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Abstract

We introduce a new Floer theory associated to a pair consisting of
a Cartan hypercontact 3-manifold M and a hyperkédhler manifold X.
The theory is a based on the gradient flow of the hypersymplectic
action functional on the space of maps from M to X. The gradient
flow lines satisfy a nonlinear analogue of the Dirac equation. We work
out the details of the analysis and compute the Floer homology groups
in the case where X is flat. As a corollary we derive an existence
theorem for the 3-dimensional perturbed nonlinear Dirac equation.

1 Introduction

In this paper we examine a hyperkahler analogue of symplectic Floer homo-
logy. We assume throughout that X is a hyperkahler manifold with complex
structures I, J, K and symplectic forms wq,ws,ws3. We also assume that M
is a compact oriented 3-manifold equipped with a volume form o € Q3(M)
and a positive frame vy, vy, v3 € Vect(M) of the tangent bundle. Associated
to these data is a natural 1-form on the space .# := C*°(M, X) of smooth
functions f : M — X defined by

f’_’/M(W1(8v1f7f)+w2(av2faf)+w3(av3f7f)>a (1)

for feT Z = QO%M, f*TX). This 1-form is closed if and only if the vector
fields v; are volume preserving, i.e.

Ly, 0= Ly,0=Ly,0 =0.

Since every closed oriented 3-manifold is parallelizable it admits a volume
preserving frame (Gromov [18, Section 2.4.3]). Our main examples are the
3-torus with the coordinate vector fields and the 3-sphere with the standard
hypercontact structure.



Hypercontact structures

A hypercontact structure on a 3-manifold M is a triple of contact forms
a = (a1, a9, a3) € Q1 (M, R3) such that

a1 ANdag = ag ANdag = ag Adag =: o

and a; A daj + aj Ada; = 0 for ¢ # j. The Reeb vector fields v, vg,v3
are pointwise linearly independent and preserve the volume form o. The
hypercontact structure is called positive if they form a positive frame of the
tangent bundle. In this setting the 1-form (1) is the differential of the action
functional & : % — R defined by

A(f):=— /M (051 A ffwr +ag A ffws + az A f*w3> . (2)

A positive hypercontact structure is called a Cartan structure if the a; form
a dual frame of the cotangent bundle, i.e. a;(vj) = 6;;. In the Cartan case
k= daq(v2,v3) = dog(vs, v1) = das(vi,v2) is constant and do; = Koy A
and [v;,vj] = Ky, for every cyclic permutation 4, j, k of 1,2,3. (We use the
sign convention of [24] for the Lie bracket.)

The archetypal example is the 3-sphere M = S3, understood as the
unit quaternions, with v1(y) = iy, v2(y) = jy, vs(y) = ky. Hypercontact
structures were introduced by Geiges—Gonzalo [14, 15]. They use the term
taut contact sphere for what we call a hypercontact structure. They proved
that every Cartan hypercontact 3-manifold is diffeomorphic to a quotient of
the 3-sphere by the right action of a finite subgroup of Sp(1).

Tori

Let M = T3 = R3/Z3 be the standard 3-torus equipped with the standard
volume form o = dt; A dty A dts and v; = 2?21 a;j0; where A = (az‘j)?,j:1
is a nonsingular real 3 x 3 matrix. In this case the lift of the 1-form (1) to
the universal cover .Z of .Z is the differential of the function

3
M:Zaijfgfij:j—)R (3)
ij=1

where o7;(f) denotes the w;-symplectic action of the loop t; — f(t), av-
eraged over the remaining two variables tg,t, with k,¢ # j. If X is flat
and %y C .# denotes the space of contractible maps f : T3 — X then o/
descends to .%,. Explicitly, we have 7;(f) := —fol fol Jp Ui, ¢ wi dty, dtg
for f € Fo, where uy, ¢, : D — X is a smooth family of maps satisfying
Uty 1, (€2717) = f(t1, 2, t3)-



Hyperbolic spaces

A third class of examples arises from unit tangent bundles of higher genus
surfaces or equivalently from quotients of the group G := PSL(2;R). Let
H C C denote the upper half plane and P := {(z,¢) € C? |Im(z) = ||} the
unit tangent bundle of H. The group G acts freely and transitively on P by

b
9+(2,¢) := <Z§j—_d’ (sz_d)2>, g =: ( CCL Z > € SL(2;R)..

Now let I' € PSL(2;R) be a discrete subgroup acting freely on H such that
the quotient ¥ := I'\'H is a closed Riemann surface. Then the 3-manifold

M :=T\G
is diffeomorphic to the unit tangent bundle 71X = I'\P via [g] — [g«(4, 1)].

The group G carries a natural bi-invariant volume form o € Q3(G) given by

o(g€, gn, 9¢) == %trace([&n]é)

for £,m,C € g := Lie(G) = sl(2;R). This volume form descends to M and is
invariant under the right action of G. Now consider the traceless matrices

1 0 0 1 0 -1
51::<0—1>’ 52:2(1 0)’ £3::<1 0)'

The resulting vector fields v;(g) := g&; on G are I'-equivarient and preserve
the volume form o. Hence they descend to volume preserving vector fields
on M (still denoted by v;) and so the 1-form (1) is closed in this setting.

Note that o(vi,v2,v3) = 2 and dn(vs) = 0, dn(v1) = idn(v2). The Lie
brackets of the vector fields v; are given by

[v2, v3] = —2uv1, [vg,v1] = —2wv2, [v1,v2] = 2v3

(because the & act on G on the right). Hence, if a; € Q'(M) denote the
1-forms dual to the vector fields v;, we have

doayp = —2a9 A as, das = —2a3 A aq, dag = 201 A .

This implies that the 1-form (1) is the differential of the action functional

JZ/(f) = /M (Oq A f*wl + a2 A f*a)g —ag A\ f*w;g) .

However, in this setting the energy identity (7) discussed below does not
help in the compactness proof. This is the reason why we do not include
the higher genus case in our discussion in the main part of this paper.



Floer theory

The zeros of the 1-form (1) are the solutions f : M — X of the nonlinear
elliptic first order partial differential equation

D(f) =10y, f 4+ JOu, f + KOy, f = 0. (4)

This is a nonlinear analogue of the Dirac equation that was first introduced
by Taubes [30]. Obviously, the constant functions are solutions of (4). When
M = 83 other solutions arise from the composition of rational curves with
suitable Hopf fibrations (see below). When M = T? solutions can be ob-
tained from elliptic curves. In the case M = I'\G solutions arise from the
composition of K-holomorphic curves ¥ — X with 7 : M — ¥. These ex-
amples are all homologically trivial, even though Hopf-fibrations over holo-
morphic spheres in the K3-surface do represent nontrivial homotopy classes
in 73. A homologically nontrivial example with target manifold X := H/Z*
with its standard hyperkihler structure and domain M := T3 = R3/Z3 with
vector fields v; = 9/0t; is given by f(t) := t1 + ite + (1 + j)ts.

In this paper we prove an existence result for the solutions of the per-
turbed nonlinear Dirac equation

aH<f) = Iav1f+Jav2f+Kav3f_VH(f> =0. (5)

Here H : X x M — R is a smooth function and we denote by VH(f)
the gradient with respect to the first argument. The linearized operator
for this equation is self adjoint and we call a solution f : M — X of (5)
nondegenerate if the linearized operator is bijective. In the nondegenerate
case, and when X is flat, one can count the solutions with signs, however, it
turns out that this count gives zero. Nevertheless we shall prove the following
hyperkéhler analogue of the Conley-Zehnder theorem confirming the Arnold
conjecture for the torus [4]. In fact, in the torus case with v; = 9/0t; the
solutions of (4) can be interpreted as the periodic orbits of a suitable infinite
dimensional Hamiltonian system.

Theorem A. Let M be either a compact Cartan hypercontact 3-manifold
(with Reeb vector fields v;) or the 3-torus (with a constant frame v;). Let X
be a compact flat hyperkahler manifold. Then the space of solutions of (5) is
compact. Moreover, if the contractible solutions are all nondegenerate, then
their number is bounded below by the sum of the Zo-Betti numbers of X. In
particular, equation (5) has a contractible solution for every H.

The proof of Theorem A is based on the observation that the solutions of (5)
are the critical points of the perturbed hypersymplectic action functional



Ay (f) = (f)— [, H(f)o. As in symplectic Floer theory, this functional
is unbounded above and below, and the Hessian has infinitely many positive
and negative eigenvalues. Thus the standard techniques of Morse theory are
not available for the study of the critical points. However, with appropriate
modifications, the familiar techniques of Floer homology carry over to the
present case, at least when X is flat, and thus give rise to natural Floer
homology groups for a pair (M, X).

The Floer groups are determined by a chain complex that is generated
by the solutions of (5). The boundary operator is determined by the finite
energy solutions u : R x M — X of the negative gradient flow equation

Ostu + 10y, u + JOp,u + KOyu = VH(u). (6)

One of the key ingredients in the compactness proof is the energy identity

3
1 1
/ ’df‘QZ/’Iaﬂlf+JaU2f+Kav3f|2_/ § Ei/\f*wi (7)
2 Ju 2 M =

for f : M — X, where the ¢; € Q'(M) are dual to the vector fields v;.
In the torus case these forms are closed and thus the last term in (7) is
a topological invariant. In the Cartan hypercontact case this term is the
hypersymplectic action o7 (f).

To compute the Floer homology groups we choose a Morse-Smale func-
tion H : X — R and study the equation

st + €L 10y, 1 + JOyyu + KOyyu) = VH(u) (8)

for small values of €. The gradient lines of H are solutions of this equation
and we shall prove that, for € > 0 sufficiently small, there are no other con-
tractible solutions. This implies that our Floer homology groups HF (M, X)
are isomorphic to the singular homology H.(X;Zs2).

Theorem B. Let M be either a compact Cartan hypercontact 3-manifold
(with Reeb vector fields v;) or the 3-torus (with a constant frame v;). Let X
be a compact flat hyperkihler manifold and fix a class T € wo(F). Then, for
a generic perturbation H : X x M — R, there is a natural Floer homology
group HF (M, X, 7; H) associated to a chain complex generated by the solu-
tions of (5) where the boundary operator is defined by counting the solutions
of (6). The Floer homology groups associated to different choices of H are
naturally isomorphic. Moreover, for the component Ty of the constant maps
there is a natural isomorphism HF (M, X, 19; H) = H.(X; Zs).



Remark. The precise condition we need for extending the standard tech-
niques of Floer theory to our setting is that X has nonpositive sectional cur-
vature. As every hyperkahler manifold has vanishing Ricci tensor, nonposi-
tive sectional curvature implies that X is flat and hence is a quotient of a hy-
perkéahler torus by a finite group. An example is the quotient of the standard
12-torus H?/Z!'? by the Zs-action determined by (x,y, 2) — (y,z, 2z + 1/2).

A more general setting

There is conjecturally a much richer theory which provides Floer homological
invariants for all triples (M, X, 7), consisting of a Cartan hypercontact 3-
manifold M, a compact hyperkahler manifold X, and a homotopy class 7
of maps from M to X. One basic observation is that every holomorphic
sphere in a hyperkihler manifold gives rise to a solution of (4) on M = S3.
Another point is that m3(X) can be a very rich group. For example, the third
homotopy group of the K3-surface has 253 generators (see [3, Appendix]).

Example. Think of the 3-sphere as the unit sphere in the quaternions
H = R* and of the 2-sphere as the unit sphere in the imaginary quaternions
Im(H) = R3. For A = A\1i + A2j + Ask € S? denote Jy := M T + \oJ + A\3K
and wy = A\w1 + daws + Azws. Define hy : S3 — S2 by hy(y) :== —g\y. If
u:S? — X is a Jy-holomorphic sphere then

fi=uohy:8 =X

is a critical point of &/ and

E(u) = % . |du)? = /52 wfwy = %%(uo hy).

To see this, assume A =i and write hi(y) := —yiy, ha(y) := —yjy, and
hs(y) := —yky. These functions satisfy 9,,h; = 0 and Oy, hi = =0y, hj = 2hy,
for every cyclic permutation i, j,k of 1,2,3. Hence hy A Oyyh1 = Oy, h1. If
u : S? — X is an I-holomorphic sphere it follows that the function f := uohy
satisfies 0,, f = 0 and 10,,f = 0Oy, f and hence is a solution of (4). More-
over, 21 o0 = — [gs 1 A hjo for o € Q*(S?). (When o is exact both
sides are zero. Since —aj A hjdvolgz = 4dvolgs the value of the factor fol-
lows from Vol(S?) = 47 and Vol(S3) = 272.) With o = u*w; this implies
21 [go u*wi = — [go a1 Ahju*wy = &/ (uohy). Here the last equation follows
from the fact that u*ws = u*ws = 0 for every I-holomorphic curve w.

The main technical difficulty in setting up the Floer theory for general hy-

perkahler manifolds is to establish a suitable compactness theorem. In con-
trast to the familiar theory the derivatives for a sequence of solutions of (5)



or (6) will not just blow up at isolated points but along codimension-2 sub-
sets. For example, if u, : S? — X is a sequence of I-holomorphic curves
and h : S — S? is a suitable Hopf fibration, then f, := wu, o h is a se-
quence of solutions of (4) and its derivatives blow up along the Hopf circle
h~!(z9) whenever the derivatives of u,, blow up near zy. This phenomenon is
analogous to the codimension 4 bubbling in Donaldson—Thomas theory [7].

Floer—Donaldson theory

Let ¥ be a hyperkéahler 4-manifold with complex structures i, j, k and sym-
plectic forms o1, 09, 03. Consider the elliptic partial differential equation

du — Idui — Jduj — Kduk =0 (9)

for smooth maps u : ¥ — X. This is sometimes called the Cauchy—
Riemann-Fueter equation and it has been widely studied (see [30], [19,
Chapter 3], [20] and references). For ¥ = R x M with its standard hy-
perkéhler structure (see below) equation (9) is equivalent to (6) with H = 0.
The solutions of (9) satisfy the energy identity

3

1

B(u) = ¢ /Z |du — Idui — Jduj — Kduk|* dvoly — /EZU,- Autw;, (10)
=1

where E(u) == %[5 |du|?® dvols. The linearized operator

Dy - Q2,0 TX) — QY(S, u*TX)

takes values in the space of 1-forms on X with values in u*TX that are
complex linear with respect to I, J, and K. When X is closed this operator
is Fredholm between appropriate Sobolev completions and its index is
ind(Z,) = —(c2(TX), u[2]) + X;? dim® X, (11)
where x(X) is the Euler characteristic. Equation (11) continues to hold in
the case ¥ = S1 x M with its natural quaternionic structure. We sketch a
proof below. Conjecturally, there should be Gromov—Witten type invariants
obtained from intersection theory on the moduli space of solutions of (9).
One can also consider hyperkéhler 4-manifolds ¥ with cylindrical ends
ot RT x M* — 3. Here we assume that M7 is either a Cartan hy-
percontact 3-manifold or a 3-torus. Then R* x M™* has a natural flat hy-
perkahler structure [5, 15]. In the hypercontact case the symplectic forms



are w; = ﬁfld(e*’“ai) = e*’“(—ds Ao+ aj A ak) and in the torus case
they are w; = —ds A a; + a; A oy, for every cyclic permutation i, j, k of
1,2,3. In both cases the complex structure i is given by ds — —v1, v1 — s,
vy +— v3, v3 — —v9 and similarly for j and k. We assume that the em-
beddings ¢ are hyperkihler isomorphisms onto their images and that the
complement 3 \ (im:" U im:~) has a compact closure. Alternatively, it
might also be interesting to consider hyperkahler 4-manifolds with asymp-
totically cylindrical ends as in [21, 22]. One can then (conjecturally) use the
solutions of equation (9) with Hamiltonian perturbations on the cylindrical
ends to obtain a homomorphism HF (M ~, X) — HF.(M™, X) respectively
HF*(M*,X) - HF*(M~, X).

Proof of the index formula. We relate &, to a Dirac operator on X
associated to a spin® structure. On X we have a Hermitian vector bundle
W =WT® W~ where

Wt =uw'TX @u*TX, W~ :=Homyg(TY,vw*TX)® Hom; (T, u*TX).

Here Homp (T'Y, v*T X)) denotes the bundle of quaternionic homomorphisms
and Hom; (7%, vw*T'X) denotes the bundle of homomorphisms that are com-
plex linear with respect to I and complex anti-linear with respect to J and K.
The complex structures on W+ and W™ are given by (£1,&) — (I, I&).
The spin® structure I' : T3 — End(W) has the form

(o) = ( 7(00) —v(()v)* )

for v € T, Y where y(v) : W} — W is given by
Y(v) (&1, &) == (mu({v, )&1), 71 ({v, -)&2)).

Here 7y, 77 : Homp (TY, w*T X ) — Hompg (TX.u*T X)) denote the projections
m(A) == A—TAi— JAj— KAk, m(A):=A—TAi+ JAj+ KAk.

The Dirac operator D : QU(3, W) — Q%(, W) is the direct sum of 2,
and 2, : Q°(Z,w*TX) — QHZ,u*TX) given by 2,£ :=m;(VE). These
operators have the same index and hence

rank™ (W+) 1

2ind®(2,) = ind®(D) = o X(2)+ 5<c1(vv+)2 —2e5(WT), [3)).

The last equation follows from the Atiyah-Singer index theorem (see [23]).
Alternatively, one can identify QV(X, W) with QU9(Z, w*TX) @ Q0?0 (u*TX)



via (&1, &) — (§&14&2, J(&2—&1)wj+ K (& — &1 )wk) and the space Q9(X, W)
with Q0(Z,w*TX) via (a1,a2) — a1 + as. Under these identifications
the Dirac operator D corresponds to the twisted Cauchy—Riemann operator
O+ 0" : QVOS, wTX) — Q40(Y 4*TX). Since I is homotopic to —1I,
the complex Fredholm index of D is the holomorphic Euler characteristic of
the bundle ©*T'X — ¥ and, by the Hirzebruch—Riemann—Roch formula,

ind®(2,) = index®(D) = / ch(u*TX)td(TY).
by

With ch = rank® +¢; + %(c? —2¢9) and td =1+ %cl + %(C% + c2) this gives
again the above formula, and (11) follows because ¢1(TX) = ¢1(TX) = 0.

Ring structure

As an example of this construction we obtain (conjecturally) a ring structure
on HF*(S3, X). Take ¥ := H\ {—3, 3} and define ¢~ : (—00,0] x 53 — H
by

L (s,y) :=e ’y.
The image of this map is the complement of the open unit ball in H. The
embedding (T : [0, 00) x (S3S3) — H is the disjoint union of the embeddings
(s,y) —e 175y + % The resulting quaternionic pair of pants product

HF*(S3, X) ® HF*(S3, X) — HF*(S3, X)

should be independent of the choice of the embeddings and the Hamiltonian
perturbations used to define it. Moreover, counting the solutions of (9) on
the punctured cylinder R x M \ {pt}, will lead to a module structure of
HF*(M, X) over HF*(S3, X) for every M.

The compactness and transversality results in the present paper show
that this construction is perfectly rigorous and gives rise to an associative
product on HF*(S3, X) whenever X is flat. Moreover, in this case it agrees
with the cup product under our isomorphism HF*(S3, X) = H*(X;Zs).

Relations with Donaldson—Thomas theory

In [7] Donaldson and Thomas outline the construction of Donaldson type
invariants of 8-dimensional Spin(7)-manifolds Z and Floer homological in-
variants of 7-dimensional Ge-manifolds Y. In the case Z = X x S, where X
and S are hyperkéhler surfaces, they explain that solutions of their equation



on % x S correspond, in the adiabatic limit where the metric on S degen-
erates to zero, to solutions u : ¥ — .Z(5) of (9) with values in a suitable
moduli space X = #(S) of bundles over S. In a similar vein there is a
conjectural correspondence between the Donaldson-Thomas-Floer theory of

Y=MxS

with the Floer homology groups HF, (M, . (S)) discussed above whenever
M is either a Cartan hypercontact 3-manifold or a flat 3-torus. Namely, the
solutions of the Floer equation in Donaldson—Thomas theory on R x Y with
Y = M x S correspond, in the adiabatic limit, formally to the solutions
of (6) on R x M with values in .Z(S).

Boundary value problems

If M is Cartan hypercontact 3-manifold with boundary dM and Reeb vector
fields vy, v2,v3 then there is a unique map X : 9M — S? such that

y::Z)\wizé?MHTM

(2

is the outward pointing unit normal vector field. In this case the 1-form (1)
is not closed. Its differential is given by the formula

1.7 x T1.F = R: (fi, f2) = wx(f1, f2)dvolgar.
oM
This is a symplectic form on the space of maps OM — X. Thus it seems
natural to impose the Lagrangian boundary condition

f(y)eLy7 yeaM:

where | |, gy, Ly is a smooth submanifold of 0M x X such that L, is La-
grangian with respect to wy(, for every y € M. In this paper we do not
carry out the analysis for this boundary value problem.

In the technical parts of this paper we shall restrict the discussion to the
case where M is a (Cartan) hypercontact 3-manifold. The analysis for the
case M = T3 is almost verbatim the same and in some places easier because
the metric is flat. In Section 2 we introduce the hypersymplectic action
functional and its critical points, discuss the Floer equation, and restate
Theorem A. In Section 3 we prove the main compactness and exponential
decay theorems for the solutions of (5) and (6). These results are only

10



valid for flat target manifolds X. The details of the transversality theory
are worked out in Section 4 (for general target manifolds X). With com-
pactness and transversality established, the construction of Floer homology
is completely standard and we restrict ourselves to restating the result in
Section 5. However, the computation of Floer homology still requires some
serious analysis which is carried out in Section 5. Three appendices discuss
basic properties of hypercontact 3-manifolds, the relevant a priori estimates,
and a removable singularity theorem.

Acknowledgement. Thanks to Ron Stern for pointing out to us the discus-
sion of m3(X) for a simply connected 4-manifold X in Cochran-Habegger [3].
Thanks to Oliver Baues, Kenji Fukaya, Hansjoerg Geiges, and Katrin Wehr-
heim for helpful comments. Sonja Hohloch and Gregor Noetzel would like
to thank the Forschungsinstitut fiir Mathematik at ETH Ziirich for its hos-
pitality. We thank the referee for helpful suggestions.

2 The hypersymplectic action functional

Let X be a hyperkahler manifold with complex structures I, .J, K and as-
sociated symplectic forms wq,ws,ws. Let (M, aq,as,a3) be a positive hy-
percontact 3-manifold with Reeb vector fields v1,v2,v3 (see Appendix A).
Then the space .# := Map(M, X) of smooth maps f : M — X carries a
natural hypersymplectic action functional &7 : % — R given by

A(f):=— /M (051 A ffwr +ag A ffwy + az A f*w3> . (12)

The next lemma shows that the critical points of &7 are the solutions of the
partial differential equation

P(f) = Idf (v1) + Jdf (v2) + Kdf (v3) = 0. (13)

This is a Dirac type elliptic equation because the vector fields v; are ev-
erywhere linearly independent (see Lemma A.1) and the complex structures
I, J, K satisfy the quaternionic relations. (The square of @ in local coordi-
nates is a standard second order elliptic operator.)

Lemma 2.1. The differential of <&/ along a path R — F : t — f; is

%%(ft) = /M<atftﬁ(ft)>/i dvolyy,

where k and the metric on M are as in Remark A.2.

11



Proof. By Cartan’s formula, we have

d
%ft*wi = dp;, Bi = wi(Of, df),

for : = 1,2,3. Hence
d
%W(ft) = —/Mzi:ai/\dﬁz':—/Mzi:dai/\ﬁi

= —/ (Zdai/\ﬁz) (v1,v2,v3) dvolys
M\
= —/Mﬂzi:ﬁi(vi) dvolys
_ /M k(Bufos Idfu(vn) + Jdfu(vn) + Kdfi(v3)) dvolar.

Here the second equation follows from integration by parts, the third equa-
tion follows from the fact that vi,vs,vs form an orthonormal basis, the
fourth follows from the definition of k in Remark A.2, and the last equation
uses the definition of §; and the hyperkahler structure of X. This proves
the lemma. O

The energy identity
The energy of a smooth function f: M — X is defined by

1 1 [ <
E(f) = 2/M |df)? dvoly, = Q/M; |df (v;)]? dvolyy. (14)

Lemma 2.2. The energy of a smooth function f : M — X is related to the
hypersymplectic action via

§(f) =t 1)+ [ 1POF dwols— [ (@), df(wn))dvolar, (13

where
vo 1= aa(v3)v1 + az(vi)ve + a1 (ve)vs. (16)

In particular &(f) = () for every solution of (13).

12



Remark 2.3. The vector field vy vanishes if and only if a;(vj) = ;5. If this
holds then, for every f € %, we have

E(f) = (f) + % /M P2 dvolas.

Hence the energy of f is controlled by the L? norm of @(f) = grad./(f) and
the action.

Proof of Lemma 2.2. By direct calculation (dropping the term dvolys) we
obtain

M

3 [ 19E =)
-5/ <|Idf(v1) ) + K -5 |df<vz~>\2>

2
B /M <<K df (v1), df (v2)) + (Tdf (v2), df (v3)) + (Jdf (vs), df <””>>
— / (f*wl (v2,v3) + frwa(vs,v1) + frws(vy, U2)> .
M
On the other hand
[ @) - (1)
M
N /M<a<f>, az(vs)df (v1) + as(v1)df (v2) + a1 (v2)df (v3)) — 7 (f)
= /M az(v3) (f*wQ(U% v1) + f*‘US(”i%”l))
+ /M as(v1) (f*wl(vl, v2) + frws(vs, U2)>
- /M o (v2) (f*wl (v1,v3) + frwa(v2, v3)>
" /M(Oq A ffwr 4+ a2 A frws +O‘3Af*wg>
- / <f*w1(v2, v3) + fTwa(vs, v1) + frws(v1, “2)>-
M

The last equation follows by inserting the vector fields vy, vo,vs into the
3-forms a; A f*w;. This proves the lemma. O
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The Hessian
The tangent space of .# at f is the space of vector fields along f:
Ty F = Vect(f) = Q°(M, f*TX).

It is convenient to use the inner product

(6) o= [ () idvoly. a7
on this space. One reason for this choice is the formula in Lemma 2.1.
Another is the following observation.

Lemma 2.4. For every smooth function f: M — R we have

/ df (vi)k dvolyr = 0. (18)
M
Thus the covariant divergence of the vector field v; is given by

div(v;) = —k " Ldr(v;)

and the operator V,, : Q°(M, E) — Q°(M, E) is skew adjoint with respect
to the L? inner product (17) (for every Riemannian vector bundle E — M
with any Riemannian connection,).

Proof. The covariant divergence of a vector field v € Vect(M) is the function
div(v) : M — R defined by div(v) := Zj<Vejv,ej> for any orthonormal
frame e; of T'M. It is characterized by the property

/ df (v)dvolyy +/ fdiv(v)dvoly; =0
M M

for every function f : M — R. Now, for every 1-form 3 € QY(M), we
have (8 A da;)(v1,v2,v3) = B(v;)k and hence S A da; = 5(v;)kdvolyr. With
(3 = df this gives (18). The formula for the covariant divergence of v; follows
by replacing f with £~ f. This proves the lemma. O

Lemma 2.5. The covariant Hessian of </ at f € F is the operator
P="P;: M, f*TX) — Q(M, f*'TX)
given by
PE = IV, E + IV,E + KV, (19)

for € € QYM, f*TX). Here V is the Levi-Civita connection of the hy-
perkéhler metric on X. The operator P : WY2(M, f*TX) — L*(M, f*TX)
is self-adjoint with respect to the L? inner product (17).
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Proof. The covariant Hessian of & at f € .%# is defined by the formula
& — Vi(Pft)|li=0 where t — f; is a smooth curve in % with fy = f and
O ftli=o = & Hence (19) follows from the fact that the complex structures
I, J, K are covariant constant and V is torsion free. That 7 is symmetric
with respect to the L? inner product (17) follows from Lemma 2.4. To prove
that P is self-adjoint we observe that its square is given by

pp& == Vi, Vi § — Vi Vi€ — Vis vvgf

+ I(R(df(UQ)ﬂ df(v3))§ - V[’L)Q,v[;}g)

+ J(R(df(v3)a df(vl))§ - V[ug,v1}§)

+ K (R(df (v1), df (v2))€ = Vo, 0216)-
Here R denotes the Riemann curvature tensor on X. Since vi,vs,v3 are
linearly independent @2 is a standard second order elliptic operator in local
coordinates (with leading term in diagonal form) and hence has the usual
elliptic regularity properties. In particular, if ¢ € L? and P¢ € L?, then
@25 € W12 and elliptic regularity gives ¢ € W12, This implies that P is
self-adjoint as an operator on L? with domain W2, as claimed. ]

(20)

As in symplectic and instanton Floer theories it is a fundamental obser-
vation that the action functional is unbounded above and below and that
the operator P has infinitely positive and negative eigenvalues.

Remark 2.6. If the symplectic forms w; = d\; on X are exact then the
hypersymplectic action functional can be written in the form

3
A (f) = /MZ)‘i(a’Uif) r dvolyy.
i=1

The archetypal example is the space X = H of quaternions with the standard
hyperkéahler structure. In this case the operator f — @(f) = Pf is linear
and the hypersymplectic action is the associated quadratic form

A (f) = ;/M<f,¢f>mdvolM.

Since &7 (f) = 0 for every real valued function f : M — R C H it follows that
the negative and positive eigenspaces of P are both infinite dimensional. In
the case M = 83 with the standard hypercontact structure, specific eigen-
functions are f(y) = y with eigenvalue —3, f(y) = y + 2y with eigenvalue 1,
and f(y) = ¢ o h(y) where h : S3 — S? is a suitable Hopf fibration and
¢ : 8% — H is the inclusion of the 2-sphere into the imaginary quaternions;
in the last example the eigenvalue is —4.

15



Perturbations

Let H: X x M — R be a smooth function and define the perturbed hyper-
symplectic action functional 7 : % — R by

3
%H(f) = — /M Zai VAN f*w,- — /M H(f)li dvolyy.
=1

Here we write H(f) for the function M — R : y — H(f(y),y). Fory e M
let H, := H(-,y) and denote by VH(-,y) := VH, the gradient of H with
respect to the first argument. Then, by Lemma 2.1, the critical points of
/g are the solutions of the perturbed equation

Idf (v1) + Jdf (v2) + Kdf (vs) = VH(f). (21)

Here we denote by VH(f) the vector field y — VH,(f(y)) along f. By
Lemma 2.2, every solution of (21) satisfies the inequality

A(f) = — /

1
y </~@H(f) +3 |VH(f)|2) dvolyy.

Gradient flow lines

By Lemma 2.1, the gradient of . with respect to the L? inner product (17)
is given by

grade/p (f) = Ldf (v1) + Jdf (v2) + Kdf (v3) = VH(f) = @ ()

Hence the negative gradient flow lines of ./ are the solutions v : RxM — X
of the partial differential equation

Ost + 10y, u + JOp,u + KOy,u = VH(u). (22)

The energy of a smooth map v : R x M — X is defined by

1
Ep(u) := Q/R y (\8Su\2 + WH(U)IQ) kdvolyy ds.
X

As in finite dimensional Morse theory and Floer homology, the finite energy
solutions of (22) are the ones that converge to critical points of the perturbed
hypersymplectic action functional as s tends to oo (see Theorem 3.13 be-
low). Thus, in the case &y(u) < oo, there are solutions f* : M — X of
equation (21) such that lims_, 1 Osu(s,y) = 0, uniformly in y, and

Jim u(s,y) = fE), dim d(u(s, ) = Aa(f).(23)

Moreover the solutions of (22) minimize the energy & (u) subject to (23)
and their energy is &y (u) = Fu(f~) — Ay (f1).

16



Moduli spaces

A solution f of @, (f) = 0is called nondegenerate if the perturbed Hessian
pf,Hg = Ivv1£+va2€+va3€_v§VHy(f> (24)

is bijective. We shall prove that nondegeneracy can be achieved by a generic
choice of the Hamiltonian H : X x M — R (see Theorem 4.1 below). As-
suming this we fix two critical points f* of the perturbed hypersymplectic
action functional @ and denote the space of Floer trajectories by

M(ffHH) = {u :R x M — X |u satisfies (22), (23), ngj}\}]du\ < oo}.
X

We shall prove, again for a generic choice of the perturbation, that these
spaces are smooth finite dimensional manifolds. The proof will involve the
linearized operator

D€ = Vil + IV & + TN + K Vi€ — VeVH (u). (25)

As in all other versions of Floer homology the Fredholm index of this oper-
ator is the spectral flow of the Hessians along u. We shall prove that, when
M is a Cartan hypercontact 3-manifold and X is flat all the known analysis
of symplectic Floer theory carries over to the present setting and gives rise
to Floer homology groups that are isomorphic to the singular homology of
X. This leads to the following existence theorem for solutions of @ (f) = 0.
We emphasize that the algebraic count of the solutions gives zero and thus
does not provide an existence result.

Theorem 2.7. Let M be a compact Cartan hypercontact 3-manifold and X
be a compact flat hyperkihler manifold. If every solution f of @y (f) =0 is
nondegenerate then their number is bounded below by the sum of the Betti
numbers of X (with coefficient ring Zs). In particular, @;(f) = 0 has a
solution for every smooth function H : X x M — R.

Proof. See Section 5. O

3 Regularity and compactness

We assume throughout that X is a compact hyperkahler manifold and M
is a compact 3-manifold equipped with a positive hypercontact structure c.

17



Then the Reeb vector fields vy, ve,v3 form a (positive) orthonormal frame
of T'M and hence determine a second order elliptic operator

3
L= LyLy =—d'd=> div(v;)Ly,. (26)
i =1

If v is a Cartan structure then div(v;) = d*a; = 0 (by Lemma 2.4) and so L
is the Laplace-Beltrami operator on M. In local coordinates y', 4%, y3 on
M the operator L has the form

L= Z “Wayuay VZ a v’ 27

Hyv=1
where 5
v
ot bV — 8vi ,U/J'
§ : 7 Z’ . § : 7
Oyt
4,p=1

Since the vector fields v; form an orthonormal frame of TM, the coeffi-
cients a*¥ define the Riemannian metric on the cotangent bundle in our
local coordinates. The operators L on M and

L= 0,05 + L (28)

on R x M will play a central role in our study of the solutions of equa-
tions (21) and (22).

Theorem 3.1 (Regularity). If p > 3 then every WP solution f of
@y (f) = 0 is smooth. If p > 4 then every WP solution u of (22) is
smooth.

Proof. For every vector field v € Vect(M) we write 0,f = L,f = df (v).
Then, for every smooth map f : M — X and any two vector fields v, w
on M, we have V,,0, f — ViyOy f = =0, ) f. Hence

3
PISf) =— Z Vo, Ou, [ — Ia[vz,vs}f - Ja[vs,m]f - Ka[m,vz}f' (29)

i=1

1
Sy

In local coordinates (x ™) on X and (y',%2%,v%) on M we have

3

(Vvawf)k = Z

vu=1

2 rk k v
8f T)'U'U)V—i-af awvu_’_zrkafaf]uu

Oy? Oyt oy? OyH 52 Y OyH Oyv

18



With L as in (27) this gives

ofiofi
PR = -Lr = 3 Sk Ol

p,v=11475=1

where

- 14 14 v afz
=Y. (If[vmv:%] + Ji[og, 01]” + Kfvr, v ) oy

(=1 v=1

Moreover, the function hk (PIf))F = (PVH(f))* is given by

o (PVH) 08 avH) a5

jl=1v=1

where

C? = g”Ul +JEU2+K€’U3
Hence every solution of (21) (of class W1P) satisfies the elliptic pde

oft ofi
Z Z Iha —— = — gk — hf. (30)
! f
p,r=1%75=1 Gy“ ay

If f € WL for some p > 3 then the right hand side is in L?/2 and hence, by
elliptic regularity, f is of class W2P/2. By the Sobolev embedding theorem,
we then obtain f € W4 where ¢ := 3p/(6—p) > p. Continuing by induction,
we obtain eventually that f € W14 for some ¢ > 6, hence f € W?P and,
again by induction, f € WP for every integer k.

To prove regularity for the solutions of (22) we introduce the operators

P =V + 1IN, + IV, + KN, 9* := N, + IN},, + IV, + KV,
Then
3
7*(0su+ P(u)) = — Vudsu — > _ Vi, Op,u
p (31)
— Iﬁ[vwﬂu - J@le]u - K@@lm]u.

Here we have used (29) and the fact that Vi0,,u = V,,0su for i = 1,2,3.
If w is a solution of (22) then dsu + @(u) = VH(u). Hence in this case we
obtain the equation

ou’ o’ ou’ ouw’
_ k. i 1% k1K
Z Z Fl] (u) ( Os Os ta ay/‘ ayy) Ju huv (32)

pr=1ij=1
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where

o2 3 2 3 o
L= “” ’
el Z; Dy dy” Zl %
and
m 3 81/
gh =3 (s, vl + Iflos, vl + Kflon o)) 517,
/=1 rv=1
" 3 . m ]
OVH) owl  O(VH) 0w
k = kv —_— a1 Fe H '
Bk j;lgcg ( a7 oy + By - ; i (VH) By (33)
POVHE o IN L
jz; D Ds ijzjl ij (U)(v ) s

If u € W' with p > 4 then the right hand side in (31) is in L”/? and so
w € W2P/2_ Thus the Sobolev embedding theorem gives u € Wh4 with
q := 4p/(8 — p) > p. Continuing by induction we obtain that w is smooth.
This proves the theorem. O

The bootstrapping argument in the proof of Theorem 3.1 gives rise
to uniform estimates for sequences that are bounded in W'P. Hence the
Arzéla—Ascoli theorem gives the following compactness result.

Theorem 3.2. Assume X is compact.

(1) Let p > 3 and Q C M be an open set. Then every sequence of solutions
fY: Q — X of equation (21) that satisfies sup,, deVHLP(C) < 0o for every
compact set C' C Q has a subsequence that converges in the C° topology on
every compact subset of €.

(ii) Let p > 4 and Q@ C R x M be an open set. Then every sequence of
solutions u” : Q@ — X of equation (22) that satisfies sup,, ||du” ||,y < o0
for every compact set C C Q has a subsequence that converges in the C*°
topology on every compact subset of 2.

A priori estimates

To remove the bounded derivative assumption in Theorem 3.2, at least in
the case where X is flat, we establish mean value inequalities for the energy
density of the solutions of (22). The solutions of (21) then correspond to
the special case dsu = 0. The mean value inequalities will be based on
Theorem B.1 in Appendix B.
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Throughout we denote by L and . the operators (26) and (28) on M
and R x M, respectively, and by R the Riemann curvature tensor on X. For
amap u: R x M — X we define the energy density e, : R x M — R by

1 13
ewZQWwF+2§y@ﬁﬁ
1=

and we denote by 7, : R x M — R the sum of the sectional curvatures of
suitable coordinate planes tangent to u:

3 3
Ty =2 Z<R(85u, Oy, 1) 0y, u, 85u> + Z <R(8Wu, Oy; 1) Oy, u, 8Uiu>.

j=1 3,j=1

Throughout we fix a Hamiltonian perturbation H : X x M — R. We
explicitly do not assume that the hypercontact structure on M is a Cartan
structure (unless otherwise mentioned).

Lemma 3.3. There are positive constants A and B, depending only on the
vector fields v;, the metric on X, and the Hamiltonian perturbation H, such
that every solution u : R x M — X of (22) satisfies the estimate

Ley+14 > —A— Bley)?. (34)

If H =0 we obtain an estimate of the form Le, + r, > —Ce,.

Proof. Tt is convenient to denote the vector field s on R x M by vg. Then
the Lie brackets [vg,v;] vanish for all j, but we shall not use this fact.
Abbreviate

wy = [v2, V3], wy = [v3, v1], w3 = [v1, V2]

and define the operators

Thus £X acts on maps u: R x M — X and #V acts on vector fields along
such maps. With this notation every solution u of (22) satisfies the equation
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where * = -V, + IV, + JV,, + KV,,. Moreover,

3

3
Ley, = Z<gv8vju7 a’l}ju> + Du, Pu = Z ‘vviavju‘Q- (36)
=0 i,j=0

We compute

gv&,ju = Z Vvivvjaviu - Z vUia['Ui,vj}u

= Z R(0y,u, Op;u) Oy, u + Vv].fxu

_ Z (VUz 8[vi,vj}u + V[Ui7vj}8yiu>
= Z R(Oy,u, Op;u)Op,u + hj(u) + &j(u),
where the sums are over ¢ = 0,1, 2,3 and
hy(u) = (v,,jvs — IV, Y, — TV, Yy — K, va)VH(u),
§i(u) == =1V, 0wyt — IV, Oyt — KV, Oy u

_ Z <vv¢3[w,vj]u + V[Uivvj]a”iu) '

Since the vector fields v, v9, v3 form an orthonormal frame of T'M there is
a constant ¢ > 1 such that, for every smooth map u : Rx M — X and every
smooth perturbation H : X x M — R, we have

w

Z|€J P <clewtpa), D i) < cllHllgs (1 + e+ v/pu) -

=0
Here p, is as in (36). This gives

3 3

> (&), uu)| < o Z\g] Z\&,Ju!Z

7=0 ]0

1
§p2u+<c+2>eu,

> (hj(w),0p,u)| < c|[H|| s vV2eu (1 + eu + /u)

< S P H B ew + V2o [ Hllos Veu(L+e).
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Hence it follows from (36) that

3
Lew+ 1y =pu+ Y (hj() +&(w), dyu)
=0

2
>~ || HZs — (14 e+ [ H|Es ) ew — vV2e | Hllgs (ea)??

1
> ( fetd HHHés) e — V2| Hllgs ()21 + e4)

and thus
Lew+ry>—C (12 + (1+ [ HE) ewt+ [Hlls (e0)¥?), (37)

where C := 1 + ¢?. Using the inequality ab < %a3 + %63/2 for a,b > 0 we
obtain (34) with

2 1 2 3 2
A= (I1Hg+5 (1+1HIZ) ), B=C(5+Hle ) -
This proves the lemma. O

Remark 3.4. For general hyperkahler manifolds Lemma 3.3 gives an esti-
mate of the form
ZLe>—c(l+¢€?)

for the energy density of solutions of (21) and (22). In dimensions n = 3,4
the exponent 2 is larger than the critical exponent (n+2)/n in Theorem B.1.
For the critical points f : M — X of &7y this means that the energy

E(f) = ;/M df|? dvolys

does not control the sup norm of |df| even if we assume that there is no en-
ergy concentration near points. This is related to noncompactness phenom-
ena that can be easily observed in examples. Namely, composing a holomor-
phic sphere in X (for one of the complex structures Jy = M+ \oJ + A3K)
with a suitable Hopf fibration gives rise to a solution of #(f) = 0. Now the
bubbling phenomenon for holomorphic spheres leads to sequences f¥ : % —
X of solutions of (21) where the derivative df" blows up along a Hopf circle,
while the energy remains bounded.
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Lemma 3.5. There is a constant C' > 0, depending only on the vector fields
v;, the metric on X, and the Hamiltonian perturbation H, such that every
solution u : R x M — X of (22) satisfies the estimate

Z1oul? > —C (1 + \du!Z) 19sul?. (38)

Proof. Abbreviate vy := 05 and wy := [ve,v3], wy := [v3,v1], w3 := [v1, V9]
as in the proof of Lemma 3.3. Define the functions eg, 79 : R x M — R by

3

1
€ =5 \asu\Q, ro 1= ZZ:;<R(é7su, Oy, 1) Oy, U, 8Su>
Then 5
Leg =Y |V, 0sul® + (LY du, dsu). (39)
i=0

As in the proof of Lemma 3.3 we have

LV Oqu =" R(Du,tt, 05u) Dyt + ho(u) + &o(u), (40)

(2

where the sum is over ¢ = 1,2, 3 and

ho(u) = (vsvs IV, — IV, — KVSVUS)VH(u),
&o(u) == —IV0u, u — J V0, — K Vs0y,u.

[ho(uw)| + [Go(uw)| < ¢ | 1+|dul + [~ %,d5ul” | |9sul

and hence it follows from (39) and (40) that

Now

Leog+rg = Y |V,dsul® + (ho(u) + &o(u), dsu)

> ) |V 0sul? = 2¢ [ 1+ |dul+ [ |V, 05uf® | e
i i
1
> 5 Z |V, Dsuu]? — 20(1 + |du| + ceg>eg.
(2
Since e < |du|* and o < ¢|du|? eo this proves (38). O
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Compactness for critical points

Theorem 3.6. Let M be a Cartan hypercontact 3-manifold and X be a com-
pact flat hyperkdahler manifold. Let H : X x M — R be any smooth function.
Then the set of solutions of (21) is compact in the C*° topology.

Lemma 3.7. Let M be a Cartan hypercontact 3-manifold and X be a com-
pact flat hyperkahler manifold. Then there is a constant ¢ > 0 such that

A(f) < e /M P(F) dvoly

for every f € F. In particular, every solution of (13) is constant.

Proof. Throughout we abbreviate

T /M fPdvolus,  lldfl =/ /M df | dvoly.

The Poincaré inequality asserts that there is a constant C' > 0 such that
every smooth function f: M — H” satisfies

| ravl=0 = =clal. (a)
Since « is a Cartan structure equation (29) takes the form

PRf =d'df —xPf (42)

for f: M — H". Here we write g(f) = Pf because X = H" is equipped
with the standard flat metric and f +— @(f) is a linear operator. Taking the
inner product with f we obtain

lf? = / (f,PPf + wDf) dvoly
M
< |PFIE+ s |f]1Pf
< |PFI2+ wC |df] 1P
2 1 2 K2C? 2
< IPAP+ 5 P + S 1|

whenever f has mean value zero. By Lemma 2.2, this implies
1
a/(5) = 5 (11 = IPAI?) < (1+1C%) [ s avoly
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for every smooth map f: M — H". (We can drop the mean value zero con-
dition by adding a constant to f.) Now the theorem of Geiges—Gonzalo [14]
shows that M is a quotient of the 3-sphere by a finite subgroup of SU(2).
If M = 83 every smooth map f : M — X factors through a map to the
universal cover H" of X and the assertion follows. The general case follows
from the special case for the induced map on the universal cover of M. [J

Proof of Theorem 3.6. By Lemma 3.7 the critical points of @7 satisfy a uni-
form action bound. The action bound and the energy identity of Lemma 2.2
give a uniform L! bound on the functions e, := |de]2. Since the exponent
% in the estimate (34) of Lemma 3.3 is less than the critical exponent g
we obtain from the Heinz trick (Theorem B.1) a uniform L°° bound on the

sequence e,. Hence the result follows from Theorem 3.2. O

Remark 3.8. If M is the 3-torus then the assertion of Lemma 3.7 continues
to hold for the contractible maps f : M — X. In the noncontractible case
we may have nonconstant solutions of (21) and the estimate of Lemma 3.7
only holds with an additional constant on the right.

Remark 3.9. Let X be a K3 surface. Then compactness fails for the critical
points of &7fr even in the case H = 0 and for sequences with bounded energy
(see Remark 3.4).

Compactness and exponential decay for Floer trajectories

Lemma 3.10. Let M be a Cartan hypercontact 3-manifold and X be a
compact hyperkdhler manifold. Let H : X x M — R be any smooth function
and u: R x M — X be a solution of (22). Then the following holds.

(i) For every s € R we have
1 2 2 3 2
— | |dul® < & (u(s,-)) + Vol(M) sup |[VH|"+ = [ |Osul”. (43)
2 Jm XxM 2 )

(ii) If u has finite energy

En(u) = / / |85ul? K dvolys ds < oo
—oo J M

and sup |du| < oo then all the derivatives of u are bounded on R x M and
Osu converges to zero in the C™ topology as s tends to £oo.

(iii) If X is flat then

Er(u) < oo — sup |du| < oco.
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Proof. We prove (i). By Lemma 2.2, every solution u of (22) satisfies

1

&(u(s,-)) = o (u(s,-)) + 3 /M |VH (u) — dsul®

and hence

1/ |du|2:é"(u(3,-))+1/ 10ul?
2 Jm 2 Ju

< (u(s,-)) + Vol(M) sup |VH|2+3/ EX
XxM 2J/m

Here we have used the fact that the hypercontact structure on M is a Cartan
structure. This proves (i).

We prove (ii). Since u satisfies (35) and |du| is bounded the standard
elliptic bootstrapping arguments as in the proof of Theorem 3.1 give uniform
bounds on the higher derivatives of u. Since |du| is bounded it follows from
Lemma 3.5 that the function |dsu|? satisfies an estimate of the form

Z|0su* > —C'|dsu)? .

This in turn implies that u satisfies the mean value inequality

so+1

Dsu(so,y)? < c /

/]83u|2 dvolys ds
o—1 JM

for a suitable constant ¢ > 0 (see Theorem B.1 with A =0 and = a =1).
Using the finite energy condition again we find that dsu converges to zero
uniformly as |s| tends to infinity. Convergence of the higher derivatives of
Osu follows from an elliptic bootstrapping argument using equation (40).
This proves (ii).

We prove (iii). Assume X is flat. Then it follows from Lemma 3.3 that
there are positive constants A and B such that

Zdul* > —A - Bldul®

for every solution u : R x M — X of (22). Hence, by Theorem B.1, there
are positive constants i and ¢ such that every solution of (22) satisfies

1
BQ/ ldul* <h = |du(z2)]* <c|Ar®+ 3
By (z) " JBr(z)

IdUIQ) (44)
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for z€ Rx M and 0 < r < 1. Now suppose u : R x M — X is a solution
of (22) with finite energy & (u) < co. Then the formula

/Sl /M ]85u|2 kdvoly ds = o (u(so, ) — A (u(s1,-))

shows that there is a constant C' > 0 such that @7y (u(s,-)) < C for all s.
Explicitly we can choose C := & (u(0,)) + & (u). Combining this with (43)
we obtain an inequality

[ 1au <crs [ o (15)
M M
for every s € R, where ¢ := 2C + 2Vol(M) sup |VH|. Next we choose T' > 0

so large that
& h
2
s dvol —.
/ /]W |8 u\ olyr < 1B2

_h_
8cB?2”

so+Tr
/ ldu|®* < /\du!2 dvolyy ds
B (20) so—r JM

Then, for zop = (s0,%0) € [T+ 1,00) x M and r < we have

so+Tr
< / <c—|—3/ \&gu\Q dv01M> ds
so—r M
< 2cr+3/ / |9sul? dvoly ds
T M
< vt
= T S

Here the second inequality follows from (45) and the third from the fact
that sg —r > T. The same estimate holds for s) < —T — 1. Hence it follows
from (44) that |du| is bounded. This proves the lemma. O

Remark 3.11. It is an open question if part (iii) of Lemma 3.10 continues
to hold without the hypothesis that X is flat.

Lemma 3.12. Let M be a Cartan hypercontact 3-manifold and X be a
compact flat hyperkdhler manifold. Let H : X x M — R be any smooth
function. Then there is a constant ¢ > 0 such that

—c < dy(u(s,-)) <c

for every finite energy solution u : R x M — X of (22) and every s € R.
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Proof. By Theorem 3.6, there is a constant ¢ > 0 such that
—c< dy(f)<c

for every critical point of ;. Now let u : R x M — X be a finite energy
solution of (22) and choose a sequence of real numbers s¥ — —oo. Passing
to a subsequence we may assume that u(s” + -, -) converges, uniformly with
all derivatives, to a solution of (22) on the domain [—1, 1] x M. By (i), this
solution is a critical point of «7y. Hence

lim 7 (u(s”,-)) <ec.

V—00
Since the action is nonincreasing along negative gradient flow lines this shows
that «(u(s,-)) < c for all s € R. The lower bound is obtained by the same
argument for a sequence s¥ — +o00. This proves the lemma. O

Theorem 3.13 (Exponential decay). Let M be a Cartan hypercontact
3-manifold and X be a compact hyperkdhler manifold. Let H : X x M — R
be a smooth function such that every solution of (21) is nondegenerate. Let
u:R X M — X be a solution of (22). Then the following are equivalent.
(a) The energy &x(u) is finite and |du| is bounded.

(b) There are solutions f*: M — X of equation (21) such that

lim u(s,y) = f*(y), lim o/ (u(s,-) = u(f*), (46)
s—Foo s—=o0
and limg_, 100 Osu(s,y) = 0, Moreover, the convergence is uniform in y
and |du| is bounded.
(c) There are positive constants p and cy,c2,c3,... such that
||asu||cl((R\[—T,T})xM) < et (47)

for every T > 0 and every integer £ > 0. Moreover, |du| is bounded.

Proof. That (c) implies (a) is obvious. We prove that (a) implies (b). By
Lemma 3.10 it follows from (a) that |0su| converges to zero uniformly as |s|
tends to infinity and that du is uniformly bounded with all its derivatives.
Hence every sequence s, — +oo has a subsequence, still denoted by s,,
such that u(s,,-) converges in the C*® topology to a solution of (21). Now
it follows from the nondegeneracy of the critical points of o7y that they are
isolated. Hence the limit is independent of the sequence s,. This proves (b).
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We prove that (b) implies (c). Consider the function ¢ : R — [0, 00)

defined by

1

@(s) = / K |9sul? dvolyy.
2 J/m

By assumption, this function converges to zero as s tends to +o00. Moreover,
its second derivative is given by

¢"(s) = /M K |Vidsul* + /M k (Vs VisOsu, Osu)

Denote by
Dy =1V, +JV,, + KV,, — VVH(u)

the covariant Hessian as in (24). Since the vector fields v; are independent
of s we have

VsOsu = =Vs@y (u) = =P 0su = PyPy(u)..

Differentiating this equation covariantly with respect to s we obtain

Vs VsOsu = @HV@@H(U) + [V, @H]ﬁH(U) = pHpHBSU — [V, Z/)H]as“'

Since P, is self-adjoint with respect to the L? inner product with weight &
this gives

"oy K wl? K 5U2_ K ([Vs, s, O ).
¢'(s) = /M Vol + /M Dol /M [V, P 1g)0ss, Osts)

Since |du| is bounded we have an inequality

| (150,000 < el [ 10,
M M

Moreover, by Lemma 3.10, the bound on |du| guarantees that u(s,-) con-
verges in the C* topology to f* as s tends to o0o. Since f* are nonde-
generate critical points of o/ we deduce that there is a constant p > 0 such
that, for |s| sufficiently large, we have

/ K |Py0sul?® > 2p2/ |Osul? .
M M

Choosing |[s| so large that ¢ |Osul| foo(pr) < p? we then obtain
¢"(s) = p*(s).
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Hence

Lo (& (5) + po(s)) = e (8 (5) — *6(5)) 2 0.

Since ¢(s) — 0 as s — oo we must have

po(s) +¢'(s) <0

for all sufficiently large s and hence e”*¢(s) is nonincreasing. This proves
the exponential decay for ¢. To establish exponential decay for the higher
derivatives one can use an elliptic bootstrapping argument based on equa-
tion (40) to show that the L> norm of Jsu controls the higher derivatives.
This proves the theorem. ]

Remark 3.14. If X is flat then the condition sup |du| < oo in (a—c) in
Theorem 3.13 can be dropped. This follows from Lemma 3.10 (iii) and the
fact that each of the conditions (46) and (47) guarantees finite energy. Sim-
ilarly, the next theorem continues to hold for general compact hyperkéahler
manifolds if we impose the additional condition sup, supg, s |du”| < oco.

Theorem 3.15 (Compactness). Let M be a Cartan hypercontact 3-man-
ifold and X be a compact flat hyperkdhler manifold. Let H : X x M — R
be a smooth function such that every solution f of @, (f) =0 is nondegen-
erate. Let f+ be two distinct critical points of /gy and u’ be a sequence in
A (f~,f;H). Then there is a subsequence (still denoted by u”), a catena-
tion

U E///(fo,f1;H),U2 E///(fl,fg;H),...,uN E///(fN_l,fN;H)

of Floer trajectories, and there are sequences s{ < sy < --- < s%; such that
fo=1", fn=f%, Dy (fi-1) > du(f;),
and, for j = 1,..., N, the shifted sequence u”(sj’f + -,-) converges to u;

uniformly with all derivatives on every compact subset of R x M.

Proof. By Lemma 3.10 the functions u” satisfy (44) for suitable constants
A, B, ¢, h. This implies the following.

Energy quantization I. Let x9g € R x M and suppose that there is a
sequence ¥ — xo such that |du” (z")| diverges to infinity. Then

liminf/ |du)? > %
V—00 BE(ZUO) B

for every € > 0.
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The proof uses the Wehrheim trick. Suppose, by contradiction, that there
is a constant € > 0 and a sequence v; — oo such that B2 [ B (z0) |alu”i|2 <h
for every 4. Then we can use (44) with = € B, /5(70) and 7 = /2 to obtain

A2 16 Ace?  16¢h
du’i () <e| =+ du”i|* | < ——
’u@)’—c(él +a4/35<m)‘u‘>_ 4 +BQ€4

for all z € B, 5(w0) and v > vg. With o = 2 it follows that the sequence
|dui (x¥)| is bounded, a contradiction.

Energy quantization II. Let 29 = (so,y0) € R x M and suppose that
there is a sequence z¥ = (s”,y") — (so,x0) such that |du”(x")| diverges to
nfinity. Then

sote 9 A
lim inf osu”|” > —
I /M ‘ s | — 3B2
for every e > 0.

By Lemma 3.10 (i) we have

1
/M |Bsu”|* > 3/M ldu’|* — ¢ (48)

for some constant ¢ > 0 independent of v and s. The assertion follows by
integrating this inequality from sg — € to sg + € and taking the limit € — 0.

With this understood it follows that, after passing to a subsequence, we
obtain divergence of the energy density at most near finitely many points.
On the complement of these finitely many points, a further subsequence
converges to a solution u*> of 9su®> + @5 (u*™) = 0 in the C* topology,
by Theorem 3.2. Now it follows from the inequality (48) that the L? norm
of du® is finite on every compact subset of R x M and in particular in
a neighborhood of each bubbling point. Hence we can use the removable
singularity theorem C.1 to deduce that the limit solution can be extended
into the finitely many missing points. The upshot is that, by standard
arguments, we obtain a convergent subsequence as in the statement of the
theorem, except that u“(s]”- +-, ) need only converge to u; in the complement
of finitely many points. If these bubbling points do exist we have

T
(1) — A (f;) = En(uj) < Jim / Ba |2 — 22
T—o00 sj—T M B
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for some j. However, this would imply that the sum of the energies & (u;)
is strictly smaller than &y (u”) = @y (f~) — Zu(fT) which is clearly im-
possible. Thus bubbling cannot occur and the sequence |du”| must remain
uniformly bounded. This proves the theorem. O

Remark 3.16. A key issue in developing the Floer theory of the action
functional oy for general (compact) hyperkdhler manifolds is to extend
Theorems 3.6 and 3.15 to the nonflat case. One then has to address the
codimension-2 bubbling phenomenon for finite energy sequences of solutions

fof @,(f) =0 and u of Osu + @5 (u) =0.

4 Moduli spaces and transversality

Transversality for critical points

Let 7 := C®°(X x M) and, for H € J, denote by
C(H) :={f: M — X| f satisfies @ (f) = 0}

the set of critical points of 7. Recall that a critical point f € €(H) is
called nondegenerate if the Hessian

Py =1V, + IV + KV, — VVH(f)

is bijective as an operator from Ty.% = QU(M, f*TX) to itself (respectively
as an operator from W*TLP(M, f*TX) to W*P(M, f*TX)). Denote by

SO = {H € | every critical point f € ¥(H) is nondegenerate}
of all H € 47 such that &/ : % — R is a Morse function.

Theorem 4.1. For every compact 3-manifold M with a positive hypercon-
tact structure and every hyperkdhler manifold X the set F€™°™C is of the
second category in FE.

Proof. Fix an integer ¢ > 2 and abbreviate /¢ := C(X x M). Then
the regularity argument in the proof of Theorem 3.1 shows that f with
@1 (f) = 0is of class WP for any p < co. Fix a constant p > 3 and denote
by

@' = {(f, H) € WY (M, X) x A" | f satisfies §,,(f) = o}
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the universal moduli space of critical points. We prove that €* is a C¢~!
Banach manifold. Tt is the zero set of a C*~! section of a Banach space
bundle

& — WHP(M, X) x "

with fibers & i := LP(M, f*Tx). The section is given by

(fs H) = 9y (f)

and we must prove that it is transverse to the zero section. Equivalently,
the operator

WY (M, f*TX) x A" — LP(M, f*TX), (&h) — Psyé—Vh(f) (49)

is surjective for every H € #* and every f € € (H).

Let 1/p+1/q = 1 and choose an element n € LY(M, f*TX) that anni-
hilates the image of (49) in the sense that

/ <n7pf,H§ - Vh(f)> rkdvoly =0
M

for all h € 2% and & € WYP(M, f*TX). Then, by elliptic regularity, we
have n € WP (M, f*TX) and

Diun=0, / (n, Vh(f)) kdvoly; =0 Y he st
M

In particular n is continuous. If n £ 0 then it is easy to find a smooth
function h : X x M — R such that (n, Vh(f)) > 0 everywhere on M and
<77, Vh(f)> > 0 somewhere. Namely, choose a point yg € M with n(yg) # 0
and a function hg : X — R such that

ho(f(y0)) =0, Vho(f(yo)) = n(yo)-

Then there is a neighborhood Uy C M of yg such that

(n(y), Vho(f(4))) > 0

for all y € Up. Now choose a smooth cutoff function 8 : M — [0,1] with
support in Uy such that 3(yg) = 1. Then the function h(y,z) := B(y)ho(x)
has the required properties. Thus we have proved that the operator (49) is
always surjective and hence €* is a C*~! Banach manifold as claimed.
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Now the obvious projection
mt et — ot

is a C*~! Fredholm map of index zero. Since ¢ > 2, it follows from the Sard-
Smale theorem that the set #™°m¢f C ¢ of regular values of 7t is dense
in ##¢. Now the result follows by the usual Taubes trick as explained, for
example, in [24, Chapter 3]. Namely, for a constant ¢ > 0 we may introduce
the set s of all H € " such that the critical points f € €(H)
with sup |df| < ¢ are nondegenerate. By Theorem 3.2, this set is open
in 2. (In fact Theorem 3.2 can be extended to obtain a W*~1? convergent
subsequence whenever H is of class C* respectively converges in C*.) Since
st = O o AT e obtain with £ = oo that each corresponding
set J£"°™° is open and dense in JZ and so SO = (O, AL s
a countable intersection of open and dense sets in s#. This proves the
theorem. O

Fredh