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Abstract

We construct a new n-category by means of Morse theory: we generalize Cohen
& Jones & Segal’s flow category whose objects are the critical points of a Morse
function and whose morphisms are the Morse moduli spaces between the critical
points. The n-category construction involves repeatedly doing Morse theory on
Morse moduli spaces for which we have to construct a class of suitable Morse
functions. Finally we compute the new n-category structure on the n-sphere, the
deformed 2-sphere and the 2-torus.

1 Introduction

The aim of the present paper is to study n-category structures in Morse theory. There
are (at least) two good reasons to do so: On the one hand, there is an astonishing
example and on the other hand there is the natural generalization of a category defined
by Cohen & Jones & Segal [CJS].

Let us first have a look at the seminal example. Let n ∈ N0 and 0 ≤ k ≤ n and
consider the (n− k)-sphere

Sn−k = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n−k = 1, xn−k+1 = · · · = xn = 0}

with the standard metric. Denote by fn−k : Sn−k → R, fn−k(x1, . . . , xn−k) := xn−k
the height function of Sn−k and by Nn−k and Sn−k its north and south pole which are
the only critical points of fn−k. Now consider the compactified Morse moduli space of
unparametrized negative gradient flow trajectories between the north and the south
pole denoted by M̂(Nn−k, Sn−k) := M(Nn−k, Sn−k, fn−k)/R. For all 0 ≤ k ≤ n, we

observe M̂(Nn−k, Sn−k) ' Sn−k ∩ {xn−k = · · · = xn = 0} ' Sn−(k+1).

This means that we can in fact iterate: Start with k = 0 and consider Sn with the
Morse function fn. The Morse moduli space M̂(Nn, Sn) is isomorphic to Sn−1 which
is a nice manifold. Thus we can consider k = 1 and choose fn−1 as Morse function on
M̂(Nn, Sn) ' Sn−1 and obtain the new Morse moduli space M̂(Nn−1, Sn−1) ' Sn−2.
This game can be repeated until k = n. Roughly, we get a ‘filtration’ of Morse moduli
spaces with one lying ‘in’ or ‘on’ the other.
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A natural question now is: What happens if we start with an arbitrary manifold
instead of a sphere? So let M be a smooth, closed, n-dimensional manifold and (f, g)
a Morse-Smale pair on M , i.e. f is a Morse function, g a Riemannian metric and
the (un)stable manifolds intersect each other transversely. The first question is: How
do the arising Morse moduli spaces look like? Are they nice enough spaces to admit
Morse theory? The literature tells us (cf. Theorem 2) that, under slight assumptions
on the metric, the moduli spaces are manifolds with corners, i.e. manifolds modeled
on (R≥0)n. On manifolds with boundary (possibly with corners), one can do Morse
theory as has been shown by Braess [Br], Goresky & MacPherson [GM], Akaho [Ak],
Kronheimer & Mrowka [KM], Ludwig [Lu]. On manifolds with boundary, there are
two Morse theory approaches possible:

(1) Morse functions whose gradient vector field is transverse to the boundary.

(2) Morse functions which induce a gradient vector field tangent to the boundary.

We will use the second option since it does not pose compatibility problems with lower
dimensional boundary strata. Thus all gradient vector fields in this paper are always
tangent to the boundary.

Now let x, y ∈ Crit(f) and consider the moduli space M̂(x, y, f) which is a manifold

with corners. On M̂(x, y, f) we want to choose a Morse function whose gradient vec-
tor field is tangent to the boundary. More precisely, instead of ‘boundary’ we should
rather speak of boundary strata. The literature tells us (cf. Theorem 2) how the strata
look like: The boundary is a union of products of (lower dimensional) Morse moduli
spaces. This requires a ‘compatibility condition’ for the Morse function in case dif-
ferent moduli spaces ‘share’ certain strata. Moreover, for reasons which become later
apparent, we want the Morse functions to decrease from higher dimensional strata to
lower dimensional strata. Such Morse functions can be recursively constructed. Now
choose such a Morse function on M̂(x, y, f) with a suitable metric, call the Morse

function f̃ and consider its moduli spaces M̂(x̃, ỹ, f̃) for x̃, ỹ ∈ Crit(f̃). Once again,

if we want to iterate, we have to ask ourselves: What kind of space is M̂(x̃, ỹ, f̃)? Can
we do Morse theory on it? The construction of f̃ , in particular the fact that f̃ is de-
creasing from higher to lower dimensional strata, enables us to prove that M̂(x̃, ỹ, f̃)
is again a manifold with corners (cf. Theorem 5). And this holds true for the Morse

moduli spaces of a similar constructed Morse function
˜̃
f on M̂(x̃, ỹ, f̃) such that we

can continue to consider Morse moduli spaces on Morse moduli spaces.
We consider the compactified unparametrised moduli spaces such that the dimension
decreases at least by one in comparison to the dimension of the space on which we
are working. This means that our iteration of Morse moduli spaces on Morse moduli
spaces becomes trivial after at most dimM + 1 steps.

Before we investigate how the above iteration of moduli spaces gives rise to an n-
category structure, let us have a look at the second motivation for this paper.

In the 1990’s, Cohen & Jones & Segal [CJS] came up with the following category:
Let M be a smooth closed manifold with a Morse-Smale pair (f, g). Then the objects
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Obj(F) of the flow category F are given by the critical points of f , i.e. Obj(F) =
Crit(f), and the morphisms between two objects are given by the compactified Morse

trajectory spaces, i.e. Morph(x, y) := M̂(x, y) := M(x, y, f)/R for x, y ∈ Crit(f) =
Obj(F). According to Cohen & Jones & Segal [CJS], the classifying space BF of F is
homeomorphic to M . If the gradient flow is not Morse-Smale the classifying space BF
is only homotopy equivalent to M . These are certainly intriguing observations, but
we are interested in F for a different reason: what is happening if we try to ‘iterate’
this category? With that we mean to introduce a ‘second level’ where the objects are
given by the above defined morphisms and the new morphisms are ‘morphisms between
morphisms’. More generally, define the objects of the kth level to be the morphisms of
the (k − 1)th level and the morphisms of the kth level to be the morphisms between
the morphisms of the (k − 1)th level. This iteration procedure is inspired by a paper
by Baez [Ba] where it is used to motivate the notion of n-categories.

To the best of our knowledge, it is still not clear what the best definition of an
n-category is. In the literature, there is a whole zoo of various definitions what n-
categories are supposed to be. Leinster’s book [Le] gives a good introduction to this
topic.
On the first glance, n-category theory distinguishes between ‘weak’ and ‘strict’ n-
categories. This distinction is (among others) related to the question if the composition
of morphisms is ‘really’ associative or only associative ‘up to some degree’, i.e. if for
the composition of three morphisms ϕ, ψ, χ holds (ϕ ◦ ψ) ◦ χ = ϕ ◦ (ψ ◦ χ) or only
(ϕ ◦ψ) ◦χ ∼ ϕ ◦ (ψ ◦χ) where ∼ may stand for instance for ‘homotopy equivalent’ or
something else.
It is known that ‘weak’ and ‘strict’ n-categroies are equivalent for n ∈ {0, 1, 2}, but
already for n = 3 (and higher n) these notions differ. In the following, we will stick to
the conventions of Leinster’s book [Le]. The definition of a strict n-category is lengthy
such that we will not line it out here in the introduction, but we refer the reader to
Definition 6 and Definition 7 or directly to Leinster’s book. Since we will not work
with weak n-categories we also refer the reader to Leinster’s book for their definition.

In this paper, we will show that the iteration procedure of Morse moduli spaces as
sketched above will give rise to an almost strict n-category. With almost strict we
mean that our structure satisfies the conditions of a strict n-category up to canonical
isomorphisms. Since the ‘up to whatever’-defect of a weak category is usually much
bigger than just ‘up to canonical isomorphisms’ we opt for calling the structure ‘almost
strict’ instead of ‘not very weak’. This may be up for discussion, but from a geometer’s
point of view it makes sense. For a geometer, for example, the cartesian product is
associative whereas in fact one probably would have to say ‘associative up to canonical
isomorphism’. Since the whole construction of compactified, unparametrized moduli
spaces involves already taking equivalence classes etc. we would get nowhere if we
would not admit ‘up to canonical isomorphism’ to be negligible. Our contructions
certainly do not need ‘too large’ deformations.

Main Theorem. The above described iteration of Morse moduli spaces can be given
the structure of an almost strict n-category.
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Let us summarize briefly our almost strict n-category. The intuitive ‘level structure’
will be replaced by a so-called n-globular set (see Definition 6) with source and target
functions which ‘remember’ on which ‘level’ an element lives. The elements of our
n-globular set are tupels of a moduli space and a critical point on this moduli space.
The identity functions make use of the stationary moduli spaces M(x, x). And the
composition is based on the gluing of Morse trajectories.
Recall that when we sketched the generalization of the n-sphere example, we required
the Morse function to decrease from higher to lower dimensional strata. This is not just
a technical assumption. If we admit an arbitrary Morse function, the Morse moduli
spaces, more precisely their boundaries, become more complicated. And in particular
we do not obtain an n-category structure, but rather some ‘opetopes’ (cf. Hohloch &
Ludwig [HL]).

So far, each in this way constructed almost strict n-category depends on a certain
number of chosen Morse data. In order to show independence of the chosen data in
Morse or Floer theory, often a so-called ‘homotopy of homotopy’ argument is used
(cf. Schwarz [Sch] or Salamon [Sa]). The ‘homotopy of homotopies’ induces a chain
homomorphism on the chain complexes associated to the chosen Morse or Floer data.
This homomorphism relates the chain complexes similarly as a so-called distributor
(cf. Borceux [Bo]) works in category theory. We hope to pursue this idea in a future
work in order to relate such Morse n-categories to each other, hopefully obtaining an
ω-category of n-categories.

Up to the author’s knowledge, the present work is the first one to deal with higher
categories associated to Morse theory (with ‘higher’ we mean n ≥ 3). In symplectic ge-
ometry and knot theory, 2-categories appear for example via the Wehrheim-Woodward
category (see Wehrheim & Woodward [WW] and Weinstein [Wei]) or the 2-category
in Khovanov homology (see Khovanov [Kh]).

There were many new algebraic structures discovered and studied in (symplectic) ge-
ometry in the last decade which, apart from the already above mentioned reasons, got
the author interested in studying new structures in Morse theory. So for instance the
graded differential algebra (DGA) appeared, defined for knots and links by Chekanov
[Ch], which is a very special case of the more general Symplectic Field Theory (SFT)
started by Eliashberg & Givental & Hofer [EGH].

Organization of the paper

In Section 2, we recall, introduce and construct whatever parts of Morse theory we
need in the following sections. In Section 3, we recall the notion of strict n-categories.
In Section 4, we construct our almost strict n-category of Morse moduli spaces. And
finally in Section 5, we calculate some examples.
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2 Morse moduli spaces

2.1 Notations

Let us start with recalling some notations from Morse theory. There are several ap-
proaches to Morse theory: The classical one uses level sets and attaching of handle
bodies as e.g. described in Milnor’s book [Mi]. But there is also a dynamical approach
via the gradient flow as for instance described in Schwarz’ book [Sch]. We are interested
in the dynamical version and summarize the setting briefly.

Let M be a closed manifold. A function f : M → R is called a Morse function if its
Hessian D2f is nondegenerate at the critical points Crit(f) := {x ∈M | Df(x) = 0}.
At a critical point x ∈ Crit(f), this admits the definition of the Morse index Ind(x)
as the number of negative eigenvalues of D2f(x). Given a Riemannian metric g on M,
we denote by gradg f the gradient of f w.r.t. the metric g. This leads to the following
autonomous ODE of the negative gradient flow ϕt of the pair (f, g)

ϕ̇t = − gradg f(ϕt).

Given a critical point x ∈ Crit(f), we define the stable manifold

W s(f, x) := W s(f, g, x) := {p ∈M | lim
t→+∞

ϕt(p) = x}

and the unstable manifold

W u(f, x) := W u(f, g, x) := {p ∈M | lim
t→−∞

ϕt(p) = x}.

A pair (f, g) is called Morse-Smale if W s(f, g, x) and W u(f, g, y) intersect transversely
for all x, y ∈ Crit(f). We define the Morse moduli space between two critical points x
and y as the space

M(x, y) :=M(x, y, f, g) :=

γ : R→M

∣∣∣∣∣∣∣∣∣
γ̇(t) = − gradg f(γ(t)),

lim
t→−∞

γ(t) = x,

lim
t→+∞

γ(t) = y

 .

M(x, y) consists of the negative gradient flow lines running from x to y. It can also be
identified with W u(x, f) ∩W s(f, y). For a Morse-Smale pair (f, g), the moduli space
M(x, y) is a smooth manifold of dimension Ind(x)−Ind(y). If Ind(y) > Ind(x) then the
spaceM(x, y) is empty. Given γ ∈M(x, y) and σ ∈ R, then γσ with γσ(t) := γ(t+σ)
is a gradient flow line. Thus the moduli space carries an R-action via R×M(x, y)→
M(x, y), (γ, σ) 7→ γσ. If we divide by the action, we obtain the unparametrized moduli
space M(x, y)/R.
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We introduce for x, y ∈ Crit(f) with x 6= y the notation x > y if M(x, y) 6= ∅.

Before we continue the discussion of the Morse moduli spaces, we need some nota-
tion about manifolds with corners. There are different notions and conventions in the
literature. Manifolds with corners had been studied first by Cerf [Ce] and Douady
[D] at the beginning of the 1960’s. An overview over the various definitions and their
differences may be found in Joyce [J].

For our purposes, an m-dimensional manifold with corners M is an m-dimensional
manifold which is locally modeled on Rm+ := (R≥0)m. In order to keep track of the
boundary strata, we introduce the following additional notions. Let N be an m-
dimensional manifold with corners and let ψ = (ψ1, . . . , ψm) : U ⊆ N → Rm+ be a
chart. For x ∈ U we define

depth(x) := #{i | ψi(x) = 0, 1 ≤ i ≤ m}.

depth(x) is independent of the chosen chart. A face of N is the closure of a connected
component of {x ∈ N | depth(x) = 1}. If k is the number of faces, we fix an order of the
faces and denote them by ∂1N , . . . , ∂kN . The quantity depth(x) counts the number
of faces intersecting in x. We call the connected components of {x ∈ N | depth(x) =
l} =: DdimN−l the (dimN−l)-strata of M . This yields a filtration N =

⋃
0≤j≤dimN Dj

and suggests the following definition.

Definition 1. Let N be an m-dimensional manifold with corners with k faces ∂1N ,
. . . , ∂kN . We call N a 〈k〉-manifold if

(a) Each x ∈ N lies in depth(x) faces.

(b) ∂1N ∪ · · · ∪ ∂kN = ∂N .

(c) For all 1 ≤ i, j ≤ k with i 6= j the intersection ∂iN ∩ ∂jN is a face of both ∂iN
and ∂jN .

In this convention, ∂iM ⊂ M is again a manifold with corners, but ∂M is not. The
standard example of a 〈k〉-manifold is Rk+ with faces ∂iRk+ := {x ∈ Rk+ | xi = 0}.
〈0〉-manifolds are manifolds without boundary and 〈1〉-manifolds are manifolds with
(smooth) boundary.

〈k〉-manifolds have nice properties, see Jänich [Jä], Joyce [J], Laures [La]. For example,
〈k〉-manifolds can be embedded into an euclidean space such that the faces meet each
other perpendicular (cf. so-called neat embeddings in Laures [La]). And a 〈k〉-manifolds
admits well-defined collar neighbourhoods of the boundary (cf. Laures [La]).

Now let us return to Morse moduli spaces. Let for instance be x, y, z ∈ Crit(f) with
Ind(x) > Ind(y) > Ind(z). As sketched in Figure 1 (b), a sequence of trajectories
(γn)n∈N from x to z may ‘break’ in the limit into trajectories γxy from x to y and γyz
from y to z. This phenomenon is usually denoted by ‘breaking’ and plays an important
role if one wants to compactify unparametrized Morse moduli spaces. More precisely,
an unparametrized moduli spaces can be compactified by adding ‘broken trajectories’
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and we denote the compactification of M(x, z)/R via adding broken trajectories by

M̂(x, z) := M(x, z)/R. In order to obtain a nice structure for the compactification
one needs to pose conditions on the metric. If f is a Morse function and if a metric g
is euclidean near the critical points of f the we call g an f -euclidean metric.
The following statement was used often as a folklore theorem. Proofs for different
settings can be found in Burghelea [Bu], Wehrheim [Weh] and Qin [Qi1], [Qi2]. We
summarize the statement as follows.

Theorem 2. Let (f, g) be Morse-Smale and assume g to be f -euclidean. Let x, z ∈
Crit(f) with x > z. Then there exists k ∈ N0 such that M̂(x, z) is an (Ind(x) −
Ind(z)− 1)-dimensional 〈k〉-manifold with corners and its boundary is given by

∂M̂(x, z) =
⋃

(Ind(x)−Ind(z)−1)≥l≥0
x>y1>···>yl>z

M̂(x, y1)× M̂(y1, y2)× . . .× M̂(yl−1, yl)× M̂(yl, z)

where y1, . . . , yl ∈ Crit(f). There is a canonical smooth structure on M̂(x, z).

The ‘inverse procedure’ of breaking is ‘gluing’. Roughly, the gluing procedure takes a
broken trajectory (γxy, γyz) ∈ M̂(x, y)× M̂(y, z) and yields a Morse trajectory from

x to z. If one wants to glue a multiply broken trajectory (γ1, . . . , γl+1) ∈ M̂(x, y1)×
. . . × M̂(yl, z) the question of associativity of the gluing procedure arises. Gluing is
indeed associative and, as a folklore theorem, it has been used a lot in the literature.
Recently Qin [Qi3] and Wehrheim [Weh] have written down proofs. For details, we
refer to their works.

Theorem 3 ([Qi3], [Weh]). Gluing is associative.

2.2 Morse moduli spaces on 〈k〉-manifolds: Our construction

As for manifolds without boundary, there are several ways to define Morse theory
on manifolds with boundary. There is the classical approach via handle attachment
by Braess [Br] for manifolds with boundary and finally by Goresky & MacPherson
[GM] for stratified spaces. And there is the newer approach via the gradient flow
described by Akaho [Ak] and Kronheimer & Mrowka [KM] for manifolds with smooth
boundary. Ludwig [Lu] finally defined Morse theory with tangential vector field on
stratified spaces.

For our purposes, we are interested in a Morse theory where the gradient vector field
is tangential to the boundary. If the gradient vector field is tangent to the boundary it
is in particular tangent to all lower strata of the boundary and therefore ‘compatible’
with corners (where it simply vanishes). If we would require the gradient vector field
to be transverse to the boundary it would be much more difficult to come up with a
consistent definition at the corners.

Working with tangential gradient vector fields is a special case of Ludwig’s [Lu] setting.
But since Ludwig [Lu] is interested in setting up a Morse theory, she needs only the
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one and two dimensional moduli spaces. We are primarily interested in very special
constructions of the Morse functions and higher dimensional Morse moduli spaces
which are not covered in Ludwig [Lu].

This is the rough outline of the following construction: Consider a Morse function on
a smooth manifold. Its compactified Morse moduli spaces are manifolds with corners.
On these manifolds with corners we choose ‘good’ Morse functions and consider their
compactified Morse moduli spaces which are again manifolds with corners. On these
spaces repeat the procedure etc. In each step, we loose at least one dimension since
dividing by the R-action in M(x, y)/R reduces the dimension by one. Therefore the
compactified moduli spaces will become zero dimensional after a finite number of
iterations and the iteration becomes trivial.

Let M be a closed manifold. Let (f0, g0) be a Morse-Smale pair consisting of a Morse
function f0 with f0-euclidean metric g0. Let x0, z0 ∈ Crit(f0) be distinct critical points

and consider M̂(x0, z0). If this moduli space is not empty then, by Theorem 2, it is a

manifold (possibly) with corners. The boundary of M̂(x0, z0, f0) is of the form

∂M̂(x0, z0, f0) =
⋃

(Ind(x0)−Ind(z0)−1)≥l≥0

x0>y10>···>yl0>z0

M̂(x0, y
1
0, f0)× . . .× M̂(yl0, z0, f0)

where y1
0, . . . , yl0 ∈ Crit(f). If we apply the formula recursively to the factors of the

product we can also write

∂M̂(x0, z0, f0) =
⋃

y0∈Crit(f0)

M̂(x0, y0, f0)× M̂(y0, z0, f0).

Keep in mind that a moduli space may have several connected components. By la-
belling the components of depth one by ∂1M̂(x0, z0, f0), . . . , ∂kM̂(x0, z0, f0), we give

M̂(x0, z0, f0) the structure of a 〈k〉-manifold for some k ∈ N0. In other words, we

are dealing with a stratified space. And M̂(x0, z0, f0) might share strata with other

moduli spaces M̂(x̃0, z̃0, f0) for x̃0, z̃0 ∈ Crit(f0).

Now we want to define a Morse function f1 and a metric g1 on M̂(x0, z0, f0) for all x0,
z0 which is compatible with the stratification and the ‘sharing’ of strata. Moreover,
the metric should be euclidean near the critical points and the gradient vector field
should be tangential to the strata of the boundary. In addition, the flow should flow
from higher dimensional strata to lower dimensional strata, but never from lower
dimensional strata to higher dimensional ones.

0-strata for f1

First recall that Crit(f0) is a partially ordered set: We have x0 ≥ y0 if and only if there
is a flow line from x0 to y0. Here we also allow the stationary flow line in order to have
x0 ≥ x0. If we use the notation x0 > y0 we assume x0 6= y0. If Ind(x0)− Ind(z0) = 1,

the space M̂(x0, z0, f0) is zero dimensional (and compact) and thus a finite union of
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points. Now choose values for f1 on the zero dimensional moduli spaces such that for
mutually distinct x0 ≥ y0 ≥ z0 we have

f1|M̂(x0,y0,f0)
=: f1[x0y0 ] > f1[ y0z0 ] := f1|M̂(y0,z0,f0)

> 0

where we choose the same value for all connected components of a moduli space. Note
that we require the function to be strictly positive. The reason will become apparent
later. Moreover assume that different moduli spaces have different values for f1. Since
there are only finitely many critical points we can achieve this easily.
Let us remark that the zero dimensional boundary strata are corners. By construction,
they will turn out to be critical points. Note that Akaho [Ak] also constructs his Morse
function to be nonzero at the critical points on the boundary.
To the moduli space of stationary curves M̂(x0, x0, f0), we formally assign the value

0 to f1. (Note that some people consider M̂(x0, x0, f0) as the empty set.)
The 0-strata are automatically critical points since the gradient has to be tangential
to all strata meeting at a 0-dimensional stratum. This is only possible if the gradient
vanishes. In accordance with this, we define the metric

g1[x0y0 ] := g1|M̂(x0,y0,f0)
:= geucl

to be euclidean.

Morse functions on cartesian products

The product structure of the boundary of a compactified Morse moduli space suggests
to choose a Morse function on the moduli space which is naturally compatible with
the product structure of the boundary. Such Morse functions are obtained as follows:
Let A and B be smooths nA- resp. nB-dimensional manifolds equipped with Morse
functions fA and fB and associated metrics gA and gB. On the product C := A×B,
consider f : C → R, f(a, b) := fA(a) + fB(b) and g := gA ⊕ gB. It holds

gradg f = (gradgA fA, gradgB fB)

and therefore (a, b) ∈ Crit(f) if and only if a ∈ Crit(fA) and b ∈ Crit(fB). We have
Ind(a, b) = Ind(a) + Ind(b) and thus the set Critk(f) of critical points of f with index
k is given by

Critk(f) = {(a, b) ∈ Crit(fA)× Crit(fB) | Ind(a) + Ind(b) = k}.

The equation γ̇(t) = gradg f(γ(t)) splits into{
γ̇A(t) = gradgA fA(γA(t)),

γ̇B(t) = gradgB fB(γB(t))

and thus there is a flow line (γA, γB) from (a−, b−) ∈ Crit(f) to (a+, b+) ∈ Crit(f)
if and only if there are flow lines γA and γB from a− to a+ and from b− to b+. In
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particular, this requires Ind(a−) ≥ Ind(a+) and Ind(b−) ≥ Ind(b+). In order to obtain
flow lines of relative index 1, either γA or γB has to be constant.

Note that one cannot simply identify M̂((a−, b−), (a+, b+), f) with M̂(a−, a+, fA) ×
M̂(b−, b+, fB). The first space has dimension (Ind(a−) + Ind(b−)) − (Ind(a+) −
Ind(b+)) − 1 and the second (Ind(a−) + Ind(b−)) − (Ind(a+) − Ind(b+)) − 2. Given
trajectories γA and γB, also γσA(t) := γA(t + σ) and γτB(t) := γB(t + τ) are Morse
trajectories. Thus γσ,τ (t) := (γσA(t), γτB(t)) is a solution, but changing (σ, τ) changes
the geometric shape of γ and not its parametrisation.

Morse index on strata

Let M be a 〈k〉-manifold with faces ∂1M , . . . , ∂kM . Let ε = (ε1, . . . , εk) ∈ {0, 1}k and
set M(ε) :=

⋂
εi=0 ∂iM with M(1, . . . , 1) := M . Let f : M → R be a Morse function.

For ε, δ ∈ {0, 1}k we write ε ≥ δ if εi ≥ δi for all 1 ≤ i ≤ k.

Let ε, δ ∈ {0, 1}k with δ ≥ ε and x ∈ M(ε) ⊂ M a critical point. Then we define the
Morse index Indδ≥ε(x) of x ∈M(ε) ⊂M(δ) as the number of negative eigenvalues of
Df(x) in TxM(δ) and abbreviate Indε(x) := Indε≥ε(x).

If there are no critical points in a small enough collar neighbourhood of each strata
and if the Morse function is constructed radially, one deduces at once:

Remark 4. If the negative gradient flow of a morse function flows from higher to
lower dimensional strata then Indε(x) = Ind(x) for all ε ∈ {0, 1}k and x ∈ Crit(M).

l-strata for f1 with l ≥ 1

For higher dimensional strata, we define f1 recursively: Consider x0, z0 ∈ Crit(f0)

with Ind(x0) − Ind(z0) = l + 1 which implies dimM̂(x0, z0, f0) = l for l ≥ 1 if

M̂(x0, z0, f0) 6= ∅. Assume that we already defined the Morse function f1 and f1-
euclidean metric g1 in the suitable manner on all 0-, . . . , (l− 1)-strata. There are two
cases:

Case 1: The boundary is empty: If ∂M̂(x0, z0, f0) = ∅, then there are no restrictions
on the choice of f1[x0z0 ] := f1|M̂(x0,z0,f0)

apart from it being larger than on the lower

dimensional strata. And the only restriction on g1[x0z0 ] := g1|M̂(x0,z0,f0)
is that it has

to be euclidean near the critical points of f1[x0z0 ].

Case 2: The boundary is not empty: If

∅ 6= ∂M̂(x0, z0, f0) =
⋃

y0∈Crit(f0)

M̂(x0, y0, f0)× M̂(y0, z0, f0),

then the highest dimensional stratum in ∂M̂(x0, z0, f0) is an (l − 1)-stratum.

In M̂(x0, y0, f0), the highest dimensional one is an (l − 1 − k)-stratum and, in

M̂(y0, z0, f0), the highest dimensional stratum is an k-stratum where 0 ≤ k ≤

10



l − 1. We already have Morse functions f1[x0y0 ] and f1[ y0z0 ] and metrics g1[x0y0 ] and

g1[ y0z0 ] on M̂(x0, y0, f0) and M̂(y0, z0, f0). For coordinates (a, b) ∈ M̂(x0, y0, f0) ×

M̂(y0, z0, f0) ⊂ ∂M̂(x0, z0, f0) we define

f1|∂M̂(x0,z0,f0)
(a, b) := f1[x0y0 ](a) + f1[ y0z0 ](b)

on the connected components. Since we required the Morse function to be positive
on the zero dimensional moduli spaces, by induction, we have f1|∂M̂(x0,z0,f0)

(a, b) >

f1[x0y0 ](a) and f1|∂M̂(x0,z0,f0)
(a, b) > f1[ y0z0 ](b). The purpose is that the value of f1 rises

when we pass from lower to higher dimensional strata since we want the negative
gradient flow to flow strictly from higher strata to lower ones.

Analogously we define the metric via

g1|∂M̂(x0,z0,f0)
:= g1[x0y0 ] ⊕ g1[ y0z0 ].

Note that the product of two euclidean metrics is euclidean. Thus g1|∂M̂(x0,z0,f0)
is

euclidean near the critical points of f1|∂M̂(x0,z0,f0)
.

Now we extend the Morse function and the metric to the interior of M̂(x0, y0, f0)
such that the gradient vector field is tangential to the boundary, i.e. tangential to
every stratum, and the metric is euclidean near the critical points. Moreover, the
extension of the Morse function is forbidden to have critical points in an small collar
neighbourhood of the boundary (on the boundary, it may have critical points). Exlicit
examples of this type of construction can be found in Ludwig [Lu] and Akaho [Ak].
One chooses a collar neighbourhood of the boundary and considers its normal boundle.
Denote the new Morse function by f1[x0z0 ] := f1|M̂(x0,z0,f0)

. Proceed analogously with

the metric and make it euclidean near the critical points of the Morse function and
obtain g1[x0z0 ] := g1|M̂(x0,z0,f0)

.

This finishes the construction of f1 on Morse moduli spaces of f0: The Morse function
f1 takes the cartesian product structure of the boundary into account, behaves natu-
rally with restriction to lower dimensional strata and its negative gradient flow flows
strictly from higher strata to lower strata.

The construction of f2 on the moduli spaces of f1

Assume for a moment that the negative gradient flow of the Morse function does not
only flow from higher to lower, but also from lower to higher strata as sketched below
in Figure 1 (a).
As sketched in Figure 1 (a), a trajectory between two critical points x and z in
the interior of the manifold with index difference Ind(x) − Ind(z) = 1 may actually
break via the boundary into three trajectories instead of only two without involvement
of the boundary (cf. Figure 1 (b)). This phenomenon is explained in Akaho [Ak]
and Kronheimer & Mrowka [KM]. It is due to the following observation. W.l.o.g let
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ỹ

z

y

y

y′

Figure 1: Breaking of trajectories: (a) on the boundary, (b) in the interior.

y′ ∈ ∂1M =: M(ε) with ε = (0, 1, . . . , 1) and M = M(δ) with δ = (1, . . . , 1). Then
Indε(y

′) < Indε≤δ(y
′), i.e. it matters if we consider y′ as critical point of the Morse

function as function restricted to the boundary or as function on M .

The boundary of the moduli spaces M̂(x, z) in Figure 1 (a) has still product structure
as shown in Akaho [Ak]. But for the n-category structure in the later sections we need
to be able to ‘compose’ (i.e. glue) two ‘connecting’ trajectories — and we cannot glue
just two of the three parts of the broken trajectories in Figure 1 (a) since there is no
trajectory from x to y′ and also none from y to z. Therefore we need to exclude such
situations if we want to define an n-category later on.

This dilemma is solved by using Remark 4: Impose the assumption that the Morse
function is increasing from lower dimensional strata to higher dimensional ones. Equiv-
alently, the negative gradient flow flows strictly from higher to lower strata and never
from lower to higher strata. Then the Morse index does not depend on the strata
and we do not multiple breaking of trajectries of index difference one. An analogous
statement holds true for critical points with higher index difference. We conclude

Theorem 5. Let f be a Morse function on an 〈k〉-manifold whose negative gradient
flow flows from higher to lower strata, but not from lower to higher ones. Assuming
the metric to be euclidean near the critical points. Then the Morse moduli spaces have
the same properties as in Theorem 2.

Proof. For k = 1 and the situation of Figure 1 (a) with Ind(x) − Ind(z) ≤ 2 this
has been proven by Akaho [Ak]. On manifolds with corners and Ind(x) − Ind(z) ≤ 2
the result is implied by Ludwig [Lu]. The general case goes analogously since Remark
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4 reduces the possible breaking phenomena to the case of a closed smooth manifold
where Theorem 2 applies.

Altogether, we have so far constructed a Morse function f1 with certain properties
on the Morse moduli spaces of f0. Now we consider the critical points of f1 and the
Morse moduli spaces between them. Theorem 5 states that we are again dealing with
〈k〉-manifolds for certain k ∈ N0. So we can repeat the construction of a radial Morse
function compatible with lower strata now on the Morse moduli spaces of f1, i.e. there
exists a Morse function f2 with similar properties as f1 on the Morse moduli spaces
M̂(x1, z1, f1[x0z0 ]) of f1 where x1, z1 ∈ Crit f1[x0z0 ] and x0, z0 ∈ Crit(f0).

Once f2 is constructed, its Morse moduli spaces are again 〈k〉-manifolds according
to Theorem 5. By construction of the compactified Morse moduli spaces, we always
decrease the dimension by (at least) one. Therefore this iteration process terminates
after a finite number of repetitions when the moduli spaces become zero dimensional.

Summarizing the above paragraphs, we constructed Morse functions on the compact-
ified Morse module spaces of Morse functions in such a way that each Morse function
fi is compatible with its restriction to lower strata of the Morse moduli spaces of fi−1

which have the structure of a cartesian product.

3 (Almost) strict n-categories

In the following, we recall Leinster’s definition of strict n-categories. Leinster gives
two equivalent ways of defining strict n-categories. One can define it either recursively
via enriched categories or direct by listing six properties which have to be satisfied.
We focus on the latter definition.

The usual definition of a category will blend into this framework as a 1-category. Since
a category can be considered as a directed graph with structure the way of defining
n-categories starts as follows.

Definition 6. Given n ∈ N, we define an n-globular set X to be a collection of sets
{X(l) | 0 ≤ l ≤ n} together with source and target functions s, t : X(l) → X(l − 1)
for 1 ≤ l ≤ n satisfying s ◦ s = s ◦ t and t ◦ s = t ◦ t. Elements Al ∈ X(l) are called
l-cells.

To visualize n-globular sets, one can think of the l-cells as l-dimensional disks and
sketch them accordingly: a 0-cell A0 ∈ X(0) is displayed as a point

• A0

0-cells are sometimes also called objects. A 1-cell A1 ∈ X(1) with s(A1) = A0 ∈ X(0)
and t(A1) = B0 ∈ X(0) is sketched as an arrow (or 1-disk) connecting the 0-cells A0

and B0
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A0 B0

A1

Sometimes 1-cells are also called morphisms. A 2-cell (sometimes called morphism
between morphisms) A2 ∈ X(2) with s(A2) = A1, t(A2) = B1 ∈ X(1) and therefore
s(A1) = s(B1) =: A0 and t(A1) = t(B1) =: B0 is sketched as an double arrow or
2-disk connecting the 1-cells A1 and B1

A1

B1

A0 A2 B0

A 3-cell A3 ∈ X(3) with s(A3) = A2 and t(A3) = B2 is sketched as a 3-disk or triple
arrow ‘perpendicular to the sheet of paper’

B0

A1

B1

B2
A3A0 A2

Generally, l-cells are represented by an l-arrow or a l-disk, although sketches clearly
reach their limits.

Given 1-cells A1, B1 ∈ X(1) with ‘matching’ source and target conditions s(A1) =: A0,
t(A1) = s(B1) =: B0 and t(B1) =: C0 we are clearly tempted to ‘compose’ A1 and B1

‘along’ B0 like usual morphisms.

A0 B0 C0

A1 B1

Now consider two 2-cells A2, B2 ∈ X(2): There are two different ‘matching’ conditions
possible: On the one hand, we might have t(A2) = s(B2) =: B1, i.e. we would like to
compose A2 and B2 ‘along’ the 1-cell B1 as sketched in
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 A0

A1

C1

B0

C1

B1
B0

A2

B2

A1

A0

But, on the other hand, we also can have a matching condition along a 0-cell as
sketched in

A0

B1

A1 C1

D1

B0

C0A2 B2  A0 C0

which also suggests a composition if we ‘first’ compose the 1-cells A1 with C1 and B1

with C1. In fact, as we will see later, it will turn out that there are l possible ways to
compose l-cells, namely along 0-cells, 1-cells, . . . , (l−1)-cells. Given an n-globular set
X, we express the matching conditions by means of the set

X(l)×p X(l) := {(x̃, x) ∈ X(l)×X(l) | sl−p(x̃) = tl−p(x)}

0 ≤ p < l ≤ n. More precisely, X(l)×pX(l) is the set of l-cells which can be composed
along a p-cell.

Another important feature are identity functions on the n-globular set, i.e. a collection
of functions 1 : X(l) → X(l + 1) for 0 ≤ l ≤ n− 1 which assign to a l-cell Al ∈ X(l)
a certain (l + 1)-cell 1Al

with source and target Al. For 0-cells, this means

 
A0 A0 A0

1A0

And for 1-cells, this leads to

 
A0 B0

A1
A0 B0

A1

A1

1A1

In the following definition, we will pose additional conditions on the composite and
identities.
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Definition 7. Let n ∈ N. A strict n-category is an n-globular set X equipped with

• a function ◦p : X(l)×p X(l)→ X(l) for all 0 ≤ p < l ≤ n. We set ◦p(Cl, Al) =:
Cl ◦p Al and call it composite of Al and Cl.

• a function 1 : X(l) → X(l + 1) for all 0 ≤ l < n. We set 1Al
:= 1(Al) and call

it the identity on Al.

These have to satisfy the following axioms:

(a) (Sources and targets of composites) For 0 ≤ p < l ≤ n and (Cl, Al) ∈
X(l)×p X(l) we require

for p = l − 1 s(Cl ◦p Al) = s(Al) and t(Cl ◦p Al) = t(Cl),

for p ≤ l − 2 s(Cl ◦p Al) = s(Cl) ◦p s(Al) and t(Cl ◦p Al) = t(Cl) ◦p t(Al).

(b) (Sources and targets of identities) For 0 ≤ l < n and Al ∈ X(l) we require

s(1Al
) = Al = t(1Al

).

(c) (Associativity) For 0 ≤ p < l ≤ n and Al, Cl, El ∈ X(l) with (El, Cl), (Cl, Al) ∈
X(l)×p X(l) we require

(El ◦p Cl) ◦p Al = El ◦p (Cl ◦p Al).

(d) (Identities) For 0 ≤ p < l ≤ n and Al ∈ X(l) we require

1l−p(tl−p(Al)) ◦p Al = Al = Al ◦p 1l−p(sl−p(Al)).

(e) (Binary interchange) For 0 ≤ q < p < l ≤ n and Al, Cl, El, Hl ∈ X(l) with

(Hl, El), (Cl, Al) ∈ X(l)×p X(l) and (Hl, Cl), (El, Al) ∈ X(l)×q X(l)

we require
(Hl ◦p El) ◦q (Cl ◦p Al) = (Hl ◦q Cl) ◦p (El ◦q Al).

(f) (Nullary interchange) For 0 ≤ p < l < n and (Cl, Al) ∈ X(l) ×p X(l) we
require 1Cl

◦p 1Al
= 1Cl◦pAl

.

If X and Y are strict n-categories we define a strict n-functor f as a map f : X → Y
of the underlying n-globular sets commuting with composition and identities. This
defines a category Str-n-Cat of strict n-categories.

Slightly relaxing the requirements, we define

Definition 8. An almost strict n-category satisfies the requirements of a strict
n-category up to canonical isomorphism.
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The compatibility of the identities with the source and target functions in item (d) of
Definition 7 can be visualized via

= =B0

B1

A1

B1

B0A2 A0 B0

A1

A1

B1

A0

A1

B1

1B1

A2

A0
A2

1A1

The binary interchange of item (e) in Definition 7 can be sketched as

C0 =

F1 ◦0 C1

D1 ◦0 A1

C0A0
H2 ◦1 E2

C1 F1

B0

A1 D1

C2 ◦1 A2

C1 F1

B0

A1 D1

A0 C0 = A0

A2

B1

C2

E1

E2

H2

E2 ◦0 A2

E1 ◦0 B1

C2 ◦0 H2

And the nullary interchange looks like

A1 B1

B0

A1 B1

= 1B1◦0A1

B1 ◦0 A1

B1 ◦0 A1

1A1 1B1 C0 A0 C0A0

4 The n-category of Morse trajectory spaces

4.1 n-globular set of Morse moduli spaces

In the following, we will define the n-globular set of Morse moduli spaces on which
the n-category of Morse moduli spaces is based.

Let M be an n-dimensional 〈k〉-manifold M with a Morse function f0 (constrcuted as
in the previous section) and a f0-euclidean metric g0. We set

X (0) := {x0 | x0 ∈ Crit(f0)}.

Given two critical points x0, y0 ∈ Crit(f0), we consider the space M̂(x0, y0, f0). On
this space, we choose a Morse function f1[x0y0 ] with f1[x0y0 ]-euclidean metric g1[x0y0 ] as

described in Subsection 2.2. We define

X (1) := {(x1,M̂(x0, y0, f0)) | x0, y0 ∈ Crit(f0), x1 ∈ Crit(f1[x0y0 ])}.
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The index of the Morse function f1[x0y0 ] or metric g1[x0y0 ] starts with the number of the

level on which the function or metric lives and continues with the (history of) critical
points which gave rise to the moduli space. The upper row states the source points
and the lower row the target points. It is important to keep carefully track of the
‘history’ of a moduli space. Analogously, given x1, y1 ∈ Crit(f1[x0y0 ]), choose a Morse

function f
2[x0,x1y0,y1 ] and f

2[x0,x1y0,y1 ]-euclidean metric g
2[x0,x1y0,y1 ] on M̂(x1, y1, f1[x0y0 ]) and let

X (2) :=


(
x2,M̂(x1, y1, f1[x0y0 ])

) ∣∣∣∣∣∣∣∣
x0, y0 ∈ Crit(f0),

x1, y1 ∈ Crit(f1[x0y0 ]),

x2 ∈ Crit(f
2[x0,x1y0,y1 ])

 .

We work with tupels (point, moduli space) instead of only the moduli spaces in order
to obtain well-defined source and target function. We iterate this process and obtain
for 2 ≤ l ≤ n

X (l) :=


(
xl,M̂(xl−1, yl−1, fl−1

[x0,...,xl−2
y0,...,yl−2

])
) ∣∣∣∣∣∣∣∣∣

0 ≤ j ≤ l − 1,

xj , yj ∈ Crit(f
j
[x0,...,xj−1
y0,...,yj−1

]),
xl ∈ Crit(f

l
[x0,...,xl−1
y0,...,yl−1

])

 .

Since dividing by the action in the construction of the compactified moduli spaces
reduces the dimension by one, we can iterate this procedure at most n times before
the moduli spaces in question become zero dimensional and the iteration in turn
becomes trivial.

For 2 ≤ l ≤ n, we define source and target functions

s : X (l)→ X (l − 1) and t : X (l)→ X (l − 1)

via

s

(
xl,M̂(xl−1, yl−1, fl−1

[x0,...,xl−2
y0,...,yl−2

])
)

:= (xl−1,M̂(xl−2, yl−2, fl−2
[x0,...,xl−3
y0,...,yl−3

])),
t

(
xl,M̂(xl−1, yl−1, fl−1

[x0,...,xl−2
y0,...,yl−2

])
)

:= (yl−1,M̂(xl−2, yl−2, fl−2
[x0,...,xl−3
y0,...,yl−3

]))

and set for s, t : X (1)→ X (0)

s
(
a1,M̂(x0, y0, f0)

)
:= x0 and t

(
a1,M̂(x0, y0, f0)

)
:= y0.

Lemma 9. X := {X (l)}0≤l≤n is an n-globular set.

Proof. A short calculation yields s ◦ s = s ◦ t and t ◦ t = t ◦ s.
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Now we define the l-cells which can be composed along p-cells:

X (l)×p X (l) := {(Cl, Al) ∈ X (l)×X (l) | sl−p(Cl) = tl−p(Al)}.

How do this elements look like? For l = 1 and p = 0, an element (C1, A1) ∈ X (1)×0

X (1) given by (
(c1,M̂(c0, d0, f0)), (a1,M̂(a0, b0, f0))

)
∈ X (1)×0 X (1)

satisfies c0 = b0. More generally, an element (Cl, Al) ∈ X (l)×p X (l) given by(
(cl,M̂(cl−1, dl−1, fl−1

[ c0,...,cl−2

d0,...,dl−2

])), (al,M̂(al−1, bl−1, fl−1
[ a0,...,al−2

b0,...,bl−2

]))
)

is characterized by 
cj = aj for 0 ≤ j ≤ p− 1,

dj = bj for 0 ≤ j ≤ p− 1,

cp = bp.

(10)

Therefore we introduce the following more natural notation for tuples (Cl, Al) ∈
X (l) ×p X (l). For 0 ≤ j ≤ p − 1, we set aj = cj =: αj and bj = dj =: βj . For
the index p, we set ap =: xp, bp = cp =: yp and dp =: zp. For p + 1 ≤ j ≤ l, we keep
the aj , bj , cj and dj . For (Cl, Al) ∈ X (l)×p X (l), this new notation leads to

Al =

(
al,M̂(al−1, bl−1, f

l−1
[α0,...,αp−1,xp,ap+1,...,al−2

β0,...,βp−1,yp,bp+1,...,bl−2

])
)
,

Cl =

(
cl,M̂(cl−1, dl−1, f

l−1
[α0,...,αp−1,yp,cp+1,...,cl−2

β0,...,βp−1,zp,dp+1,...,dl−2

])
)

where one can easily see the meaning of being in X (l) ×p X (l): Both l-cells arise, up

to level (p − 1), from the same critical points
[
α0,...,αp−1

β0,...,βp−1

]
. At level p, we have the

matching condition

[xp
yp

]
[ yp
zp

] . There are no additional conditions on the critical points

on the higher levels

[ ap+1,...,al−2

bp+1,...,bl−2

]
[ cp+1,...,cl−2

dp+1,...,dl−2

] apart from the ones required in the definition of

X (l). We call
[
α0,...,αp−1,xp,ap+1,...,al−2

β0,...,βp−1,yp,bp+1,...,bl−2

]
the history of Al up to level (l−2). In this new

notation, it holds for the critical points

For 1 ≤ j ≤ p− 1, αj , βj ∈ Crit(f
j
[α0,...,αj−1

β0,...,βj−1

]),
xp, yp, zp ∈ Crit(f

p
[α0,...,αp−1

β0,...,βp−1

]),
For 1 ≤ j ≤ l − p, ap+j , bp+j ∈ Crit(f

p+j
[α0,...,αp−1,xp,ap+1...ap+j−1

β0,...,βp−1,yp,bp+1...bp+j−1

]),
For 1 ≤ j ≤ l − p, cp+j , dp+j ∈ Crit(f

p+j
[α0,...,αp−1,xp,cp+1...cp+j−1

β0,...,βp−1,yp,dp+1...dp+j−1

]).
If j = 1 in the two expressions above then there are no a’s and b’s resp. c’s and d’s in
the index of the function.
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4.2 The identities

In order to turn the n-globular set X (n)n∈N into an almost strict n-category, we need
to define the composite and the identities.

Let us start with the identities. They are supposed to be functions 1 : X (l)→ X (l+1)
for 0 ≤ l ≤ n − 1. For l = 0, the set X (0) consists of the critical points Crit(f0).

Let x0 ∈ X (0) and identify x0 with the moduli space M̂(x0, x0, f0). Then identify

M̂(x0, x0, f0) with the only critical point x1 ∈ Crit(f1[x0x0 ]) on M̂(x0, x0, f0). Thus we

have x1 ' M̂(x0, x0, f0) ' x0. With this in mind, we set

1x0 := 1(x0) := (x0,M̂(x0, x0, f0)).

For l > 0, we set for Al = (al,M̂(al−1, bl−1, fl−1
[ a0,...,al−2

b0,...,bl−2

])) ∈ X (l)

1Al
:= 1

(
al,M̂(al−1, bl−1, fl−1

[ a0,...,al−2

b0,...,bl−2

])
)

:= (al,M̂(al, al, fl
[ a0,...,al−1

b0,...,bl−1

]))
:= (al+1,M̂(al, al, fl

[ a0,...,al−1

b0,...,bl−1

]))
where we again identified al+1 ' al. For 0 ≤ l ≤ n− 1, this gives us functions

1 : X (l)→ X (l + 1)

which will be our candidates for the identity functions of an n-category generated by
Morse moduli spaces.

4.3 Motivation for the composite of Morse moduli spaces

Now we address the composite of the future n-category. Since this paper also addresses
readers from geometry and topology to whom the index consuming and somewhat
confusing notation of n-categories may be unfamiliar, we will introduce the composite
step by step for small p and l. Experienced or hurried readers may skip ahead a few
pages — the general formula is given in the next subsection.

Given 0 ≤ p < l ≤ n, recall the ‘history notation’ for (Cl, Al) ∈ X (l)×p X (l) given by

Al =

(
al,M̂(al−1, bl−1, f

l−1
[α0,...,αp−1,xp,ap+1,...,al−2

β0,...,βp−1,yp,bp+1,...,bl−2

])
)
,

Cl =

(
cl,M̂(cl−1, dl−1, f

l−1
[α0,...,αp−1,yp,cp+1,...,cl−2

β0,...,βp−1,zp,dp+1,...,dl−2

])
)

which displays where Al and Cl match. (If p = 0 then there are no α’s and β’s. And
if p = l − 1, there are no a’s, b’s, c’s and d’s except for al and cl.)
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Case l = 1 and p = 0

Assume l = 1 and p = 0. Then we get

X (1)×0 X (1) =


(

(c1,M̂(y0, z0, f0)), (a1,M̂(x0, y0, f0))
) ∣∣∣∣∣∣∣∣
x0, y0, z0 ∈ Crit(f0),

a1 ∈ Crit(f1[x0y0 ]),

c1 ∈ Crit(f1[ y0z0 ])


and define the composite via(

c1,M̂(y0, z0, f0)
)
◦0
(
a1,M̂(x0, y0, f0)

)
:=
(

(a1, c1),M̂(x0, z0, f0)
)
.

In terms of n-category language, we composed the two 1-cells M̂(x0, y0, f0),

M̂(y0, z0, f0) ∈ X (1) along the 0-cell y0 ∈ X (0):

x0
y0

z0
(a1,M̂(x0, y0, f0)) (c1,M̂(y0, z0, f0))

(
(a1, c1),M̂(x0, z0, f0)

)

Geometrically, this describes the gluing procedure of Morse trajectories as lined out
for instance in Schwarz [Sch] and sketched below.

x0

z0

y0
ỹ0

M̂(x0, y0, f0)× M̂(y0, z0, f0) is contained in the boundary of M̂(x0, z0, f0). Thus the

point (a0, c0) lies in (the boundary of) M̂(x0, z0, f0). It is a critical point of the Morse
function f1[x0z0 ]|M̂(x0,y0,f0)×M̂(y0,z0,f0)

= f1[x0y0 ] + f1[ y0z0 ].

Case l = 2 and p = 1

Now consider the space
X (2)×1 X (2)
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given by
(

(c2,M̂(y1, z1, f1
[α0
β0

])), (a2,M̂(x1, y1, f1
[α0
β0

]))
)
∣∣∣∣∣∣∣∣∣∣∣∣∣

α0, β0 ∈ Crit(f0),

x1, y1, z1 ∈ Crit(f
1
[α0
β0

]),
a2 ∈ Crit(f

2
[α0,x1
β0,y1

]),
c2 ∈ Crit(f

2
[α0,y1
β0,z1

])


and define

(c2,M̂(y1, z1, f1
[α0
β0

])) ◦1 (a2,M̂(x1, y1, f1
[α0
β0

])) :=

(
(a2, c2),M̂(x1, z1, f1

[α0
β0

])
)
.

Geometrically, we are doing the same as for X (1)×0 X (1) except that we are on the

space M̂(α0, β0, f0) instead of M : we glue the Morse trajectories from x1 to y1 (i.e.

M̂(x1, y1, f1
[α0
β0

])) with the Morse trajectories from y1 to z1 (i.e. M̂(y1, z1, f1
[α0
β0

])).
In terms of n-category language, we glue the 2-cells (a2,M̂(x1, y1, f1

[α0
β0

])) and

(c2,M̂(y1, z1, f1
[α0
β0

])) along the 1-cell (y1,M̂(α0, β0, f0)) as visualized below.

(a2,M̂(x1, y1, f1
[α0

β0

]))

(c2,M̂(y1, z1, f1
[α0

β0

]))

(
(a2, c2),M̂(x1, z1, f1

[α0

β0

])
)

(x1,M̂(α0, β0, f0))

(y1,M̂(α0, β0, f0))α0 β0

(z1,M̂(α0, β0, f0))

Case l = 2 and p = 0

How does gluing of 2-cells along 0-cells look like? Well, the picture changes somewhat
since we witness for the first time a composite not on the ‘top level’ (i.e. l − p = 1),
but on a ‘lower level’ (i.e. l − p > 1). Consider the space

X (2)×0 X (2)
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given by
(

(c2,M̂(c1, d1, f1[ y0z0 ]), (a2,M̂(a1, b1, f1[x0y0 ]))
)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0, y0, z0 ∈ Crit(f0),

a1, b1 ∈ Crit(f1[x0y0 ]),

c1, d1 ∈ Crit(f1[ y0z0 ]),

a2 ∈ Crit(f
2
[x0,a1
y0,b1

]),
c2 ∈ Crit(f

2
[ y0,c1
z0,d1

])


and define (

c2,M̂(c1, d1, f1[ y0z0 ])
)
◦0
(
a2,M̂(a1, b1, f1[x0y0 ])

)
:=
(

(a2, c2),M̂((a1, c1), (b1, d1), f1[x0z0 ])
)
.

The geometry of this composition is described by

(a1,M̂(x0, y0, f0)) (c1,M̂(y0, z0, f0))

(b1,M̂(x0, y0, f0)) (d1,M̂(y0, z0, f0))

z0x0
y0(a2,M̂(a1, b1, f1[ x0

y0 ])) (c2,M̂(c1, d1, f1[ y0z0 ]))

The 2-cell
(
a2,M̂(a1, b1, f1[x0y0 ])

)
is linked to the 2-cell

(
c2,M̂(c1, d1, f1[ y0z0 ])

)
by

means of the 0-cell y0. The composition of those two 2-cells is the 2-cell

x0 z0

(
(b1, d1),M̂(x0, z0, f0)

)

(
(a1, c1),M̂(x0, z0, f0)

)
(

(a2, c2),M̂((a1, c1), (b1, d1), f1[ x0
z0 ])

)

spanned by the 1-cells

(c1,M̂(y0, z0, f0)) ◦0 (a1,M̂(x0, y0, f0)) =
(

(a1, c1),M̂(x0, z0, f0)
)

and
(d1,M̂(y0, z0, f0)) ◦0 (b1,M̂(x0, y0, f0)) =

(
(b1, d1),M̂(x0, z0, f0)

)
.

In particular, notice that gluing took place already at the level of 1-cells along the
0-cell y0 and that we used the glued 1-cells to define the new 2-cell.
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Case l = 3 and p = 0

Now let us have a look how involved the situation gets for l = 3. Consider the space

X (3)×0 X (3)

given by

(
(c3,M̂(c2, d2, f2

[ y0,c1
z0,d1

])), (a3,M̂(a2, b2, f2
[x0,a1
y0,b1

]))
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0, y0, z0 ∈ Crit(f0),

a1, b1 ∈ Crit(f1[x0y0 ]),

a2, b2 ∈ Crit(f
2
[x0,a1
y0,b1

]),
a3 ∈ Crit(f

3
[x0,a1,a2
y0,b1,b2

]),
c1, d1 ∈ Crit(f1[ y0z0 ]),

c2, d2 ∈ Crit(f
2
[ y0,c1
z0,d1

]),
c3 ∈ Crit(f

3
[ y0,c1,c2
z0,d1,d2

])


and set (

c3,M̂(c2, d2, f2
[ y0,c1
z0,d1

])
)
◦0
(
a3,M̂(a2, b2, f2

[x0,a1
y0,b1

])
)

:=

(
(a3, c3),M̂((a2, c2), (b2, d2), f

2

[
x0,(a1,c1)
z0,(b1,d1)

])
)
.

This composition can be displayed as follows, but for sake of readability, we need
to abbreviate the higher cells in the figures by their ‘leading critical point’, i.e. we
abbreviate in the picture

a2 =
(
a2,M̂(a1, b1, f1[x0y0 ])

)
, b2 =

(
b2,M̂(a1, b1, f1[x0y0 ])

)
,

c2 =
(
c2,M̂(c1, d1, f1[ y0z0 ])

)
, d2 =

(
d2,M̂(c1, d1, f1[ y0z0 ])

)
,

a3 =

(
a3,M̂(a2, b2, f2

[x0,a1
y0,b1

])
)
, c3 =

(
c3,M̂(c2, d2, f2

[ y0,c1
z0,d1

])
)
.

z0

(a1,M̂(x0, y0, f0)) (c1,M̂(y0, z0, f0))

(b1,M̂(x0, y0, f0)) (d1,M̂(y0, z0, f0))

a2
a3

c2
c3

x0
y0

b2 d2
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As in the case of X (2)×0X (2), we have to glue on lower levels first in order to declare
the composite of the 3-cells. As abbreviations for the moduli spaces in the picture, we
use

(a2, c2) =
(

(a2, c2),M̂((a1, c1), (b1, d1), f1[x0z0 ])
)
,

(b2, d2) =
(

(b2, d2),M̂((a1, c1), (b1, d1), f1[x0z0 ])
)
,

(a3, c3) =

(
(a3, c3),M̂((a2, c2), (b2, d2), f

2

[
x0,(a1,c1)
z0,(b1,d1)

])
)
.

z0(b2, d2)
(a3, c3)

x0 (a2, c2)

(
(a1, c1),M̂(x0, z0, f0)

)

(
(b1, d1),M̂(x0, z0, f0)

)

Case l = 3 and p = 1

Now we consider composing 3-cells along 1-cells. The space

X (3)×1 X (3)

given by tuples(
(c3,M̂(c2, d2, f2

[α0,y1
β0,z1

]), (a3,M̂(a2, b2, f2
[α0,x1
β0,y1

]))
)
∈ X (3)×X (3)

satisfying

α0, β0 ∈ Crit(f0), x1, y1, z1 ∈ Crit(f
1
[α0
β0

]),
a2, b2 ∈ Crit(f

2
[α0,x1
β0,y1

]), c2, d2 ∈ Crit(f
2
[α0,y1
β0,z1

]),
a3 ∈ Crit(f

3
[α0,x1,a2
β0,y1,b2

]), c3 ∈ Crit(f
3
[α0,y1,c2
β0,z1,d2

]).
The situation looks as sketched below. Again, we abbreviate in the picture
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a2 = (a2,M̂(x1, y1, f1
[α0
β0

])), c2 = (c2,M̂(y1, z1, f1
[α0
β0

])),
b2 = (b2,M̂(x1, y1, f1

[α0
β0

])), d2 = (d2,M̂(y1, z1, f1
[α0
β0

])),
a3 = (a3,M̂(a2, b2, f2

[α0,x1
β0,y1

])), c3 = (c3,M̂(c2, d2, f2
[α0,y1
β0,z1

])).

α0 β0

a2 b2

c2 d2

a3

c3

(z1,M̂(α0, β0, f0))

(x1,M̂(α0, β0, f0))

(y1,M̂(α0, β0, f0))

We set (
c3,M̂(c2, d2, f2

[α0,y1
β0,z1

])
)
◦1
(
a3,M̂(a2, b2, f2

[α0,x1
β0,y1

])
)

:=

(
(a3, c3),M̂((a2, c2), (b2, d2), f

2
[α0,x1
β0,z1

])
)
.

which is suggested by

β0(b2, d2)
(a3, c3)

α0 (a2, c2)

(z1,M̂(α0, β0, f0))

(x1,M̂(α0, β0, f0))

where we abbreviated

(a2, c2) =

(
(a2, c2),M̂(x1, z1, f1

[α0
β0

])
)
, (b2, d2) =

(
(b2, d2),M̂(x1, z1, f1

[α0
β0

])
)
,

(a3, c3) =

(
(a3, c3),M̂((a2, c2), (b2, d2), f

2
[α0,x1
β0,z1

])
)
.
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Case l = 3 and p = 2

Now we consider the last possible way to compose two 3-cells, namely along a 2-cell.
We start with

X (3)×2 X (3)

given by tuples(
(c3,M̂(y2, z2, f2

[α0,α1

β0,β1

]), (a3,M̂(x2, y2, f2
[α0,α1

β0,β1

]))
)
∈ X (3)×X (3)

satisfying

α0, β0 ∈ Crit(f0), a3 ∈ Crit(f
3
[α0,α1,x2
β0,β1,y2

]),
α1, β1 ∈ Crit(f

1
[α0
β0

]), c3 ∈ Crit(f
3
[α0,α1,y2
β0,β1,z2

]),
x2, y2, z2 ∈ Crit(f

2
[α0,α1

β0,β1

]).

The situation is sketched below using the abbreviations

x2 = (x2,M̂(α1, β1, f1
[α0
β0

])), a3 = (a3,M̂(x2, y2, f2
[α0,α1

β0,β1

])),
y2 = (y2,M̂(α1, β1, f1

[α0
β0

])), c3 = (c3,M̂(y2, z2, f2
[α0,α1

β0,β1

])),
z2 = (z2,M̂(α1, β1, f1

[α0
β0

])), (a3, c3) =

(
(a3, c3),M̂(x2, z2, f2

[α0,α1

β0,β1

])
)
.

β0 β0z2
(a3, c3)

(β1,M̂(α0, β0, f0))

c3a3
x2 z2α0 α0

(α1,M̂(α0, β0, f0)) (α1,M̂(α0, β0, f0))

x2

(β1,M̂(α0, β0, f0))

y2

The picture suggests setting(
c3,M̂(y2, z2, f2

[α0,α1

β0,β1

])
)
◦2
(
a3,M̂(x2, y2, f2

[α0,α1

β0,β1

])
)

:=

(
(a3, c3),M̂(x2, z2, f2

[α0,α1

β0,β1

])
)
.
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4.4 General case: The composite ◦p of Morse moduli spaces

After spending some time on motivating the composite for small l > p ≥ 0, we now
define the composite for arbitrary l > p ≥ 0. To simplify notation, we treat the three
cases p = 0 and l − 2 ≥ p ≥ 1 and p = l − 1 separately.

Case l ∈ N and p = 0

There are no α’s and β’s such that the ‘history index’ starts with x0, y0, z0. We set(
cl,M̂(cl−1, dl−1, fl−1

[ y0,c1,...,cl−2

z0,d1,...,dl−2

])
)

◦0
(
al,M̂(al−1, bl−1, fl−1

[x0,a1,...,al−2

y0,b1,...,bl−2

])
)

:=

(
(al, cl),M̂((al−1, cl−1), (bl−1, dl−1), f

l−1

[
x0,(a1,c1),...,(al−2,cl−2)
z0,(b1,d1),...,(bl−2,dl−2)

])
)
.

Case l ∈ N and l − 2 ≥ p ≥ 1

We set(
cl,M̂(cl−1, dl−1, f

l−1
[ α0,...,αp−1,yp,cp+1...,cl−2

β0,...,βp−1,zp,dp+1,...,dl−2

])
)

◦p
(
al,M̂(al−1, bl−1, f

l−1
[α0,...,αp−1,xp,ap+1...,al−2

β0,...,βp−1,yp,bp+1,...,bl−2

])
)

:=

(
(al, cl),M̂((al−1, cl−1), (bl−1, dl−1), f

l−1

[
α0,...,αp−1,xp,(ap+1,cp+1),...,(al−2,cl−2)
β0,...,βp−1,zp,(bp+1,dp+1),...,(bl−2,dl−2)

])
)
.

Case l ∈ N and p = l − 1

There are no a’s, b’s, c’s and d’s in the ‘history index’ which ends with xl−1, yl−1,
zl−1. We set (

cl,M̂(yl−1, zl−1, fl−1
[α0,...,αl−2

β0,...,βl−2

])
)

◦l−1

(
al,M̂(xl−1, yl−1, fl−1

[α0,...,αl−2

β0,...,βl−2

])
)

:=

(
(al, cl),M̂(xl−1, zl−1, fl−1

[α0,...,αl−2

β0,...,βl−2

])
)
.

4.5 The n-category of Morse moduli spaces

After defining an n-globular set, identity functions and a composite we formulate the
main theorem of this paper.
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Theorem 11. The n-globular set X (l)0≤l≤n together with the above mentioned identity
functions 1 and composites ◦p is an almost strict n-category.

Proof. (a) Source and targets of composites: Let (Cl, Al) ∈ X (l) ×p X (l). Show that,
for p = l − 1, we have s(Cl ◦p Al) = s(Al) and t(Cl ◦p Al) = t(Cl).
For l ≥ 1, we compute

s(Cl ◦l−1 Al)

= s

((
cl,M̂(yl, zl, fl−1

[α0,...,αl−2

β0,...,βl−2

])
)
◦l−1

(
al,M̂(xl−1, yl−1, fl−1

[α0,...,αl−2

β0,...,βl−2

])
))

= s

(
(al, cl),M̂(xl−1, zl−1, fl−1

[α0,...,αl−2

β0,...,βl−2

])
)

=

(
xl−1,M̂(αl−2, βl−2, fl−2

[α0,...,αl−3

β0,...,βl−3

])
)

= s

(
al,M̂(xl−1, yl−1, fl−1

[α0,...,αl−2

β0,...,βl−2

])
)

= s(Al).

For l = 1, we find

s
(

(c1,M̂(y0, z0, f0)) ◦0 (a1,M̂(x0, y0, f0))
)

= s
(

(a1, c1),M̂(x0, z0, f0)
)

= x0

= s
(
a1,M̂(x0, y0, f0)

)
.

Similar computations yield t(Cl ◦l−1 Al) = t(Cl).

Furthermore, we have to prove the following. For (Cl, Al) ∈ X (l)×p X (l), show that,
for 0 ≤ p ≤ l− 2, we have s(Cl ◦p Al) = s(Cl) ◦p s(Al) and t(Cl ◦p Al) = t(Cl) ◦p t(Al).
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For p > 0, we compute

s(Cl ◦p Al)

= s

(
(cl,M̂(cl−1, dl−1, f

l−1
[α0,...,αp−1,yp,cp+1,...,cl−2

β0,...,βp−1,zp,dp+1,...,dl−2

])
◦p (al,M̂(al−1, bl−1, f

l−1
[α0,...,αp−1,xp,ap+1,...,al−2

β0,...,βp−1,yp,bp+1,...,bl−2

])
)

= s

(
(al, cl),M̂((al−1, cl−1), (bl−1, dl−1), f

l−1

[
α0,...,αp−1,xp,(ap+1,cp+1),...,(al−2,cl−2)
β0,...,βp−1,zp,(bp+1,dp+1),...,(bl−2,dl−2)

])
)

=

(
(al−1, cl−1),M̂((al−2, cl−2), (bl−2, dl−2), f

l−2

[
α0,...,αp−1,xp,(ap+1,cp+1),...,(al−3,cl−3)
β0,...,βp−1,zp,(bp+1,dp+1),...,(bl−3,dl−3)

])
)

=

(
(cl−1,M̂(cl−2, dl−2, f

l−2
[α0,...,αp−1,yp,cp+1,...,cl−3

β0,...,βp−1,zp,dp+1,...,dl−3

])
◦p (al−1,M̂(al−2, bl−2, f

l−2
[α0,...,αp−1,xp,ap+1,...,al−3

β0,...,βp−1,yp,bp+1,...,bl−3

])
)

= s

(
cl,M̂(cl−1, dl−1, f

l−1
[α0,...,αp−1,yp,cp+1,...,cl−2

β0,...,βp−1,zp,dp+1,...,dl−2

])
◦p s

(
al,M̂(al−1, bl−1, f

l−1
[α0,...,αp−1,xp,ap+1,...,al−2

β0,...,βp−1,yp,bp+1,...,bl−2

])
= s(Cl) ◦p s(Al).

The case p = 0 follows similarly. And an analogous computation yields the claim for
the target function.

(b) Sources and targets of identities: We need to show that s(1Al
) = Al = t(1Al

).

Letting Al = (al,M̂(al−1, bl−1, fl−1
[ a0,...,al−2

b0,...,bl−2

]), we compute

s

1
(al,M̂(al−1,bl−1,f

l−1

[a0,...,al−2

b0,...,bl−2

]))
 = s

(
al,M̂(al, al, fl

[ a0,...,al−1

b0,...,bl−1

])
)

=

(
al,M̂(al−1, bl−1, fl−1

[ a0,...,al−2

b0,...,bl−2

])
)

and similar for the target function.

(c) Associativity of the composite: Given 0 ≤ p < l ≤ n and (El, Cl), (Cl, Al) ∈
X (l)×p X (l), we need to prove (El ◦p Cl) ◦p Al = El ◦p (Cl ◦p Al).
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We set

Al =

(
al,M̂(al−1, bl−1, f

l−1
[α0,...,αp−1,wp,ap+1,...,al−2

β0,...,βp−1,xp,bp+1,...,bl−2

])
)
,

Cl =

(
cl,M̂(cl−1, dl−1, f

l−1
[α0,...,αp−1,xp,cp+1,...,cl−2

β0,...,βp−1,yp,dp+1,...,dl−2

])
)
,

El =

(
el,M̂(el−1, gl−1, f

l−1
[α0,...,αp−1,yp,ep+1,...,el−2

β0,...,βp−1,zp,gp+1,...,gl−2

])
)

and compute

(El ◦p Cl) ◦p Al

=
(

(al, (cl, el)),M̂((al−1, (cl−1, el−1)), (bl−1, (dl−1, gl−1)), F )
)

where

F := f
l−1

[
α0,...,αp−1,wp,(ap+1,(cp+1,ep+1)),...,(al−2,(cl−2,el−2))
β0,...,βp−1,zp,(bp+1,(dp+1,gp+1)),...,(bl−2,(dl−2,gl−2))

].
On the other hand, we obtain

El ◦p (Cl ◦p Al)

=
(

((al, cl), el),M̂(((al−1, cl−1), el−1), ((bl−1, dl−1), gl−1), F̄ )
)

where

F̄ := f
l−1

[
α0,...,αp−1,wp,((ap+1,cp+1),ep+1),...,((al−2,cl−2),el−2)
β0,...,βp−1,zp,((bp+1,dp+1),gp+1),...,((bl−2,dl−2),gl−2)

].
Geometers usually consider the cartesian product as associative, but if one wants to be
rigorous, it is certainly associative up to canonical isomorphism. And the same holds
for the gluing of Morse trajectories (cf. Theorem 3). Thus, possibly up to canonical
isomorphism, (El ◦p Cl) ◦p Al = El ◦p (Cl ◦p Al). Note that for l = 1 and p = 0, the
associativity of the composite reduces to the associativity of the gluing procedure:

(c1,M̂(c0, d0, f0)) ◦0
(

(b1,M̂(b0, c0, f0)) ◦0 (a1,M̂(a0, b0, f0))
)

=
(

((a1, b1), c1),M̂(a0, d0, f0)
)

Th.3
=
(

(a1, (b1, c1)),M̂(a0, d0, f0)
)

=
(

(c1,M̂(c0, d0, f0)) ◦0 (b1,M̂(b0, c0, f0))
)
◦0 (a1,M̂(a0, b0, f0))

(d) Identities: For 0 ≤ p < l ≤ n and Al ∈ X (l), we have to show

1l−p(tl−p(Al)) ◦p Al = Al = Al ◦p 1l−p(sl−p(Al)).
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Let Al = (al,M̂(al−1, bl−1, fl−1
[ a0,...,al−2

b0,...,bl−2

])) and compute

1l−p
(
tl−p

(
al,M̂(al−1, bl−1, fl−1

[ a0,...,al−2

b0,...,bl−2

])
))

= 1l−p
(
bp,M̂(ap−1, bp−1, f

p−1
[ a0,...,ap−2

b0,...,bp−2

])
)

=

(
bp,M̂(bp, bp, f

l−1

[
a0,...,ap−1,bp,...,bp
b0,...,bp−1,bp,...,bp

])
)

where we identified the critical point bp with the moduli space M̂(bp, bp) and with the

critical point bp+1 on the moduli space M̂(bp, bp) etc. Thus we obtained l−p−1 times
bp in each line of the subscript. Now we compute(

bp,M̂(bp, bp, f
l−1

[
a0,...,ap−1,bp,...,bp
b0,...,bp−1,bp,...,bp

])
)
◦p
(
al,M̂(al−1, bl−1, fl−1

[ a0,...,al−2

b0,...,bl−2

])
)

=

(
(al, bp),M̂((al−1, bp), (bl−1, bp), f

l−1

[
a0,...,ap−1,ap,(ap+1,bp),...,(al−2,bp)
b0,...,bp−1,bp,(bp+1,bp),...,(bl−2,bp)

])
)
.

Since the product of a space with a point can be canonically identified with the space
itself we conclude (up to canonical isomorphism)

=

(
al,M̂(al−1, bl−1, fl−1

[ a0,...,al−2

b0,...,bl−2

])
)

which yields the claim. The proof for the source function requires the identification of(
(ap, al),M̂((ap, al−1), (ap, bl−1), f

l−1

[
a0,...,ap−1,ap,(ap,ap+1),...,(ap,al−2)
b0,...,bp−1,bp,(ap,bp+1),...,(ap,bl−2)

])
)

with (
al,M̂(al−1, bl−1, fl−1

[ a0,...,al−2

b0,...,bl−2

])
)
.

(e) Binary interchange: Given 0 ≤ q < p < l ≤ n and (Cl, Al), (Hl, El) ∈ X (l)×pX (l)
and (Hl, Cl), (El, Al) ∈ X (l) ×q X (l), we need to show (Hl ◦p El) ◦q (Cl ◦p Al) =
(Hl ◦q Cl) ◦p (El ◦p Al).
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The requirements on Al, Cl, El and Hl lead to

Al =

(
al,M̂(al−1, bl−1, f

l−1
[α0,...,αq ,...,αp−1,xp,ap+1,...,al−2

β0,...,βq ,...,βp−1,yp,bp+1,...,bl−2

])
)
,

Cl =

(
cl,M̂(cl−1, dl−1, f

l−1
[α0,...,αq ,...,αp−1,yp,cp+1,...,cl−2

β0,...,βq ,...,βp−1,zp,dp+1,...,dl−2

])
)
,

El =

(
el,M̂(el−1, gl−1, f

l−1

[
α0,...,αq−1,βq ,εq+1,...,εp−1,x̄p,ep+1,...,el−2

β0,...,βq−1,γq ,γq+1,...,γp−1,ȳp,gp+1,...,gl−2

])
)
,

Hl =

(
hl,M̂(hl−1, il−1, f

l−1

[
α0,...,αq−1,βq ,εq+1,...,εp−1,ȳp,hp+1,...,hl−2

β0,...,βq−1,γq ,γq+1,...,γp−1,z̄p,ip+1,...,il−2

])
)
.

We compute

(Hl ◦p El) ◦q (Cl ◦p Al)

=
(

(el, hl),M̂((el−1, hl−1), (gl−1, il−1), fl−1,41)
)

◦q
(

(al, cl),M̂((al−1, cl−1), (bl−1, dl−1), fl−1,42)
)

=
(

[(al, cl), (el, hl)],M̂([(al−1, cl−1), (el−1, hl−1)], [(bl−1, dl−1), (gl−1, il−1)], fl−1,43)
)

where

41 :=
[
α0,...,αq−1,βq ,εq+1,...,εp−1,x̄p,(ep+1,hp+1),...,(el−2,hl−2)
β0,...,βq−1,γq ,γq+1,...,γp−1,z̄p,(gp+1,ip+1),...,(gl−2,ip+1)

]
,

42 :=
[
α0,...,αq ,...,αp−1,xp,(ap+1,cp+1),...,(al−2,cl−2)
β0,...,βq ,...,βp−1,zp,(bp+1,dp+1),...,(bl−2,dp+1)

]
and 43 is given by[
α0,...,αq−1,αq ,(αq+1,εq+1),...,(αp−1,εp−1),(xp,x̄p),[(ap+1,cp+1),(ep+1,hp+1)],...,[(al−2,cl−2),(el−2,hl−2)]
β0,...,βq−1,γq ,(βq+1,γq+1),...,(βp−1,γp−1),(zp,z̄p),[(bp+1,dp+1),(gp+1,ip+1)],...,[(bl−2,dl−2),(gl−2,il−2)]

]
.

On the other hand, we calculate

(Hl ◦q Cl) ◦p (El ◦p Al)

=
(

(cl, hl),M̂((cl−1, hl−1), (dl−1, il−1), fl−1,44)
)

◦q
(

(al, el),M̂((al−1, el−1), (bl−1, gl−1), fl−1,45)
)

=
(

[(al, el), (cl, hl)],M̂([(al−1, el−1), (cl−1, hl−1)], [(bl−1, gl−1), (dl−1, il−1)], fl−1,46)
)

where

44 :=
[
α0,...,αq−1,αq ,(αq+1,εq+1),...,(αp−1,εp−1),(yp,ȳp),(cp+1,hp+1),...,(cl−2,hl−2)
β0,...,βq−1,γq ,(βq+1,γq+1),...,(βp−1,γp−1),(zp,z̄p),(dp+1,ip+1),...,(dl−2,ip+1)

]
,

45 :=
[
α0,...,αq−1,αq ,(αq+1,εq+1),...,(αp−1,εp−1),(xp,x̄p),(ap+1,ep+1),...,(al−2,el−2)
β0,...,βq−1,γq ,(βq+1,γq+1),...,(βp−1,γp−1),(yp,ȳp),(bp+1,gp+1),...,(bl−2,gp+1)

]
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and 46 is given by[
α0,...,αq−1,αq ,(αq+1,εq+1),...,(αp−1,εp−1),(xp,x̄p),[(ap+1,ep+1),(cp+1,hp+1)],...,[(al−2,el−2),(cl−2,hl−2)]
β0,...,βq−1,γq ,(βq+1,γq+1),...,(βp−1,γp−1),(zp,z̄p),[(bp+1,gp+1),(dp+1,ip+1)],...,[(bl−2,gl−2),(dl−2,il−2)]

]
.

43 and 46 share the first half[
α0,...,αq−1,αq ,(αq+1,εq+1),...,(αp−1,εp−1),(xp,x̄p)
β0,...,βq−1,γq ,(βq+1,γq+1),...,(βp−1,γp−1),(zp,z̄p)

]
and differ in the second half only up to exchange of the second and third coordinate
in the 4-tuples. Thus, up to canonical isomorphism, we obtain the claim.

(f) Nullary interchange: For 0 ≤ p < l < n and (Cl, Al) ∈ X (l) ×p X (l), we need to
show 1Cl

◦p 1Al
= 1Cl◦pAl

.
Let

Al =

(
al,M̂(al−1, bl−1, f

l−1
[α0,...,αp−1,xp,ap+1,...,al−2

β0,...,βp−1,yp,bp+1,...,bl−2

])
)
,

Cl =

(
cl,M̂(cl−1, dl−1, f

l−1
[α0,...,αp−1,yp,cp+1,...,cl−2

β0,...,βp−1,zp,dp+1,...,dl−2

])
)

and compute

1Cl
◦p 1Al

=

(
cl,M̂(cl, cl, f

l
[α0,...,αp−1,yp,cp+1,...,cl−1

β0,...,βp−1,zp,dp+1,...,dl−1

])
)

◦p
(
al,M̂(al, al, f

l
[α0,...,αp−1,xp,ap+1,...,al−1

β0,...,βp−1,yp,bp+1,...,bl−1

])
)

=

(
(al, cl),M̂((al, cl), (al, cl), f

l

[
α0,...,αp−1,xp,(ap+1,cp+1),...,(al−1,cl−1)
β0,...,βp−1,zp,(bp+1,dq+1),...,(bl−1,dl−1)

])
)

= 1

(
(al, cl),M̂((al−1, cl−1), (bl−1, dl−1), f

l−1

[
α0,...,αp−1,xp,(ap+1,cp+1),...,(al−2,cl−2)
β0,...,βp−1,zp,(bp+1,dq+1),...,(bl−2,dl−2)

])
)

= 1Cl◦pAl
.

which finishes the proof of Theorem 11.

5 Examples

5.1 The n-sphere

Consider the n-dimensional sphere Sn := {(p1, . . . , pn+1) ∈ Rn+1 | p2
0 + · · · + p2

n = 1}
with the height function f0 : Sn → R, f0(p1, . . . , pn+1) := pn+1 as Morse function and
use the induced metric from Rn+1. It has two critical points x0 and y0, namely the
north and the south pole, with Ind(x0) = n and Ind(y0) = 0. Thus we have

X (0) = {x0, y0}.
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The moduli space M̂(x0, y0, f0) can be identified with Sn−1 which has no boundary.
Thus there are no lower dimensional boundary strata which could impose compatibility
conditions on the chosen Morse function on the Morse moduli space. Let f1 = f1[x0y0 ]

be the height function on Sn−1 ' M̂(x0, y0, f0) with critical points x1 (north pole)
and y1 (south pole). We obtain

X (1) = {(x1,M̂(x0, y0, f0)), (y1,M̂(x0, y0, f0))}.

The moduli space M̂(x1, y1, f1) can be identified with Sn−2 and we choose as Morse
function f2 = f

2[x0,x1y0,y1 ] the height function on Sn−2. We get

X (2) = {(x2,M̂(x1, y1, f1)), (y2,M̂(x1, y1, f1))}

where x2 is the north pole and y2 the south pole. Iterating this procedure, we find
eventually

X (n) = {(xn,M(xn−1, yn−1, fn−1)), (yn,M̂(xn−1, yn−1, fn−1))}

where M̂(xn−1, yn−1, fn−1) can be identified with S0 which again can be identified
with the critical points {xn} ∪ {yn}. The process terminates with

X (n+ 1) = {(xn,M̂(xn, xn, fn)), (yn,M̂(yn, yn, fn))}

where the ‘point’ xn can be identified with the ‘space’ M̂(xn, xn, fn) and similar for
yn.

Now we want to look for the possible composites. For sake of readability, we only
consider the case n=2. The general case goes analogously. Moreover, to simplify
notation, we drop the Morse function in the moduli spaces. We compute

t(x1,M̂(x0, y0)) = y0, s(x1,M̂(x0, y0)) = x0,

t(y1,M̂(x0, y0)) = y0, s(y1,M̂(x0, y0)) = x0.

and conclude
X (1)×0 X (1) = ∅.

And computing

s2(x2,M̂(x1, y1)) = s(x1,M̂(x0, y0)) = x0,

t2(x2,M̂(x1, y1)) = s(y1,M̂(x0, y0)) = y0,

s2(y2,M̂(x1, y1)) = s(x1,M̂(x0, y0)) = x0,

t2(y2,M̂(x1, y1)) = s(y1,M̂(x0, y0)) = y0

yields
X (2)×0 X (2) = ∅ = X (2)×1 X (2).
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Calculating

s3(x2,M̂(x2, x2)) = s2(x2,M̂(x1, y1)) = s(x1,M̂(x0, y0)) = x0,

t3(x2,M̂(x2, x2)) = t2(x2,M̂(x1, y1)) = t(y1,M̂(x0, y0)) = y0,

s3(y2,M̂(y2, y2)) = s2(y2,M̂(x1, y1)) = s(x1,M̂(x0, y0)) = x0,

t3(y2,M̂(y2, y2)) = t2(y2,M̂(x1, y1)) = t(y1,M̂(x0, y0)) = y0

leads to
X (3)×l X (3) = ∅ for l = 0, 1, 2.

Geometrically the lack of composites is due to the fact that there are only two critical
points on each level such that there is no gluing or breaking of Morse trajectories.

5.2 The deformed 2-sphere

Let M be the deformed 2-sphere sketched in Figure 5.2. Choose the induced metric
from R3 (suitably adjusted near the critical points) and take the height function,
denoted by f0, as a Morse function. The Morse trajectories are the negative gradient
flow lines. For sake of readability, we drop the Morse function in the notion of the
moduli spaces. We have four critical points Crit(f0) = {w, x, y, z} with Morse index
Ind(w) = 0, Ind(x) = 2, Ind(y) = 1 and Ind(z) = 2. For the moduli spaces holds

dimM̂(x,w) = dimM̂(z, w) = 1 and dimM̂(y, w) = dimM̂(x, y) = dimM̂(z, y) = 0

with cardinality #M̂(y, w) = 2, #M̂(x, y) = 1 and #M̂(z, y) = 1. All other moduli

spaces vanish. M̂(y, w) has two connected components which we denote by M̂(y, w) =

M̂(y, w)a ∪ M̂(y, w)b.

w

z

y

x

Figure 2: Morse trajectories of the height function on a deformed sphere

We have X (0) = Crit(f0) = {w, x, y, z}. M̂(x,w) is an interval whose boundary is
given by

M̂(x, y)× M̂(y, w) = {(M̂(x, y),M̂(y, w)a)} ∪ {(M̂(x, y),M̂(y, w)b)}
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and similar for M̂(z, w). If we consider the (components of one of the) zero dimen-

sional moduli spaces as points instead of spaces, we write m̂(. . . ) instead of M̂(. . . ).

Now define the Morse function f1 as follows. Assume f1[ xw ] on M̂(x,w, f0) and

f1[ zw ] on M̂(z, w, f0) to be strictly monotone with the same (positive) maximum at

(m̂(x, y), m̂(y, w)a) and the same (positive) minimum at (m̂(x, y), m̂(y, w)b) which are
the only critical points. With this notion, we find

X (1) =



(
m̂(y, w)a,M̂(y, w)

)
,
(
m̂(y, w)b,M̂(y, w)

)
,(

m̂(x, y),M̂(x, y)
)
,
(
m̂(z, y),M̂(z, y)

)
,(

(m̂(x, y), m̂(y, w)a) ,M̂(x,w)
)
,
(

(m̂(x, y), m̂(y, w)b) ,M̂(x,w)
)
,(

(m̂(z, y), m̂(y, w)a) ,M̂(z, w)
)
,
(

(m̂(z, y), m̂(y, w)b) ,M̂(z, w)
)


.

We compute

X (1)×0 X (1) = {(ξ̃, ξ) ∈ X (1)×X (1) | s(ξ̃) = t(ξ)}

=



(
(m̂(y, w)a,M̂(y, w)), (m̂(x, y),M̂(x, y))

)
,(

(m̂(y, w)b,M̂(y, w)), (m̂(x, y),M̂(x, y))
)
,(

(m̂(y, w)a,M̂(y, w)), (m̂(z, y),M̂(z, y))
)
,(

(m̂(y, w)b,M̂(y, w)), (m̂(z, y),M̂(z, y))
)


.

Let us compute the composite of(
(m̂(y, w)a,M̂(y, w)), (m̂(x, y),M̂(x, y))

)
∈ X (1)×0 X (1).

We obtain(
m̂(x, y),M̂(x, y)

)
◦0
(
m̂(y, w)a,M̂(y, w)

)
=
(

(m̂(x, y), m̂(y, w)a),M̂(x,w)
)
.

The other elements of X (1)×0X (1) work similarly. Geometrically we are gluing Morse
trajectories. Now abbreviate

P := M̂ ((m̂(x, y), m̂(y, w)a), (m̂(x, y), m̂(y, w)b)) ,

p := m̂ ((m̂(x, y), m̂(y, w)a), (m̂(x, y), m̂(y, w)b)) ,

Q := M̂ ((m̂(z, y), m̂(y, w)a), (m̂(z, y), m̂(y, w)b)) ,

q := m̂ ((m̂(z, y), m̂(y, w)a), (m̂(z, y), m̂(y, w)b))

and we obtain

X (2) =


(
m̂(y, w)i,M̂(m̂(y, w)i, m̂(y, w)i)

)
(
m̂(r, y),M̂(m̂(r, y), m̂(r, y))

)
,

(p, P ), (q,Q)

∣∣∣∣∣∣∣∣∣ i ∈ {a, b}, r ∈ {x, z}
 .
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The appearing moduli spaces are singletons such that X (l) for l ≥ 3 will only contain

‘trivial’ elements of the form (ξ,M̂(ξ, ξ)). We compute

s2
(
m̂(y, w)i,M̂(m̂(y, w)i, m̂(y, w)i)

)
= s

(
m̂(y, w)i,M̂(y, w)

)
= y,

t2
(
m̂(y, w)i,M̂(m̂(y, w)i, m̂(y, w)i)

)
= t

(
m̂(y, w)i,M̂(y, w)

)
= w,

s2
(
m̂(r, y),M̂(m̂(r, y), m̂(r, y))

)
= s

(
m̂(r, y),M̂(r, y)

)
= r ∈ {x, z},

t2
(
m̂(r, y),M̂(m̂(r, y), m̂(r, y))

)
= t
(
m̂(r, y),M̂(r, y)

)
= y,

s2(p, P ) = s
(

(m̂(x, y), m̂(y, w)a),M̂(x,w)
)

= x,

t2(p, P ) = t
(

(m̂(x, y), m̂(y, w)b),M̂(x,w)
)

= w,

s2(q,Q) = s
(

(m̂(z, y), m̂(y, w)a),M̂(z, w)
)

= z,

t2(q,Q) = t
(

(m̂(z, y), m̂(y, w)b),M̂(z, w)
)

= w

which implies

X (2)×1 X (2)

= {(ξ̃, ξ) ∈ X (2)×X (2) | t(ξ) = s(ξ̃)}

=


((

m̂(y, w)i,M̂(m̂(y, w)i, m̂(y, w)i)
)
,
(
m̂(y, w)i,M̂(m̂(y, w)i, m̂(y, w)i)

))
,((

m̂(r, y),M̂(m̂(r, y), m̂(r, y))
)
,
(
m̂(r, y),M̂(m̂(r, y), m̂(r, y))

))
for i ∈ {a, b}, r ∈ {x, z}


and we compute for instance(

m̂(r, y),M̂(m̂(r, y), m̂(r, y))
)
◦1
(
m̂(r, y),M̂(m̂(r, y), m̂(r, y))

)
=
(

(m̂(r, y), m̂(r, y)),M̂((m̂(r, y), m̂(r, y)), (m̂(r, y), m̂(r, y)))
)

'
(
m̂(r, y),M̂(m̂(r, y), m̂(r, y))

)
which is due to the fact that we are working on a space which consists of a single
point. Moreover we have

X (2)×0 X (2)

= {(ξ̃, ξ) ∈ X (2)×X (2) | t2(ξ) = s2(ξ̃)}

=


(

(m̂(y, w)i,M̂(m̂(y, w)i, m̂(y, w)i), (m̂(r, y),M̂(m̂(r, y), m̂(r, y)))
)

for i ∈ {a, b}, r ∈ {x, z}


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and we compute(
m̂(y, w)i,M̂(m̂(y, w)i, m̂(y, w)i)

)
◦0
(
m̂(r, y),M̂(m̂(r, y), m̂(r, y))

)
=
(

(m̂(r, y), m̂(y, w)i),M̂((m̂(r, y), m̂(y, w)i), (m̂(r, y), m̂(y, w)i)
)
.

5.3 The 2-torus T2

Consider the 2-torus T2 = R2/Z2 with the flat metric and the Morse function
f0(x, y) = cos(2πx)+cos(2πy) whose critical points are {(k2 ,

l
2) | k, l ∈ Z}. Let us work

on the fundamental domain [0, 1]× [0, 1] which leaves us with the four critical points
w = (0, 0) = (1, 0) = (0, 1) = (1, 1) and x = (1

2 , 0) = (1
2 , 1) and y = (0, 1

2) = (1, 1
2) and

z = (1
2 ,

1
2) as in Figure 5.3.

z
y

w

b

a

a b

w

w wx

x

y
a

a

b

b

b

a

b

a

Figure 3: Morse trajectories on T2

We have Ind(w) = 2, Ind(x) = Ind(y) = 1 and Ind(z) = 0 and the moduli spaces

M̂(w, x), M̂(w, y), M̂(x, z) and M̂(y, z) are zero dimensional and have two connected

components each. We denote them by M̂(w, x) = M̂(w, x)a ∪ M̂(w, x)b etc. Again,
if we consider a (component of a) zero dimensional moduli space as a point, we write

m̂(. . . ) instead of M̂(. . . ).

M̂(w, z) is 1-dimensional and has four connected components. We choose a Morse

function f1[wx ] on M̂(w, z) which is strictly monotone and has its critical points on the

endpoints of the intervals. Let f1[wx ] be maximal on (m̂(w, y)i, m̂(y, z)j) and minimal

on (m̂(w, x)i, m̂(x, z)j) for i, j ∈ {a, b}. We have

X (0) = {w, x, y, z}

and

X (1) =



(m̂(w, x)i,M̂(w, x)), (m̂(w, y)i,M̂(w, y)),

(m̂(x, z)i,M̂(x, z)), (m̂(y, z)i,M̂(y, z)),

((m̂(w, x)i, m̂(x, z)j),M̂(w, z)),

((m̂(w, y)i, m̂(y, z)j),M̂(w, z))

∣∣∣∣∣∣∣∣∣∣∣
i, j ∈ {a, b}


.
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and we compute

X (1)×0 X (1) = {(ξ̃, ξ) ∈ X (1)×X (1) | s(ξ̃) = t(ξ)}

=


(

(m̂(x, z)i,M̂(x, z)), (m̂(w, x)j ,M̂(w, x))
)
,(

(m̂(y, z)i,M̂(y, z)), (m̂(w, y)j ,M̂(w, y))
)
∣∣∣∣∣∣ i, j ∈ {a, b}


and concatenate exemplarily(

m̂(w, x)i,M̂(w, x)
)
◦0
(
m̂(x, z)j ,M̂(x, z)

)
=
(

(m̂(w, x)i, m̂(x, z)j),M̂(w, z)
)
.

We compute

X (2) =



(
m̂(w, x)i,M̂(m̂(w, x)i, m̂(w, x)i)

)
,(

m̂(w, y)i,M̂(m̂(w, y)i, m̂(w, y)i)
)
,(

m̂(x, z)i,M̂(m̂(x, z)i, m̂(x, z)i)
)
,(

(m̂(y, z)i,M̂(m̂(y, z)i, m̂(y, z)i)
)
,(

(m̂((m̂(w, y)b, m̂(y, z)a), (m̂(w, x)a, m̂(x, z)b)),M̂( same )
)
,(

m̂((m̂(w, y)a, m̂(y, z)a), (m̂(w, x)a, m̂(x, z)a)),M̂( same )
)
,(

m̂((m̂(w, y)a, m̂(y, z)b), (m̂(w, x)b, m̂(x, z)a)),M̂( same )
)
,(

m̂((m̂(w, y)b, m̂(y, z)b), (m̂(w, x)b, m̂(x, z)b)),M̂( same )
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i ∈ {a, b}



.

and note that all elements of X (l) for l ≥ 3 will be of the form (ξ,M̂(ξ, ξ)). We
calculate for i ∈ {a, b} and q ∈ {x, y}:

s2
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
= s

(
m̂(w, q)i,M̂(w, q)

)
= w,

t2
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
= t

(
m̂(w, q)i,M̂(w, q)

)
= q,

s2
(
m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)

)
= s

(
m̂(q, z)i,M̂(q, z)

)
= q,

t2
(
m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)

)
= t
(
m̂(q, z)i,M̂(q, z)

)
= z,
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and

s2
(

(m̂((m̂(w, y)b, m̂(y, z)a), (m̂(w, x)a, m̂(x, z)b)),M̂( same )
)

= s
(

(m̂(w, y)b, m̂(y, z)a),M̂(w, z)
)

= w,

s2
(
m̂((m̂(w, y)a, m̂(y, z)a), (m̂(w, x)a, m̂(x, z)a)),M̂( same )

)
= s

(
(m̂(w, y)a, m̂(y, z)a),M̂(w, z)

)
= w,

s2
(
m̂((m̂(w, y)a, m̂(y, z)b), (m̂(w, x)b, m̂(x, z)a)),M̂( same )

)
= s

(
(m̂(w, y)a, m̂(y, z)b),M̂(w, z)

)
= w,

s2
(
m̂((m̂(w, y)b, m̂(y, z)b), (m̂(w, x)b, m̂(x, z)b)),M̂( same )

)
= s

(
(m̂(w, y)b, m̂(y, z)b),M̂(w, z)

)
= w

and

t2
(

(m̂((m̂(w, y)b, m̂(y, z)a), (m̂(w, x)a, m̂(x, z)b)),M̂( same )
)

= t
(

(m̂(w, x)a, m̂(x, z)b),M̂(w, z)
)

= z,

t2
(
m̂((m̂(w, y)a, m̂(y, z)a), (m̂(w, x)a, m̂(x, z)a)),M̂( same )

)
= t
(

(m̂(w, x)a, m̂(x, z)a),M̂(w, z)
)

= z,

t2
(
m̂((m̂(w, y)a, m̂(y, z)b), (m̂(w, x)b, m̂(x, z)a)),M̂( same )

)
= t
(

(m̂(w, x)b, m̂(x, z)a),M̂(w, z)
)

= z,

t2
(
m̂((m̂(w, y)b, m̂(y, z)b), (m̂(w, x)b, m̂(x, z)b)),M̂( same )

)
= t
(

(m̂(w, x)b, m̂(x, z)b),M̂(w, z)
)

= z
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This yields

X (2)×1 X (2)

= {(ξ̃, ξ) ∈ X (2)×X (2) | t(ξ) = s(ξ̃)}

=


((

m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)
)
,
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

))
((

m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)
)
,
(
m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)

))
for i ∈ {a, b}, q ∈ {x, y}


where we compute for example(

m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)
)
◦1
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
=
(

(m̂(w, q)i, m̂(w, q)i),M̂((m̂(w, q)i, m̂(w, q)i), (m̂(w, q)i, m̂(w, q)i))
)

'
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
since the underlying space is a singleton. We find

X (2)×0 X (2)

= {(ξ̃, ξ) ∈ X (2)×X (2) | t2(ξ) = s2(ξ̃)}

=


((

m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)
)
,
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

))
for i ∈ {a, b}, q ∈ {x, y}


and we compute(

m̂(q, z)i,M̂(m̂(q, z)i, m̂(q, z)i)
)
◦0
(
m̂(w, q)i,M̂(m̂(w, q)i, m̂(w, q)i)

)
=
(

(m̂(w, q)i, m̂(q, z)i),M̂((m̂(w, q)i, m̂(q, z)i), (m̂(w, q)i, m̂(q, z)i))
)
.
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