordinates on S2 ⊂ R3 for i = 1, 2. Then there exist
choices of t1, t2, t3, t4,R1,R2 such that (M, ω, (J~R,H~t)) is a semitoric system with exactly
two focus-focus points.

Theorem 1.1 is restated in more detail in Section 3 as Theorem 3.1. The coupled angular
momenta system with coupling parameter t ∈ ]0, 1[ is the special case of Equation (1)
with t1 = t, t3 = t4 = 1 − t, and t2 = 0. The coupled angular momenta system describes
the rotation of two vectors (with magnitudes R1 and R2) about the z-axis and has as a
second integral a linear combination of the z-component of the first vector and the inner
produce of the two vectors, while the system in Equation (1) includes additionally the
z-component of the second vector and also breaks the inner product into two components,
namely the projection to the z-axis and the projection to the xy-plane.

The system in Equation (1) is studied from a different point of view in mathematical
physics, where it is a special case of a generalized Gaudin model. We refer the interested
reader to Petrera’s PhD thesis [Pet07] and the references therein for the development since
Gaudin’s original work [Gau76].

Theorem 1.1 gives explicit global formulas (defined by the same expression on the
entire manifold) for a family of examples of semitoric systems with more than one focus-
focus point. This family should be useful for understanding semitoric systems at a con-
crete, computationally amenable, context. The twisting index invariant is related to the
relationship between different focus-focus singular points, so having an example with
multiple focus-focus points will help in understanding this invariant (though it does actu-
ally appear in a more subtle way for systems with only one focus-focus point).

Additionally, not only the system itself, but also the method by which we produce this
system is of interest. We construct it as a linear combination of four different systems
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of toric type (semitoric systems with no focus-focus points) and in this way one can see
how it deforms into each of these four systems (see Figure 1) which correspond to four
elements of the associated semitoric polygon. Let N denote the north pole of S2 and
S denote the south pole, so that (N,N), (N, S ), (S ,N), and (S , S ) are the four possible
products of poles in S2 × S2. The next theorem follows from Theorem 4.4 in Section 4, in
which we take R1 = 1 and R2 = 2 for simplicity.

Theorem 1.2. For s1, s2 ∈ [0, 1] let (J~R,H(s1,s2)) denote the system (J~R,H~t) where

t1 = (1 − s1)(1 − s2), t2 = s1s2, t3 = s1 + s2 − 2s1s2, t4 = s1 − s2.

Then (J(1,2),H(s1,s2)) has the following properties:
(1) it is an integrable system for all (s1, s2) ∈ [0, 1]2;
(2) it is a semitoric system when (s1, s2) ∈ [0, 1]2 \ γ where γ ⊂ [0, 1]2 is the union of

four smooth curves;
(3) the points (N, S ), (S ,N) ∈ S2 ×S2 transition between being elliptic-elliptic, focus-

focus, and degenerate depending on the value of (s1, s2);
(4) it is semitoric with exactly two focus-focus points for all (s1, s2) in an open neigh-

borhood of
(

1
2 ,

1
2

)
;

(5) it is semitoric with no focus-focus point if (s1, s2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

The set γ represents the moment at which singular points become degenerate while they
change between focus-focus and elliptic-elliptic type. Proposition 2.8 states that if the
type of a singular point changes from focus-focus to elliptic-elliptic by smoothly varying
the integrals (on a fixed manifold) then it must become degenerate during the transition,
in fact, it is undergoing a Hamiltonian-Hopf bifurcation, see Remark 2.9. The set γ is
an intersection of zero sets of discriminants of certain polynomials, see Equation (23).
The image of the momentum map for the system in Theorem 1.2 is plotted in Figure 1
for various choices of (s1, s2) and γ is plotted in Figure 2. The coupled angular momenta
system from Le Floch & Pelayo [LFP] is exactly the one parameter family of systems
obtained from the system in Theorem 1.2 by taking s2 = 0, so the momentum map image
of the coupled angular momentum system is the bottom row of images in Figure 1.

Recently there has been a lot of activity relating to semitoric integrable systems, which
we review briefly now. There has been work regarding quantizations of semitoric inte-
grable systems, specifically related to the problem of recovering the classical system from
the quantum one (see for instance Le Floch & Pelayo & Vũ Ngo. c [LFPVuN16]). Hohloch
& Sabatini & Sepe [HSS15] answer the question of how the classification of semitoric sys-
tems is linked to Karshon’s classification [Kar99] of Hamiltonian S1-spaces. The question
of lifting a Hamiltonian S1-action to a semitoric system is an ongoing project by Hohloch
& Sabatini & Sepe & Symington and has been the topic of several conference talks.
There has been work to determine the convexity of the momentum map image with re-
spect to its intrinsic integral affine structure by Ratiu & Wacheux & Zung [RWZ]. Alonso
& Dullin & Hohloch [ADH] are computing higher order terms of the Taylor series invari-
ant of the focus-focus point in the coupled spin-oscillator (Example 2.13 of the present
paper). Deformations of semitoric systems have been studied by endowing the moduli
space with a topology, see Palmer [Pal17]. Kane & Palmer & Pelayo [KPP18a, KPP18b]
used combinatorial methods to study blowups/downs and minimal models of semitoric
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Figure 1. An image of the momentum map (J(1,2),H(s1,s2)) with the rank 0
points marked for varying values of s1, s2 ∈ [0, 1]. Notice that the coupled
angular momenta system shown in Figure 3 is the bottom row of the sys-
tem shown in this figure since the coupled angular momenta is the special
case for which s2 = 0.

systems. Generalizations of semitoric systems are achieved in Pelayo & Ratiu & Vũ
Ngo. c [PRV17] and Hohloch & Sabatini & Sepe & Symington [HSSS]. Additionally,
work has begun to extend the theory of semitoric systems to higher dimensional man-
ifolds in Wacheux [Wac13]. Surgery techniques for semitoric systems are an ongoing
project by Hohloch & Sabatini & Sepe & Symington. Presently, hyperbolic singulari-
ties are excluded from semitoric integrable systems, but Dullin & Pelayo [DP16] have
produced a smooth family of systems with transition from being semitoric to having a
family of hyperbolic singular points. A reader new to integrable systems can consult the
surveys Pelayo & Vũ Ngo. c [PVuN11b] and Pelayo [Pel17], or the books Marsden &
Ratiu [MR99] and Cushman & Bates [CB15].

Structure of the article: In Section 2 we review the required background, including in-
tegrable systems, singular points, and semitoric integrable systems. In Section 3 we in-
troduce the new system and prove Theorem 1.1. In Section 4 we discuss the choice of
parameters for which the system can be seen as a linear combination of four systems of
toric type, and prove Theorem 1.2.

Figures: All figures and associated numerical computations in this article were made
with the computer program Mathematica.
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Figure 2. Left: a plot of the set γ, which is the union of γ(S ,N) (blue) and
γ(N,S ) (orange), see Equation 23. Right: Values of (s1, s2) for which the sys-
tem (J(1,2),H(s1,s2)) has focus-focus values at: only the point (S ,N) (blue),
only the point (N, S ) (orange), or at both points (green). The system is
degenerate on the black curves. Compare with Figure 1.
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2. Fundamental definitions

In Section 2.1 we introduce standard notions related to integrable systems and non-
degenerate points. A reader familiar with these topics can skip directly to Section 2.2.

2.1. Integrable systems and non-degenerate singular points.

2.1.1. Integrable systems. Given a symplectic manifold (M, ω) recall that associated to
any function f ∈ C∞(M) there is a vector field denoted by X f , called the Hamiltonian
vector field associated to f , and defined by

ω(X f , ·) = −d f (·).

Moreover, recall the Poisson bracket {·, ·} : C∞(M) × C∞(M) → C∞(M) given by { f , g} =

ω(X f , Xg). An integrable system is a symplectic 2n-manifold (M, ω) along with a collec-
tion of functions f1, . . . , fn which Poisson commute (i.e. { fi, f j} = 0 for all i, j) and for
which the associated Hamiltonian vector fields X f1 , . . . , X fn are linearly independent al-
most everywhere. The function F = ( f1, . . . , fn) : M → Rn is known as the momentum
map of this system.

In this article, we will focus on the case n = 2, so an integrable system will be a 4-
dimensional symplectic manifold (M, ω) with a pair of functions F = (J,H) : (M, ω) →
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R2 such that {J,H} = 0 and XJ(p) and XH(p) are linearly independent for almost all
p ∈ M.

The points at which linear independence of the components of the momentum map
fails are known as the singular points of the system and the rank of a singular point is the
rank of the differential of the momentum map dF at that point. There is a natural notion
of non-degeneracy for such singular points which we review now. Rank 0 singular points
are known as fixed points since they are fixed under the flow of the Hamiltonian vector
fields of the components of the momentum map; we will start with the classification of
those.

2.1.2. Rank 0 singular points, i.e., fixed points. Let p ∈ M be a fixed point and let
Q(TpM) denote the vector space of quadratic forms on TpM. The symplectic form on M
gives Q(TpM) the structure of a Lie algebra which is isomorphic to sp(4,R), see Bolsinov
& Fomenko [BF04]. Recall that a Cartan subalgebra is a nilpotent and self-normalizing
subalgebra.

Definition 2.1. A fixed point p ∈ M is non-degenerate if the Hessians d2J(p) and d2H(p)
span a Cartan subalgebra of the Lie algebra of quadratic forms on TpM.

In practice, this condition can be checked by use of the following lemma.

Lemma 2.2 (Bolsinov & Fomenko [BF04]). Let p ∈ M be a fixed point. Denote by ωp

the matrix of the symplectic form with respect to a basis of TpM and let d2J and d2H
denote the matrices of the Hessians of J and H with respect to the same basis. Then p
is non-degenerate if and only if d2J and d2H are linearly independent and there exists a
linear combination of ω−1

p d2J and ω−1
p d2H which has four distinct eigenvalues.

Sketch of proof. The result follows from the fact that an abelian subalgebra of sp(4,R) is
a Cartan subalgebra if and only if it is two dimensional and contains a regular element, in
which case it is the centralizer for this regular element. The span of ω−1

p d2J and ω−1
p d2H is

an abelian subspace of sp(TpM) � sp(4,R) � Q(TpM) because J and H Poisson commute
(since they form an integrable system) and a regular element is any matrix with four
distinct eigenvalues. We conclude that ifω−1

p d2J andω−1
p d2H are linearly independent and

their span includes an element with four eigenvalues then the span is a two-dimensional
abelian subalgebra which contains a regular element, and is thus Cartan. �

2.1.3. Rank 1 singular points. To define rank 1 non-degenerate singular points we will
again follow Bolsinov & Fomenko [BF04, Section 1.8.2]. Suppose that p is a singular
point of rank 1 in a 4-dimensional integrable system (M, ω, F = (J,H)). Then there exists
some µ, λ ∈ R such that µdH + λdJ = 0 at p and the R2-action defined by flowing along
the vector fields of J and H has a one-dimensional orbit through p. Let L ⊂ TpM be
the tangent line of this orbit at p and let L′ be the symplectic orthogonal complement to
L. Notice that L ⊂ L′ and since J and H Poisson commute they are invariant under the
R2-action and thus the operator µd2H + λd2J descends to the quotient L′/L.

Definition 2.3 (Bolsinov & Fomenko [BF04]). The rank 1 critical point p is non-
degenerate if µd2H + λd2J is invertible on L′/L.

Now suppose that the flow of XJ is periodic. Recall that the symplectic quotient of M by
J at the level c, which we denote M � S1, is the symplectic manifold J−1(c)/S1 where the
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S1-action on J−1(c) is the one which comes from the flow of the Hamiltonian vector field
of J.

Lemma 2.4. If p ∈ M is a rank 1 singular point such that dJ , 0 then p is non-degenerate
if and only if d2H is invertible at the image of p in the symplectic quotient of M by J at
the level J(p).

Proof. Let L and L′ be as above and let c = J(p). Notice that dJ , 0 and dim(L) = 1
implies that L is spanned by XJ. Thus v ∈ L′ if and only if ωp(v, XJ) = 0. By the definition
of the Hamiltonian vector field this is equivalent to v(J) = 0, so v ∈ Tp(J−1(c)). Thus
L′ = Tp(J−1(c)). Furthermore, L is the tangent space to the orbit of the S1-action through
p so L′/L = Tp(J−1(c)/S1) and the result follows. �

Lemma 2.4 implies the following.

Corollary 2.5. If dJ , 0 at all points of nonzero rank then all rank 1 points of (M, ω, F =

(J,H)) are non-degenerate if and only if H descends to a Morse function on all possible
symplectic quotients by J.

See Bolsinov & Fomenko [BF04] for a description of non-degenerate points for dimen-
sions greater than four and a description of rank 1 non-degenerate points in terms of
Cartan subalgebras.

2.1.4. Classification of non-degenerate points. Williamson [Wil36] classified Cartan
subalgebras of sp(n,R), which in turn implies a classification of the possible subalge-
bras c generated by the Hessians in TpM � sp(n,R) at a non-degenerate singular points.
Eliasson [Eli84] and Miranda & Zung [MZ04] extended Williamson’s pointwise classi-
fication to a local classification, which classifies the possible forms of the momentum
map in local symplectic coordinates around a fixed point p, often known as the Eliasson-
Miranda-Zung normal form.

Theorem 2.6 (Eliasson [Eli84], Miranda & Zung [MZ04]). If p ∈ M is a non-degenerate
singular point of an n-dimensional integrable system (M, ω, F) then there exist local
symplectic coordinates (x, y) := (x1, . . . , xn, y1, . . . , yn) around p such that there exist
q1, . . . , qn : M → R where each qi is given by one of:

(1) elliptic: qi(x, y) = 1
2 (x2

i + y2
i ),

(2) hyperbolic: qi(x, y) = xiyi,

(3) focus-focus:

qi(x, y) = xiyi+1 − xi+1yi,

qi+1(x, y) = xiyi + xi+1yi+1,

(4) non-singular: qi(x, y) = yi,
such that { fi, q j} = 0 for all i, j.

The classification of a non-degenerate singular point can be detected by computing the
eigenvalues of any associated regular element.

Proposition 2.7 (Vũ Ngo. c [VuN06, Chapter 3]). If A is a regular element in the Cartan
subalgebra generated by the Hessians of the components of the momentum map (i.e.,
A has 2n distinct eigenvalues) at a fixed point then the eigenvalues of A come in three
distinct types of groups:



8 SONJA HOHLOCH & JOSEPH PALMER

(1) a pair of imaginary roots ±iβ, called an elliptic block,
(2) a pair of real roots ±α, called a hyperbolic block,
(3) a quadruple of complex roots ±α ± iβ, called a focus-focus block,

where α, β ∈ R.

The types of the groups of eigenvalues of A agree with the classification of the Cartan
subalgebra in Theorem 2.6. Thus they do not depend on the choice of the regular element
A, they only depend on the Cartan subalgebra.

2.1.5. Degenerate points. Changing the integrable system on a fixed symplectic manifold
cannot cause a rank 0 point to transition from being focus-focus type to being elliptic-
elliptic type without passing through a degeneracy.

Proposition 2.8. Fix a 4-dimensional symplectic manifold (M, ω). Let t0 ∈ R and let
Jt,Ht : M → R be smooth functions which depend smoothly on t ∈ R. Suppose (Jt,Ht)
is an integrable system for all t ∈ R in an open interval around t0 and p ∈ M is a rank
0 fixed point of (Jt,Ht) for all t ∈ R, which is of type elliptic-elliptic for t > t0 and type
focus-focus for t < t0. Then (Jt0 ,Ht0) has a degenerate fixed point at p.

Proof. Suppose that p is a non-degenerate fixed point of (Jt0 ,Ht0). Then there exists some
γ, δ ∈ R such that ω−1(γd2Ht0 + δd2Jt0) has four distinct eigenvalues at p. Fix such γ
and δ. Since γd2Ht + δd2Jt is symmetric we see that the characteristic polynomial of
ω−1(γd2Ht0 + δd2J) is a constant multiple of a polynomial of the form

gt(X) = X4 + btX2 + ct

where bt, ct ∈ R depend continuously on t. The zeros of gt are given by ±
√
κ± where

κ± =
−bt ±

√
b2

t − 4ct

2

and since there are four distinct eigenvalues when t = t0 we see that b2
t0 − 4ct0 , 0. Thus

we see that gt has four distinct eigenvalues for all t in a neighborhood of t0. Since the
Williamson type of a fixed point does not depend on the choice of linear combination as
long as one with four distinct eigenvalues is chosen we see that gt has zeros of the form
±iα, ±iβ for t > t0 which means that b2

t − 4ct > 0. Similarly, we see that gt has zeros
of the form α ± iβ for t < t0 which means that b2

t − 4ct < 0. Thus, since bt − 4ct varies
continuously with t, we see that bt0 − 4ct0 = 0 contradicting our original claim. �

Similar arguments to the one in the proof of Proposition 2.8 are used in Dullin-
Pelayo [DP16] and in particular in Figure 4 in that paper.

Remark 2.9. When a point changes between being of elliptic-elliptic and focus-focus
type it is undergoing what is known as the Hamiltonian-Hopf bifurcation, see [BLPM05].

We are grateful to Heinz Hanßmann and James Montaldi for bringing the Hamiltonian-
Hopf bifurcation to our attending and informing us that our system is undergoing this
transformation.
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2.2. Semitoric systems. Pelayo & Vũ Ngo. c [PVuN09, PVuN11a] extend the Delzant
classification of toric integrable systems by introducing and classifying what are now
known as semitoric systems.

Definition 2.10. A semitoric system is a 4-dimensional integrable system (M, ω, (J,H))
such that:

(1) J is proper,
(2) the Hamiltonian flow of J (i.e. the flow of XJ) is periodic,
(3) all singular points of (J,H) are non-degenerate and have no hyperbolic blocks.

A semitoric system is simple if there is at most one critical point in J−1(x) for all x ∈ R.

Every semitoric system we consider in this article is a simple semitoric system.

Note that J is automatically proper in the case that M is compact. Concerning item (2), we
may assume that 2π is the minimal period. Note that this means the flow of XJ generates
a faithful action of S1 = R/2πZ.

If (M, ω, (J,H)) is a semitoric integrable system and p ∈ M is a rank zero singular point
then there are exactly two possibilities for p: either p is elliptic-elliptic or focus-focus.
Thus, if A is a regular element in the associated Cartan subalgebra then the eigenvalues
of A must either come in two pairs ±iα, ±iβ in which case p is elliptic-elliptic or come in
one quadruple ±α± iβ in which case p is focus-focus, where α, β ∈ R in each case. If p is
non-degenerate of rank 1 then it must be of elliptic type.

The Pelayo-Vũ Ngo. c classification of simple semitoric integrable systems is in terms
of five invariants, which we briefly describe now:

(1) the number of focus-focus points invariant: m f ∈ Z≥0 denotes the number of focus-
focus singular points (which is finite by Vũ Ngo. c [VuN07]),

(2) the semitoric polygon: a family of polygons (analogous to the Delzant polygon
of a toric integrable system) which encode information about the integral-affine
structure of the system. Each element is the image of a toric momentum map
defined on all of M except certain subsets (which are the union of submanifolds
of dimension at most three) related to the focus-focus points,

(3) the Taylor series invariant: a Taylor series in two variables for each focus-focus
point, which encodes the dynamics of the flow of the Hamiltonian vector fields
as they approach the focus-focus fiber (originally introduced and described in Vũ
Ngo. c [VuN03]),

(4) the volume or height invariant: a real number for each focus-focus point which
encodes the height of the focus-focus value in semitoric polygon,

(5) the twisting index: an integer assigned to each focus-focus point for each element
of the semitoric polygon, which encodes the relationship between the toric mo-
mentum map used to produce the element of the semitoric polygon and a preferred
local momentum map around the focus-focus point.

An abstract list of such datas is known as a list of semitoric ingredients. Given semitoric
systems (Mi, ωi, (Ji,Hi)) for i = 1, 2 an isomorphism of semitoric systems is a symplec-
tomorphism Φ : M1 → M2 such that Φ∗(J2,H2) = (J1, f (J1,H1)) where f : R2 → R is a
smooth function and ∂y f > 0 everywhere.
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Theorem 2.11 (Classification by Pelayo & Vũ Ngo. c [PVuN09, PVuN11a]). The follow-
ing hold:

(1) Two simple semitoric systems are isomorphic if and only if they have the same five
semitoric invariants,

(2) Given a list of semitoric ingredients there exists a simple semitoric system which
has those as its five invariants.

For standard examples of semitoric systems, we refer to Section 2.4.

2.3. The symplectic structure on S2 and S2 × S2. In order to avoid, on the one hand,
confusion concerning the various conventions in the literature and, on the other hand, to
provide a precise and complete reference, the following calculations are provided in full.

Let S2 be the unit sphere in R3 centered at the origin, and let (x1, y1, z1, x2, y2, z2) be
Cartesian coordinates on R3 × R3. We consider the 4-dimensional manifold S2 × S2 ⊂

R3 × R3 with symplectic form

ω := ωR1R2 := −(R1ωS2 ⊕ R2ωS2)

where R1,R2 ∈ R
>0 and ωS2 is the standard symplectic form on S2. Geometrically, the

symplectic form ωS2 on S2 is given in p ∈ S2 by

(ωS2)p(u, v) = 〈p, u × v〉

where 〈·, ·〉 is the Euclidean scalar product in R3, p = (p1, p2, p3) ∈ S2 the basepoint and
u = (u1, u2, u3), v = (v1, v2, v3) ∈ TpS

2 tangent vectors, i.e., 〈p, u〉 = 0 = 〈p, v〉. To express
ωS2 in Cartesian coordinates, we calculate

〈p, u × v〉 = p1 det
(
u2 v2

u3 v3

)
+ p2 det

(
u3 v3

u1 v1

)
+ p3 det

(
u1 v1

u2 v2

)
= p1(dy ∧ dz)(u, v) + p2(dz ∧ dx)(u, v) + p3(dx ∧ dy)(u, v)

and thus
ωS2 = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy.

This implies

ω = −

2∑
i=1

Rixidyi ∧ dzi + Riyidzi ∧ dxi + Rizidxi ∧ dyi

in Cartesian coordinates on S2×S2 ⊂ R3×R3. We want to use charts on S2 that parametrise
the upper and lower hemisphere as graphs over the 2-dimensional unit disk D2. To keep
track of signs, we use e ∈ {+1,−1} in the charts and have ϕe : D2 → S2 with

ϕe(x, y) := (x, y, ze(x, y)) :=
(
x, y, e

√
1 − x2 − y2

)
such that ϕ+1 covers the northern hemisphere and ϕ−1 the southern one. Denoting the
north and south pole of S2 by N and S , we get charts for the ‘double hemispheres’ around
(N,N), (N, S ), (S ,N), (S , S ) ∈ S2 × S2 via choosing e1, e2 ∈ {+1,−1} accordingly and
setting

ϕe1,e2 : D2 × D2 → S2 × S2,(2)

ϕe1e2(x1, y1, x2, y2) :=
(
x1, y1, e1

√
1 − x2

1 − y2
1, x2, y2, e2

√
1 − x2

2 − y2
2

)
.
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For better readability, let us drop the subscripts e, e1, and e2 whenever the context allows,
and introduce a function zi(xi, yi), i.e., we write

ϕ = ϕe, z(x, y) = e
√

1 − x2 − y2, ϕ = ϕe1e2 , zi(xi, yi) := ei

√
1 − x2

i − y2
i

whenever possible. Now we express ωS2 in the new coordinates ϕe. We compute

∂xz(x, y) =
−ex√

1 − x2 − y2
=
−x

z(x, y)
(3)

∂yz(x, y) =
−ey√

1 − x2 − y2
=
−y

z(x, y)
(4)

yielding

d(z(x, y)) =
−x

z(x, y)
dx +

−y
z(x, y)

dy(5)

leading to

ϕ∗ωS2 =

(
x2

z(x, y)
+

y2

z(x, y)
+ z(x, y)

)
dx ∧ dy =

1
z(x, y)

dx ∧ dy.

Subsequently we get for ω in coordinates ϕ = ϕe1e2 the expression

ϕ∗ω = − ϕ∗(R1ωS2 ⊕ R2ωS2)

= −

(
R1

z1(x1, y1)
dx1 ∧ dy1 +

R2

z2(x2, y2)
dx2 ∧ dy2

)
and thus in matrix form we have

ω =


0 −R1

z1
0 0

R1
z1

0 0 0
0 0 0 −R2

z2

0 0 R2
z2

0

 and ω−1 =


0 z1

R1
0 0

−z1
R1

0 0 0
0 0 0 z2

R2

0 0 −z2
R2

0

 .(6)

Suppose f : S2 × S2 → R. Using the charts ϕe1e2 , we compute for h := f ◦ ϕe1e2 :
D × D→ R the differential

dh =

2∑
i=1

∂xih dxi + ∂yih dyi

and can solve ω(Xh, ·) = −dh for Xh via

(Xh)T = −
(
∂x1h, ∂y1h, ∂x2h, ∂y2h

)
ω−1

so

(7) Xh(x1, y1, x2, y2) =


∂y1 h(x1,y1,x2,y2) z1(x1,x2)

R1

−
∂x1 h(x1,y1,x2,y2) z1(x1,x2)

R1
∂y2 h(x1,y1,x2,y2) z2(x2,y2)

R2

−
∂x2 h(x1,y1,x2,y2) z2(x2,y2)

R2

 .
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2.4. Explicit examples of semitoric systems. Consider the manifold S2 × S2 with sym-
plectic form ω := −(R1ωS2 ⊕ R2ωS2) where ωS2 is the standard volume form on S2 and
0 < R1 < R2 are real numbers.

Example 2.12 (Coupled angular momenta). The coupled angular momenta system is
given by J~R,Ht : S2 × S2 → R with

(8)

J~R(x1, y1, z1, x2, y2, z2) := R1z1 + R2z2,

Ht(x1, y1, z1, x2, y2, z2) := (1 − t)z1 + t(x1x2 + y1y2 + z1z2)

where (xi, yi, zi) are Cartesian coordinates on S2 ⊂ R3 for i = 1, 2, t ∈ [0, 1] is the coupling
parameter, and ~R = (R1,R2) ∈ R2 with 0 < R1 < R2.

This system was originally introduced in Sadovskiı́ & Zĥilinskiı́ [SZ99] and studied
in detail in Le Floch & Pelayo [LFP], where it is shown that there exist two fixed values
t−, t+ ∈ (0, 1) with t− < t+ which depend on R1,R2 such that

(1) if t− < t < t+ then (J~R,Ht) is a semitoric system with exactly one focus-focus
point,

(2) if t > t+ or t < t− the (J~R,Ht) is a semitoric system with exactly zero focus-
focus points (these are known as systems of toric type, see Section 2 of Vũ
Ngo. c [VuN07]),

(3) if t = t− or t = t+ then (J~R,Ht) has a degenerate singular point, and thus is not a
semitoric system.

The image of the momentum map for Example 2.12 with varying values of t is shown
in Figure 3.
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Figure 3. The momentum map image for the coupled angular momenta
system with the rank zero points marked. As the coupling parameter t
changes one of the rank zero points transitions from being elliptic-elliptic
to being focus-focus and then back to elliptic-elliptic.

Another standard example of a semitoric system is

Example 2.13 (Coupled spin oscillator). The coupled spin oscillator system is given by
J,H : S2 × R2 → R where

J(x, y, z, u, v) :=
1
2

(u2 + v2) + z and H(x, y, z, u, v) :=
1
2

(ux + vy)

with Cartesian coordinates (x, y, z) on S2 and (u, v) on R2.

See Pelayo & Vũ Ngo. c [PVuN12] for a detailed investigation of Example 2.13.

Remark 2.14. The spherical pendulum consists of J,H : T∗S2 → R with

J(q1, q2, q3, p1, p2, p3) := q1 p2 − q2 p1,

H(q1, q2, q3, p1, p2, p3) :=
1
2

(p2
1 + p2

2 + p2
3) + q3
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and satisfies nearly all of the requirements to be semitoric, but the J is not proper since
the momentum map image contains unbounded vertical lines. However, the spherical pen-
dulum is a so-called generalized semitoric system, as discussed in Pelayo & Ratiu & Vũ
Ngo. c [PRV17]. For this same reason, the quadratic spherical pendulum (see for example
Cushman & Vũ Ngo. c [CuNS02] and Efstathiou & Martynchuk [EM17]) is not a semitoric
integrable system.

3. A family of systems with two focus-focus points

In this section we introduce the system which is the subject of this paper and prove
Theorem 1.1, our main result. This system is minimal in the sense of Kane & Palmer
& Pelayo [KPP18b], i.e., it is not possible to perform a blowdown of toric type on the
system (see Kane & Palmer & Pelayo [KPP18b, Section 4.1] for a description of this
operation). Minimal semitoric integrable systems are classified in Kane & Palmer &
Pelayo [KPP18b] and the system discussed in the present paper is minimal of type (2),
using the terminology of that paper.

3.1. The system. Consider R1,R2 ∈ R
>0 as scaling of radii with R1 < R2 and endow

S2 × S2 with the symplectic form ω = ωR1R2 . Let ~t := (t1, t2, t3, t4) ∈ R4 be parameters, let
~R = (R1,R2), and define Φ := (J~R,H~t) : S2 × S2 → R2 in Cartesian coordinates by{ J~R(x1, y1, z1, x2, y2, z2) := R1z1 + R2z2,

H~t(x1, y1, z1, x2, y2, z2) := t1z1 + t2z2 + t3(x1x2 + y1y2) + t4z1z2

as in Equation (1).
Unless we explicitly need the parameters we often write J := J~R and H := H~t for

brevity. The main result of this section is

Theorem 3.1. The following hold:

1) The system (1) is a compact integrable system for all choices of parameters with
t3 , 0,

2) The system (1) is semitoric and has two focus-focus points for parameters in a
neighborhood of

R1 = 1, R2 = 2, t1 =
1
4
, t2 =

1
4
, t3 =

1
2
, t4 = 0.

Theorem 3.1 is a combination of Propositions 3.9 and 3.13 and Corollary 3.15 which
we prove in the remainder of this section.

Remark 3.2. At the parameters for which the system in Equation (1) is has two focus-
focus points it enjoys a certain sense of uniqueness. As shown in [KPP18b, Theorem 2.5],
up to scaling the lengths of the sides, there is only one semitoric polygon for which the
corresponding system is compact with two focus-focus points such that J has isolated
fixed points. Thus, this semitoric polygon is the one associated to the system in Equa-
tion (1). By evaluating J on the rank zero points (see Lemma 3.4) we can easily find the
semitoric polygon for the system (1), as shown in Figure 4.
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Figure 4. Four semitoric polygons associated to the system (1). The
slanted edges all have slope ±1. For each polygon the x-coordinates of
the vertices, from left to right, are −R1−R2, R1−R2, −R1 + R2, and R1 + R2

(since we assume R1 < R2).

Remark 3.3. At first, we considered the system
J~R(x1, y1, z1, x2, y2, z2) := R1z1 + R2z2,

H(`1,`2)(x1, y1, z1, x2, y2, z2) := (1 − `1)z1 + (1 − `2)z2 + `1`2(x1x2 + y1y2 + z1z2)

for `1, `2 ∈ [0, 1] hoping to generalize the construction of the coupled angular momentum,
but numerical evidence strongly suggests that while there are two different points that
become focus-focus for certain values there is no choice of `1 and `2 for which both
points are focus-focus simultaneously.

3.2. Rank 0 points and their nondegeneracy. In the chart ϕ, the integrals J and H are
given by

J(x1, y1, x2, y2) = R1z1 + R2z2,(9)
H(x1, y1, x2, y2) = t1z1 + t2z2 + t3(x1x2 + y1y2) + t4z1z2.(10)

where each zi = zi(xi, yi) is a function of xi and yi for i = 1, 2. Using equations (3), (4),
and (7), the Hamiltonian vector fields are given by

(11) XJ(x1, y1, x2, y2) =


−y1

x1

−y2

x2

 , XH(x1, y1, x2, y2) =



−t1y1+t3y2z1−t4z2y1
R1

t1 x1−t3 x2z1+t4z2 x1
R1

−t2y2+t3y1z2−t4z1y2
R2

t2 x2−t3 x1z2+t4z1 x2
R2


.

Recall that N denotes the north pole of S2 and S the south pole.

Lemma 3.4. The set of rank 0 points of (J,H), i.e., the set of fixed points, is given by
{(N,N), (N, S ), (S ,N), (S , S )}.

Proof. Geometrically, J is the sum of the height function on each factor of the prod-
uct S2 × S2 scaled by R1 and R2 respectively. Thus J gives rise to horizontal rota-
tions on each of the two spheres and its Hamiltonian flow has fixed points exactly at
{(N,N), (N, S ), (S ,N), (S , S )}. The function J reaches its global maximum, R1 + R2, at
(N,N) and its global minimum, −(R1+R2), at (S , S ). The corresponding fibers J−1(R1+R2)
and J−1(−(R1 + R2)) consist exactly of the singletons {(N,N)} and {(S , S )}.

Fixed points of (J,H) : S2 × S2 → R require rk D(J,H) = 0. Therefore they must
have DJ = 0 which is equivalent to XJ = 0, i.e., when we look for fixed points of (J,H),
the only candidates are the points (N,N), (N, S ), (S ,N), and (S , S ) for which we have to
check if additionally DH = 0 or equivalently XH = 0 holds.
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Since all possible fixed points lie in the range of the charts ϕe1e2 we can check the values
of XH by using formula (3), (4), and (11). The corresponding point in the domain is in
all cases (x1, y1, x2, y2) = (0, 0, 0, 0) and we compute that XH(0, 0, 0, 0) vanishes and thus
{(N,N), (N, S ), (S ,N), (S , S )} is indeed the fixed point set of (J,H). �

Keep in mind from the above proof that the rank 0 points correspond to the origin in
the charts in (2).

Lemma 3.5. At the origin p = (0, 0, 0, 0) in the charts in (2), we find

(12) ω−1
p d2J(p) =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


and

(13) ω−1
p d2H(p) =


0 −

t1+e2t4
R1

0 e1t3
R1t1+e2t4

R1
0 −

e1t3
R1

0
0 e2t3

R2
0 −

t2+e1t4
R2

−
e2t3
R2

0 t2+e1t4
R2

0

 .
Proof. We compute the Hessians of J and H using (9) and (10). Since derivatives are
additive we can first calculate the Hessians of their components seperately. Recall from
(3) and (4) that ∂xizi = −xi

zi
and ∂yizi =

−yi
zi

, yielding

∂2
xi xi

zi =
−zi + xi∂xizi

z2
i

, ∂2
xiyi

zi =
xi∂yizi

z2
i

, and ∂2
yiyi

zi =
−zi + yi∂yizi

z2
i

.

Since z1 does not depend on x2, y2 and z2 does not depend on x1 and y1 we obtain for the
Hessian of zi w.r.t. the variables x1, y1, x2, y2 in p

d2z1(p) =


−e1 0 0 0
0 −e1 0 0
0 0 0 0
0 0 0 0

 and d2z2(p) =


0 0 0 0
0 0 0 0
0 0 −e2 0
0 0 0 −e2

 .
Next we consider the term x1x2 + y1y2 and get

d2(x1x2 + y1y2)(p) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
For the term z1z2, we get

d2(z1z2)(p) =


−e1e2 0 0 0

0 −e1e2 0 0
0 0 −e1e2 0
0 0 0 −e1e2

 .
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The equations (9) and (10) together with the above calculations yield

d2J(p) =


−e1R1 0 0 0

0 −e1R1 0 0
0 0 −e2R2 0
0 0 0 −e2R2


and

d2H(p) =


−t1e1 − t4e1e2 0 t3 0

0 −t1e1 − t4e1e2 0 t3

t3 0 −t2e2 − t4e1e2 0
0 t3 0 −t2e2 − t4e1e2

 .
Evaluating ω−1 from (6) at p yields

ω−1
p =


0 e1

R1
0 0

−
e1
R1

0 0 0
0 0 0 e2

R2

0 0 −
e2
R2

0


and therefore, using e2

1 = 1 = e2
2, we get the desired results for ω−1

p J(p) and ω−1
p H(p). �

Given a polynomial of the form ay2 + by + c, the expression b2 − 4ac is called the
discriminant of the polynomial. Thus, a straightforward calculation yields

Corollary 3.6. Denote by I the 4 × 4 identity matrix. Then the characteristic polynomial
of ω−1

p d2H(p) is given by

χ(X) := det
(
ω−1

p d2H(p) − XI
)

= X4 +
1

R2
1R2

2

(
R2

1(t2 + e1t4)2 + 2e1e2R1R2t2
3 + R2

2(t1 + e2t4)2
)

X2

+
1

R2
1R2

2

(
(t2 + e1t4)2(t1 + e2t4)2 − 2e1e2(t2 + e1t4)(t1 + e2t4)t2

3 + t4
3

)
which is a polynomial of second degree in Y := X2 with discriminant

4 := 4~R,~t,e1,e2
=

(
1

R2
1R2

2

(
R2

1(t2 + e1t4)2 + 2e1e2R1R2t2
3 + R2

2(t1 + e2t4)2
))2

(14)

−
4

R2
1R2

2

(
(t2 + e1t4)2(t1 + e2t4)2 − 2e1e2(t2 + e1t4)(t1 + e2t4)t2

3 + t4
3

)
.

Now we want to determine the type of the rank 0 points located at
(N,N), (N, S ), (S ,N), (S , S ), i.e., if they are nondegenerate or not and, in case they are
nondegenerate, if they are focus-focus or elliptic-elliptic or something else. We will see
that the type of the rank 0 points highly depends on the choice of parameters ~R and ~t.

Proposition 3.7 (Rank 0 Criterion). Suppose p ∈ S2 × S2 has z-coordinates (e1, e2) ∈
{−1, 1}2. Then p is a rank 0 singular point of (J~R,H~t). If 4~R,~t,e1,e2

< 0 then p is non-
degenerate of focus-focus type, and if 4~R,~t,e1,e2

> 0 then p is non-degenerate and is of type
elliptic-elliptic, elliptic-hyperbolic, or hyperbolic-hyperbolic.
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Proof. We already know that the set of rank 0 point are exactly those with z-coordinates
±1 by Lemma 3.4. Note that the characteristic polynomial of ω−1

p d2H(p) has zeros

X = ±

√
−1

2R2
1R2

2

(
R2

1(t2 + e1t4)2 + 2e1e2R1R2t2
3 + R2

2(t1 + e2t4)2
)
±

√
4

2

where 4 := 4~R,~t,e1,e2
is as in Equation (14).

If 4 < 0 then there are four eigenvalues which take the form α ± iβ for α, β ∈ R,
and thus p is focus-focus by Proposition 2.7. If, 4 > 0 then p is a non-degenerate fixed
point which is not focus-focus, so it is either elliptic-elliptic, hyperbolic-hyperbolic, or
hyperbolic-elliptic. �

Note that in the case 4 = 0 the point can still be non-degenerate, but Proposition 3.7
does not give us any information in this case. The following statement implies that there
exist parameter values for which the system has four nondegenerate rank 0 points, two of
them elliptic-elliptic and two focus-focus, and is proved by plugging the values into the
criterion in Proposition 3.7.

Corollary 3.8. For the parameter values

(15) R1 = 1, R2 = 2, t1 =
1
4
, t2 =

1
4
, t3 =

1
2
, t4 = 0,

the matrix ω−1
p d2H(p) has four distinct eigenvalues at p ∈ {(N,N), (S , S ), (N, S ), (S ,N)}

given by

Eig(N,N) = Eig(S , S ) =

± i
8

√
21 + 3

√
33

2
, ±

i
8

√
21 − 3

√
33

2

 ,
Eig(N, S ) = Eig(S ,N) =



√

5
32

 ± cos
1
2

arctan
3
√

31
11

 ± i sin
1
2

arctan
3
√

31
11

 ,
and thus p is a nondegenerate fixed point according to Lemma 2.2. In particular, (N,N)
and (S , S ) are elliptic-elliptic and (N, S ) and (S ,N) are focus-focus.

Since nonvanishing and noncoinciding are open conditions, there exist in fact intervals
around the parameters (15) where the systems continues to have two focus-focus and two
elliptic-elliptic points.

Proposition 3.9. There exists an open set U ⊂ R6 containing the point (1, 2, 1
4 ,

1
4 ,

1
2 , 0)

such that for all (R1,R2, t1, t2, t3, t4) ∈ U the system given in Equation (1) has elliptic-
elliptic points at (N,N) and (S , S ) and focus-focus points at (N, S ) and (S ,N).

3.3. Rank 1 points. We want to study rank 1 points by means of cylindrical coordinates.
To avoid the problems with cylindrical coordinates near poles we state the following
observation.

Lemma 3.10. Let t1, t2, t3, t4 ∈ R, t3 , 0 and R1, R2 ∈ R
>0. If (x1, y1, z1, x1, y2, z2) ∈ S2×S2

is a critical point of rank 1 of (1) then z1, z2 , {±1}.
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Proof. Critical points of (J,H) from (1) are those p ∈ S2 × S2 such that dH(p) and dJ(p)
are linearly dependent, which is equivalent to the existence of a nonzero λ ∈ R such that
d(H − λJ)(p) = 0 since dJ = 0 only occurs at the rank 0 points. Defining f1, f2 : R6 → R
by fi(x1, y1, z1, x2, y2, z2) := x2

i +y2
i + z2

i for i = 1, 2, this is equivalent to looking for critical
points of H −λJ : R6 → R on the set f −1

1 (1)∩ f −1
2 (1), i.e., critical points can be computed

by means of Lagrangian multipliers, i.e., a critical point p := (x1, y1, z1, x1, y2, z2) satisfies
the equations 

∇H(p) = λ∇J(p) + µ1∇ f1(p) + µ2∇ f2(p),

x2
1 + y2

1 + z2
1 = 1,

x2
2 + y2

2 + z2
2 = 1

for some λ, µ1, µ2 ∈ R. Using the gradient with respect to the Euclidean metric, we obtain

t3x2

t3y2

t1 + t4z2

t3x1

t3y1

t2 + t4z1


=



0
0
λR1

0
0
λR2


+



2µ1x1

2µ1y1

2µ1z1

0
0
0


+



0
0
0

2µ2x2

2µ2y2

2µ2z2


.(16)

Recall that the rank 0 points are precisely those with z1 ∈ {±1} and z2 ∈ {±1} simulta-
neously. Suppose that z1 ∈ {±1} which implies x1 = y1 = 0 since (x1, y2, z1) ∈ S2. Then,
recalling that t3 , 0, we see that Equation (16) implies x2 = y2 = 0 which in turn implies
z2 ∈ {±1} so the only solution is in fact a rank 0 point. The same argument works if we
assume z2 ∈ {±1}. �

We now introduce cylindrical coordinates on S2 × S2 via

(xi, yi, zi) 7→
(√

1 − z2
i cos(θi),

√
1 − z2

i sin(θi), zi

)
where i ∈ {1, 2} and θi is the counterclockwise angle between the xi-axis and (xi, yi) in R2.
In these coordinates, the system (1) becomes

J(θ1, z1, θ2, z2) = R1z1 + R2z2,

H(θ1, z1, θ2, z2) = t1z1 + t2z2 + t3

√
(1 − z2

1)(1 − z2
2) cos(θ1 − θ2) + t4z1z2

and the symplectic form is

(17) ω = R1dz1 ∧ dθ1 + R2dz2 ∧ dθ2.

According to Lemma 3.10 these coordinates are valid where rank 1 points may occur (if
the rank 1 point occurs at the discontinuity of θi, then shift the domain of definition of θi).
We compute the derivative

dJ(θ1, z1, θ2, z2) =
(
0, R1, 0, R2

)
(18)

which never vanishes. Therefore we have Corollary 2.5 at our disposal.
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Let us compute the symplectic quotient (S2 × S2) � S1 where the S1-action is induced
by J. Given c ∈ ] − (R1 + R2), (R1 + R2)[, which is the set of regular values of J, we can
solve for z1 on the level set J−1(c) to find

z1 =
c − R2z2

R1
.

By Equations (18) and (17) we see that XJ = ∂z1 + ∂z2 so the flow of J rotates θ1 and θ2

by a common angle. Thus, the S1-action produced by the flow of XJ preserves the angle
difference θ1−θ2. Now consider the chart on the quotient J−1(c)/S1 with coordinates (ζ, ϑ)
given by

ζ := z1 and ϑ := θ1 − θ2

where

−1 < ζ < 1 and
c − R2

R1
< ζ <

c + R2

R1

since −1 < z1, z2 < 1. All rank 1 critical points occur in this chart since by Lemma 3.10
rank 1 points do not occur when z1 = ±1 or z2 = ±1. We now let H descend to the
symplectic quotient (S2 × S2) � S1 where it reads

H(ζ, ϑ) = t1ζ + t2
c − R1ζ

R2
+ t3 cos(ϑ)

√
(1 − ζ2)

1 − (
c − R1ζ

R2

)2 + t4
c − R1ζ

R2
ζ

=
t2c
R2

+
t1R2 − t2R1 + t4c

R2
ζ −

t4R1

R2
ζ2 + t3 cos(ϑ)

√
(1 − ζ2)

1 − (
c − R1ζ

R2

)2.
We abbreviate the term under the last root by

A(ζ) := A(ζ, c,R1,R2) := (1 − ζ2)
1 − (

c − R1ζ

R2

)2
and its derivatives with respect to ζ by

A′ := ∂ζA and A′′ := ∂2
ζζA.

We note A(ζ) ≥ 0 with A(ζ) = 0 if and only if ζ = ±1 or ζ = c±R2
R1

. Because of the bounds
on ζ we always have A(ζ) > 0. In order to find the critical points of H on the symplectic
quotient we calculate the partial derivatives

∂ϑH(ζ, ϑ) = −t3 sin(ϑ)
√

A(ζ),

∂ζH(ζ, ϑ) =
t1R2 − t2R1 + t4c

R2
−

2t4R1

R2
ζ + t3 cos(ϑ)

A′(ζ)

2
√

A(ζ)
.

Lemma 3.11. (ζ, ϑ) is a critical point of H on the symplectic quotient if and only if

ϑ ∈ πZ and 0 = t1R2 − t2R1 + t4c − 2t4R1ζ + t3R2 cos(ϑ)
A′(ζ)

2
√

A(ζ)
.

Proof. The point (ζ, ϑ) is critical if and only if ∂ϑH(ζ, ϑ) = 0 = ∂ζH(ζ, ϑ). Since A(ζ) and
t3 are nonzero ∂ζH(ζ, ϑ) = 0 is equivalent to sin(ϑ) = 0 meaning ϑ ∈ πZ and cos(ϑ) = ±1.
Together with ∂ϑH(ζ, ϑ) = 0 we get the desired result. �
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3.4. Integrability. We consider the system (1) in the chart ϕ = ϕe1e2 defined in (2). By
means of (7), we obtain as Hamiltonian vector fields in these coordinates

Xxi = −
zi

Ri
∂yi , Xyi =

zi

Ri
∂xi , Xzi = −

yi

Ri
∂xi +

xi

Ri
∂yi

for i ∈ {1, 2}. Moreover, we deduce from (5)

dzi =
−xi

zi
dxi +

−yi

zi
dyi.

This yields

(19)



{zi, xi} = −dzi(Xxi) = −
yi

Ri
,

{zi, yi} = −dzi(Xyi) =
xi

Ri
,

{zi, x j} = {zi, y j} = 0 for i , j,

{zi, zi} = −dzi(Xzi) = −
xiyi

Rizi
+

xiyi

Rizi
= 0,

{z1, z2} = −dz1(Xz2) = 0.

Now we are ready to show

Lemma 3.12. {J,H} = 0 for all R1,R2 ∈ R
>0 and all t = (t1, t2, t3, t4) ∈ R4.

Proof. We recall that the Poisson bracket is linear and that we have the identities in (19).
Then we compute in the coordinates given in (2)

{J,H} = {R1z1 + R2z2, t1z1 + t2z2 + t3(x1x2 + y1y2) + t4z1z2}

(19)
= R1(t3{z1, x1x2} + t3{z1, y1y2} + t4{z1, z1z2})

+ R2(t3{z2, x1x2} + t3{z2, y1y2} + t4{z2, z1z2}).

Since the Poisson bracket satisfies the product rule {a, bc} = {a, b}c + {a, c}b it follows

(19)
= R1

(
t3

(
−y1

R1
x2 +

x1

R1
y2

))
+ R2

(
t3

(
−y2

R2
x1 +

x2

R2
y1

))
= 0.

The charts in (2) are not defined for zi = 0. To show {J,H} = 0 there, consider Cartesian
coordinates (x1, y1, z1, x2, y2, z2) and choose charts given by

(x1, z1, x2, z2) 7→
(
x1, e1

√
1 − x2

1 − z2
1, z1, x2, e2

√
1 − x2

2 − z2
2, z2

)
etc. The calculations are completely analogous. �

Proposition 3.13. The system (S2 ×S2, ω, (J~R,H~t)) given in Equation (1) is integrable for
all parameter values with 0 < R1 < R2 and t1, t2, t3, t4 ∈ R with t3 , 0.

Proof. Fix parameter values and let J = J(R1,R2) and H = H(t1,t2,t3,t4) with t3 , 0. In
Lemma 3.12 we showed that {J,H} = 0. It follows from Lemma 3.11 and the fact that
t3 , 0 that the rank 1 critical points occupy a set of measure zero since there are only
finitely many on each symplectic quotient. By Lemma 3.4 there are only finitely many
rank 0 points and thus J and H are linearly independent almost everywhere. �
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3.5. Nondegeneracy of rank 1 points. Now we want to study nondegeneracy of the
rank 1 critical points. Therefore we have to compute the Hessian of H on the symplectic
quotient. We get

∂2
ϑϑH(ζ, ϑ) = −t3 cos(ϑ)

√
A(ζ),

∂2
ϑζH(ζ, ϑ) = −t3 sin(ϑ)

A′(ζ)

2
√

A(ζ)
,

∂2
ζζH(ζ, ϑ) = −

2t4R1

R2
+

t3 cos(ϑ)
2

A′′(ζ)
√

A(ζ) − A′(ζ) A′(ζ)

2
√

A(ζ)

A(ζ)

=
−2t4R1

R2
+ t3 cos(ϑ)

2A′′(ζ)A(ζ) − (A′(ζ))2

4(A(ζ))
3
2

Now we come to a criterion for nondegeneracy. Let prc : J−1(c) → J−1(c)/S1 denote the
quotient map for each c ∈ J(S2 × S2).

Proposition 3.14 (Rank 1 Criterion). Suppose p ∈ S2 × S2 is a rank 1 critical point and
denote c = J(p) and prc(p) = (ζ, ϑ). Then p is non-degenerate if and only if ∂2

ζζH(ζ, ϑ) ,
0. In particular, p is non-degenerate and of elliptic-regular type if

2t4R1

t3R2
cos(ϑ) >

2A′′(ζ)A(ζ) − (A′(ζ))2

4(A(ζ))
3
2

,

non-degenerate and of hyperbolic-regular type if

2t4R1

t3R2
cos(ϑ) <

2A′′(ζ)A(ζ) − (A′(ζ))2

4(A(ζ))
3
2

,

and degenerate otherwise.

Proof. We start by computing the symplectic form on the symplectic quotient. Let
j : J−1(c)→ S2 × S2 be the inclusion map. Recall ω =

∑2
i=1 Ridzi ∧ dθi so we have

j∗ω = R1dz1 ∧ dθ1 + R2d
(
c − R1z1

R2

)
∧ dθ2 = R1dz1 ∧ d(θ1 − θ2)

and thus on the reduced space S2×S2 �S1 in the coordinates (ζ, ϑ) we have the symplectic
form

ωred = R1dζ ∧ dϑ with matrix ωred = R1

(
0 1
−1 0

)
.

Since (ζ, ϑ) is a critical point Lemma 3.11 implies that sin(ϑ) = 0, so ∂ϑζH(ζ, ϑ) = 0 and
thus

ω−1
redd2H(ζ, ϑ) =

1
R1

(
0 −1
1 0

) (
∂2
ζζH(ζ, ϑ) 0

0 ∂2
ϑϑH(ζ, ϑ)

)
=

1
R1

(
0 −∂2

θθH(ζ, ϑ)
∂2
ζζH(ζ, ϑ) 0

)
which has eigenvalues

λ± = ±
1
R1

√
−∂2

ζζH(ζ, ϑ)∂2
ϑϑH(ζ, ϑ).

Since cos(ϑ) = ±1 we see that ∂2
ϑϑH(ζ, ϑ) , 0 and so the eigenvalues are distinct if and

only if ∂2
ζζH(ζ, ϑ) , 0, establishing the first part of the claim. To complete the proof we
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notice that λ± are purely imaginary if ∂2
ζζH(ζ, ϑ)∂2

ϑϑH(ζ, ϑ) > 0, which implies that p
is elliptic-regular, and purely real otherwise, implying that p is hyperbolic-regular. We
compute

∂2
ζζH(ζ, ϑ)∂2

ϑϑH(ζ, ϑ) =

(
−2t4R1

R2
+ t3 cos(ϑ)

2A′′(ζ)A(ζ) − (A′(ζ))2

4(A(ζ))
3
2

) (
−t3 cos(ϑ)

√
A(ζ)

)
=

√
A(ζ)

(
2t3t4R1

R2
cos(ϑ) − t2

3
2A′′(ζ)A(ζ) − (A′(ζ))2

4(A(ζ))
3
2

)
,

and the result follows because
√

A(ζ) > 0 for the bounds on ζ. �

The following is established by plugging the specific values into the inequality from
Proposition 3.14 (for more details see the proof of Lemma 4.2).

Corollary 3.15. For the parameter values

(20) R1 = 1, R2 = 2, t1 =
1
4
, t2 =

1
4
, t3 =

1
2
, t4 = 0,

all rank 1 points are non-degenerate and of elliptic-regular type.

4. A linear combination of systems of toric type

In this section we apply the results of the previous section to a special choice of param-
eters of the system. Let ~s := (s1, s2) ∈ [0, 1]2 and consider the system (J~R,H~s) on S2 × S2

using the same J~R as before but using H~s := H~t where

t1 = (1 − s1)(1 − s2), t2 = s1s2, t3 = s1 + s2 − 2s1s2, t4 = s1 − s2,

i.e., we consider

(21)


J~R(x1, y1, z1, x2, y2, z2) := R1z1 + R2z2,

H~s(x1, y1, z1, x2, y2, z2) := (1 − s1)(1 − s2)z1 + s1s2z2

+ s1(1 − s2)(x1x2 + y1y2 + z1z2)
+ s2(1 − s1)(x1x2 + y1y2 − z1z2).

Thinking of R1 and R2 as fixed, this produces a two parameter family of systems
{(J~R,H(s1,s2)) | s1, s2 ∈ [0, 1]}. This family is of interest because it shows the system
(J~R,H( 1

2 ,
1
2 )), which is a semitoric integrable system with exactly two focus-focus points

by Theorem 3.1, as a linear combination of systems of toric type. The systems (J~R,H(0,0)),
(J~R,H(0,1)), (J~R,H(1,0)), and (J~R,H(1,1)) are systems of toric type whose associated poly-
gons agree (as subsets of R2) with four elements of the semitoric polygon of the semitoric
system (J~R,H( 1

2 ,
1
2 )). The images of the momentum maps for these systems are shown in

Figure 1 and a plot describing the number of focus-focus points for different values of
s1, s2 ∈ [0, 1] is show in Figure 2.

In the following series of lemmas we apply the various general results developed in
Section 3 to the special case of the system (21).

Lemma 4.1. For any choice of parameters s1, s2 ∈ [0, 1] the system in Equation (21) is
integrable.
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Proof. Recall that (21) is a special case of (1) with t3 = s1 + s2 − 2s1s2, so by Proposi-
tion 3.13 we know the result holds for all s1, s2 ∈ [0, 1] such that s1 + s2 − 2s1s2 , 0. This
only leaves the cases of s1 = s2 = 0 and s1 = s2 = 1. The case s1 = s2 = 0 leads to the
system

J(1,2)(x1, y1, z1, x2, y2, z2) = z1 + 2z2, H(0,0)(x1, y1, z1, x2, y2, z2) = z1

and the case s1 = s2 = 1 to the system

J(1,2)(x1, y1, z1, x2, y2, z2) = z1 + 2z2, H(1,1)(x1, y1, z1, x2, y2, z2) = z2,

which are each known to be toric integrable systems. �

Lemma 4.2. For any choice of parameters s1, s2 ∈ [0, 1], all rank 1 critical points of
(J(1,2),H(s1,s2)) are nondegenerate and of elliptic-regular type.

Proof. The cases of s1 = s2 = 0 and s1 = s2 = 1 produce toric systems as described
in the proof of Lemma 4.1, so all rank 1 points in these systems are non-degenerate
and of elliptic-regular type. Now consider (s1, s2) ∈ [0, 1]2 \ {(0, 0), (1, 1)} which implies
s1 + s2 − 2s1s2 > 0. Substituting R1 = 1, R2 = 2, t3 = s1 + s2 − 2s1s2 and t4 = s1 − s2 into
the criterion in Proposition 3.14 we see that it is sufficient to show

(22)
s1 − s2

s1 + s2 − 2s1s2
cos(ϑ) >

2A′′(ζ)A(ζ) − (A′(ζ))2

4(A(ζ))
3
2

.

Standard calculus shows that the value of the left-hand-side of Equation (22) is in the
interval [−1, 1] for all s1, s2, ϑ and the value of the right-hand-side of Equation (22) can
be seen to be in the interval ] − ∞,−1[ for all (ζ, c) ∈ ] − 1, 1[ × ] − 3, 3[ by plotting it in
Mathematica (see Figure 5), so the inequality is verified. �

-13.86

-11.88

-9.90

-7.92

-5.94

-3.96

-1.98

Figure 5. This figure analyses the right hand side of Equation (22): The
plot on the left shows the graph of the right hand side of Equation (22)
which is always below −1.06066. The contour plot on the right displays
the associated level sets.
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For R1 = 1, R2 = 2, ~s = (s1, s2) ∈ [0, 1]2 and ~e = (e1, e2) ∈ {0, 1}2 consider the
discriminant from (14) given by

4(~s,~e) :=
(1
4

(
(s1s2 + e1(s1 − s2))2 + 4e1e2(s1 + s2 − 2s1s2)2

+ 4((1 − s1)(1 − s2) + e2(s1 − s2))2
))2

−

(
(s1s2 + e1(s1 − s2))2((1 − s1)(1 − s2) + e2(s1 − s2))2

− 2e1e2(s1s2 + e1(s1 − s2))((1 − s1)(1 − s2) + e2s1 − s2)(s1 + s2 − 2s1s2)2

+ (s1 + s2 − 2s1s2)4
)

and set

γ(N,S ) := {(s1, s2) ∈ [0, 1]2 | 4(s1,s2,1,−1) = 0},

γ(S ,N) := {(s1, s2) ∈ [0, 1]2 | 4(s1,s2,−1,1) = 0},(23)
γ := γ(N,S ) ∪ γ(S ,N).

The sets are plotted in Figure 2.

Lemma 4.3. The system (J(1,2),H(s1,s2)), s1, s2 ∈ [0, 1], has exactly four critical points
of rank 0, namely {(N,N), (N, S ), (S ,N), (S , S )}. The points (N,N) and (S , S ) are non-
degenerate and of elliptic-elliptic type for all s1, s2 ∈ [0, 1]2. The point (N, S ) is non-
degenerate except when (s1, s2) ∈ γ(N,S ) and the point (S ,N) is non-degenerate except
when (s1, s2) ∈ γ(S ,N). In particular, for s1, s2 ∈ {0, 1}, all four points are elliptic-elliptic
and for s1 = s2 = 1

2 the points (N, S ) and (S ,N) are both focus-focus.

Proof. Using Corollary 3.6, we study the behaviour of the discriminant 4(~s,~e) for the
parameter values in question. If (e1, e2) ∈ {(1, 1), (−1,−1)}, we are in the chart around
(N,N) or (S , S ) and 4(~s,~e) is positive. Figure 6 shows a plot of the case (e1, e2) = (1, 1). If
(e1, e2) ∈ {(1,−1), (−1, 1)}, we are in the chart around (N, S ) or (S ,N) and 4(~s,~e) vanishes
along two curves. Figure 7 shows a plot of the case (e1, e2) = (1,−1). �

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.22

0.44

0.66

0.88

1.10

1.32

1.54

1.76

1.98

2.20

Figure 6. Case (e1, e2) = (1, 1): on the left, the graph of (s1, s2) 7→
4((s1,s2),(1,1)) (orange) and a plane through zero (blue) are displayed. On the
right, the associated level sets of (s1, s2) 7→ 4((s1,s2),(1,1)) are shown.
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0.019

0.057

0.095

0.133

0.171

0.209

Figure 7. Case (e1, e2) = (1,−1): on the left, the graph of (s1, s2) 7→
4((s1,s2),(1,−1)) (orange) and a plane through zero (blue) are displayed. On
the right, the associated level sets of (s1, s2) 7→ 4((s1,s2),(1,−1)) are shown.

Lemmas 4.1, 4.2, and 4.3 combine to form the following, which implies Theorem 1.2.

Theorem 4.4. The system (J(1,2),H(s1,s2)) has the following properties:
(1) for all s1, s2 ∈ [0, 1]2 it is an integrable system such that, with the possible excep-

tion of (N, S ) and (S ,N) (depending on s1 and s2), all of the singular points are
non-degenerate of type elliptic-elliptic or elliptic-regular;

(2) the points (N, S ) and (S ,N) are rank 0 singular points which transition between
being of focus-focus, elliptic-elliptic, and degenerate as (s1, s2) varies, and they
are only degenerate on a set γ ⊂ [0, 1]2 which is the union of four smooth curves.

Thus, (J(1,2),H(s1,s2)) is a semitoric system for all (s1, s2) ∈ [0, 1]2 \ γ. In particular, if
(s1, s2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} then (J(1,2),H(s1,s2)) is a semitoric system with no
focus-focus points and the system (J(1,2),H( 1

2 ,
1
2 )) is a semitoric system with exactly two

focus-focus points.

Note that the set γ is given in Equation (23) and is plotted in Figure 2

4.1. A degenerate point. By Proposition 2.8 we know that for each ~R there exist some
values of s1, s2 ∈ [0, 1] such that (J~R,H(s1,s2)) is a degenerate system because the points
(N, S ) and (S ,N) transition between being focus-focus and being elliptic-elliptic.

Example 4.5. Assume that s1 = s2. Since (J(1,2),H(0,0)) and (J(1,2),H(1,1)) have no focus-
focus points and (J(1,2),H( 1

2 ,
1
2 )) has focus-focus points at (N, S ) and (S ,N) there must exist

at least two values of s ∈ ]0, 1[ such that (J(1,2),H(s,s)) has a degenerate rank 0 point by
Proposition 2.8. Plugging t1 = (1 − s)2, t2 = s2, t3 = 2s(1 − s), t4 = 0, e1 = −1, and e2 = 1
into ω−1

p d2H in Equation 13 and taking the discriminant of the characteristic polynomial
equal to zero gives exactly two solutions in the range ]0, 1[. These solutions are s+ and s−
where

s± =
1

31

(
±8
√

5 + 14 ∓
√

82 ∓ 24
√

5
)

and s+ ≈ 0.856953, s− ≈ 0.250291. Since there must be at least two degenerate points
and these are the only points for which ω−1

p d2H has less than four distinct eigenvalues we
conclude that (J(1,2),H(s+,s+)) and (J(1,2),H(s−,s−)) have a degenerate point at (S ,N).
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