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HOMOCLINIC POINTS AND FLOER HOMOLOGY

Sonja Hohloch

A new relation between homoclinic points and Lagrangian Floer
homology is presented: In dimension two, we construct a Floer homol-
ogy generated by primary homoclinic points. We compute two examples
and prove an invariance theorem. Moreover, we establish a link to the
(absolute) flux and growth of symplectomorphisms.

1. Introduction

Homoclinic points are the intersection points of the stable and unstable man-
ifolds of a hyperbolic fixed point. Their discovery goes back to 1889 when
Poincaré [Poi1], [Poi2] studied the n-body problem and came across certain
nonconvergent trigonometric series. First results about the nature of homo-
clinic points are due to Birkhoff [Bi] who discovered an intricate amount
of (mostly high) periodic points near homoclinic ones. This phenomenon
was formalized by Smale’s [Sm1] [Sm2] horseshoe in the 1960’s. Melnikov’s
[Me] perturbation method for producing and detecting homoclinic points
also dates to the 1960’s. Since the 1970’s, genericity properties of homoclinic
points were studied by several authors. But in spite of these achievements,
there are still many open questions.

Floer theory is a much more recent development. Floer [Fl1], [Fl2], [Fl3]
devised it in the late 1980’s when he worked on the Arnold conjecture.
Arnold conjectured around 1960 that the number of fixed points of a non-
degenerate Hamiltonian diffeomorphism on a closed symplectic manifold is
greater or equal to the sum over the Betti numbers. Floer proved Arnold’s
conjecture first on closed symplectic manifolds with π2(M) = 0 and then
on so-called monotone manifolds. After his breakthrough, the conjecture
was established on more general closed symplectic manifolds by a series of
authors, cf. for references e.g. Salamon [Sa].
Floer theory is some kind of infinite dimensional Morse theory for the sym-
plectic action functional as a Morse function. It is vividly studied nowadays
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and has many applications not only in symplectic geometry and dynam-
ical systems. The first version of Floer homology was Lagrangian Floer
homology. Roughly speaking, its chain groups are generated by the inter-
section points of two Lagrangian submanifolds. The grading is induced by
the Maslov index. The boundary operator counts flow lines of the negative
L2-gradiant flow of the symplectic action functional between intersection
points with Maslov index difference one.

The present paper is motivated by the fact that the stable and unstable man-
ifold of a hyperbolic fixed point of a symplectomorphism are Lagrangian sub-
manifolds. In such a case the homoclinic points can be considered as intersec-
tion points of a Lagrangian intersection problem for which one might hope
to define a Lagrangian Floer homology. The main obstacle is the wild oscilla-
tion and accumulation behaviour of the noncompact Lagrangians. Classical
Lagrangian Floer homology is defined for compact Lagrangian submanifolds
and can be generalized to ‘nice’ noncompact ones. But those techniques fail
in the present situation.
In order to actually count connecting flow lines one needs compactness of the
associated 0-dimensional moduli spaces. If the dimension of the manifold is
greater than two this turns out to be a tricky analysis problem about Gromov
compactness of spaces of pseudo-holomorphic curves.
But on two-dimensional manifolds, the analysis can be replaced by combina-
torics and counting of certain orientation preserving immersions as shown by
de Silva [dS], Fel’shtyn [Fe1] and Gautschi & Robin & Salamon [GauRS].
Since a symplectic form is a nondegenerate, closed 2-form the notions of
‘volume preserving’ and ‘symplectic’ coincide and symplectomorphisms and
volume preserving diffeomorphisms are the same.
The wild behaviour and the noncompactness of the (un)stable manifolds
prevent the analysis ansatz. Therefore we will work in a two-dimensional
setting. Nevertheless, the set of homoclinic points is still too large to allow a
well-defined and meaningful Floer homology as analysed in Hohloch [Ho1].
Our generator set will be the set of so-called primary homoclinic points
which are defined by very rigid geometric properties.

In the following, (M,ω) stands for R2 or a closed surface with genus g ≥ 1
with their resp. volume forms. Let ϕ be a symplectomorphism on M with
hyperbolic fixed point x. Denote the associated stable resp. unstable mani-
folds by W s := W s(x, ϕ) resp. W u := W u(x, ϕ) and set H := W s ∩W u to
be the set of homoclinic points. Given p, q ∈ H, we call [p, q]s ⊂ W s and
[p, q]u ⊂ W u the stable resp. unstable segment between p and q. We call p
contractible if the loop [p, x]s ∪ [p, x]u is contractible in M . We denote by
H[x] ⊂ H the set of contractible homoclinic points and call

Hpr := {p ∈ H[x]\{x} | ]p, x[s ∩ ]p, x[u ∩ H[x] = ∅}
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the set of primary points. ϕ induces a Z-action on H via Z × H → H,
(n, p) 7→ ϕn(p). H̃pr := Hpr/Z is finite and we denote the equivalence class

or orbit of p by 〈p〉. The Maslov index µ induces a grading µ : H̃pr → Z. We
define m(p, q) to be the number of certain orientation preserving immersions
with start point p and end point q and set m(〈p〉, 〈q〉) :=

∑
n∈Zm(p, ϕn(q)).

Theorem 1. The groups and operator

Ck(x, ϕ) :=
⊕
〈p〉∈H̃pr
µ(〈p〉)=k

Z〈p〉 and ∂〈p〉 :=
∑
〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉

with k ∈ Z form a chain complex, i.e. ∂ ◦ ∂ = 0, and we call the resulting
homology H∗ := H∗(x, ϕ) := ker ∂∗

Im ∂∗+1
primary Floer homology. Ck(x, ϕ) and

thus Hk(x, ϕ) vanish for k /∈ {±1,±2,±3}.

The well-definedness of ∂ and the proof of ∂ ◦∂ = 0 are tricky combinations
of dynamical and combinatorial arguments.

H∗ is invariant under so called contractibly strongly intersecting (symplectic)
isotopies (defined later before Theorem 31):

Theorem 2. Let (M,ω) be a closed symplectic two-dimensional manifold
with genus g ≥ 1. Let ϕ and ψ be symplectomorphisms with hyperbolic fixed
points x ∈ Fix(ϕ) and y ∈ Fix(ψ). Let (x, ϕ) and (y, ψ) be csi and let all
primary points of ϕ and ψ be transverse. Assume there is a csi isotopy Φ
from (x, ϕ) to (y, ψ). Then

H∗(x, ϕ) ' H∗(y, ψ).

The proof has to combine analytical and combinatorial arguments since a
primary point p ∈ Hpr might vanish (analogously arise) in two ways:

(i) p vanishes as intersection point or
(ii) p persists as intersection point, but is no longer primary.

The invariance implies an existence and bifurcation criterion for homoclinic
points and the fixed point. Conjecturally Hamiltonian isotopies are naturally
strongly intersecting. Moreover, Theorem 2 allows to classify homoclinic
tangles up to csi isotopy.

There are several versions of homoclinic Floer homology with quite different
flavours. Their well-definedness can be easily deduced from the construction
and well-definedness of primary Floer homology.

One version is chaotic Floer homology Ĥ∗ which takes into account the peri-
odic points ‘near’ a homoclinic tangle. More precisely, we have a whole
sequence n 7→ Ĥ∗(x, ϕ

n) where n is the number of iterates of the symplec-

tomorphism. For fixed n, the boundary operator associated to Ĥ∗(x, ϕ
n)

counts only those connecting immersions whose range does not contain any
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fixed points of ϕn, i.e. n-periodic points of ϕ. This leads to an interesting
behaviour of the sequence n 7→ Ĥ∗(x, ϕ

n) and the definition of a symplectic
zeta function

ζx,ϕ(z) := exp

( ∞∑
n=1

χ(Ĥ∗(x, ϕ
n))

n
zn

)
where χ(HFix

∗ (x, ϕn)) denotes the Euler characteristic of Ĥ∗(x, ϕ
n). The

study of this function is an ongoing project.

An important question in symplectic dynamics is the growth behaviour of
symplectomorphisms under iteration. Among others, it has been studied
extensively by Polterovich [Pol3], [Pol4]. By means of the growth behaviour,
group theoretic question about the group of Hamiltonian diffeomorphisms
can be answered. In [Pol4], a Hamiltonian version of the Zimmer program is
devised and the proofs relie on the growth behaviour of iterated Hamiltonian
diffeomorphisms.
If we want to study the iteration behaviour of symplectomorphisms by means
of primary Floer homology we easily find

(3) rkH∗(x, ϕ) ≤ rkH∗(x, ϕ
n).

For Hamiltonian diffeomorphisms, equality in (3) turns out to be equiv-
alent to proving Theorem 2 for Hamiltonian diffeomorphisms. Thus the
strong invariance in Theorem 2 seemingly opposes easy examples with
rkH∗(x, ϕ) < rkH∗(x, ϕ

n).
Another version of homoclinic Floer homology, namely semi-primary Floer
homology H̃∗, is more apt for detecting increasing rank. Instead of primary
points, its chain complex is generated by so-called semi-primary points. H̃∗
has weaker invariance properties than primary Floer homology. It is easy to
find examples with

H̃∗(x, ϕ) < H̃∗(x, ϕ
n).

Increasing rank of semi-primary Floer homology actually means that parts
of the tangle wrap in a certain way around some genus of the surface.

This line of thoughts has been completed in Hohloch [Ho2]. In that work,
primary Floer homology on R2 and so-called cylinder Floer homology H∗
(a variant of semi-primary Floer homology) on the infinite cylinder Z are
studied using the filtration by the symplectic action A. The action interval
of the filtered groups appears as an upper index. The action spectrum is
denoted by Spec(x, ϕ) and the minimal distance between two action levels
by gap(x, ϕ). The boundary operator is modified in such a way that we keep
track of the homotopy class on Z.

Theorem 4 ([Ho2]). Let ϕ ∈ Symp(R2) resp. ϕ ∈ Hamc(Z). Let b ∈
Spec(ϕ, x) and 0 < ε ≤ 1

2 gap(ϕ, x). Assume that there are k primary classes
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with action b. Then we obtain for the homoclinic Floer homology on R2 resp.
Z

H
]b−ε,b+ε]
∗ (ϕ, x) ' Zk and H

]b−ε,b+ε]
∗ (ϕn, x) ' (Zk)n,

H
]b−ε,b+ε]
∗ (ϕ, x) ' Zk and H

]b−ε,b+ε]
∗ (ϕn, x) ' (Zk)n.

Thus the rank grows linearly with the number of iterations.

Homoclinic Floer homology is also linked to transport and (absolute) flux
of a dynamical system. In the symplectic plane (R2, ω), the absolute flux
(briefly flux) of a symplectomorphism ϕ through a simply closed curve c is
defined as the volume of the set of points which are swept out of the interior
of the curve, i.e.

F luxϕ(c) = volω(ϕ(Int(c)) ∩ Ext(c)).

It also can be defined for noncontractible curves on the cylinder. Note that
this notion is different from the flux homomorphism in symplectic geome-
try (cf. [McS1], [Pol2]) which, roughly speaking, considers the difference
between ϕ(Int(c)) ∩ Ext(c) and ϕ(Ext(c)) ∩ Int(c).
The absolute flux has been studied by MacKay & Meiss & Percival [MMP]
in order to gain a better understanding of the transport. In their setting,
transport means the motion of points unter (many) iterations. Invariant
curves have zero flux and are therefore complete barriers for the transport.
MacKay & Meiss & Percival [MMP] focus on partially invariant curves asso-
ciated to cantori, homoclinic and periodic points. In this case, transport is
only possible through the non-invariant part of the curve. The non-invariant
part forms a so-called turnstile. We generalize this notion in [Ho2] and dis-
tinguish between true, overtwisted and generalized turnstiles. Overtwisted
turnstiles correspond to mixed moves and generalized turnstiles to primary
moves in the prove of Theorem 2.

Proposition 5 ([Ho2]). True and overtwisted turnstiles are annihilated by
the boundary operator.

In our setting, the Maslov index and the (relative) action are invariant under
iteration of the symplectomorphism. The flux through a homoclinic orbit
〈p〉 is defined as the flux through a curve parametrizing [p, x]s ∪ [p, x]u. It
transforms

F luxϕn(〈p〉) = nF luxϕ(〈p〉)
as the Maslov index and action in classical Floer theory, see Ginzburg &
Gürel [GiG]. MacKay & Meiss & Percival [MMP] identified the flux (under
certain assumptions) with Mather’s [Ma1] difference in action 4W . If the
primary points p and q form a true turnstile and v ∈M(p, q) 6= ∅ we extend
their result to
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Theorem 6 ([Ho2]). Under certain assumptions holds

A(〈p〉)−A(〈q〉) = A(〈p〉, 〈q〉) =

∫
v
ω = F luxϕ(〈p〉) = 4Wp,q.

Altogether, H∗ is the first invariant which takes the algebraic interaction of
homoclinic points into account and links them to dynamical properties like
the absolute flux and growth of symplectomorphisms.

Acknowledgments. The author wishes to thank G. Noetzel, M. Schwarz,
Z. Xia and E. Zehnder for helpful discussions, explanations and references.

2. Immersions, cutting and gluing

2.1. Maslov index and homotopy class. In this subsection, we recall
the definition of the Maslov index for Lagrangian subspaces in R2n as it
can be found in McDuff & Salamon [McS1]. Using suitable trivialitations,
Floer [Fl1] generalized it to symplectic manifolds. Finally, we introduce cru-
cial notations like (un)stable segments and homotopy classes for homoclinic
points.

Denote by L(n) the space of Lagrangian subspaces of (R2n, ω0) with ω0 :=∑n
i=1 dxi ∧ dyi. Represent Λ ∈ L(n) by Λ =

(
X
Y

)
with U := X + iY ∈

U(n) and define ρ : L(n) → S1, ρ(Λ) := det(U ◦ U). For a loop Λ : R/
Z → L(n), define the Maslov index of loops of Lagrangian subspaces by
µ(Λ) := deg(ρ ◦ Λ) where deg denotes the mapping degree of ρ ◦ Λ : R/
Z → S1. If α : R → R is a lift of ρ ◦ Λ, i.e. det(X(t) + iY (t)) = eiπα(t), we
obtain µ(Λ) = α(1)− α(0).

Let (M,ω) be a 2n-dimensional symplectic manifold and ϕ a symplec-
tomorphism with hyperbolic fixed point x. For symplectomorphisms, the
(un)stable manifolds W u := W u(x, ϕ) and W s := W s(x, ϕ) are Lagrangian
submanifolds and there are injective immersions γu : Rn → W u and
γs : Rn → W s with γu(0) = x = γs(0). Provide P(W u,W s) := {β : [0, 1]→
M | β(0) ∈ W u, β(1) ∈ W s} with the smallest topology such that the fol-
lowing three maps are continuous:

P(W u,W s)→ C([0, 1];M), β 7→ β,

P(W u,W s)→ R, β 7→ γ−1
u (β(0)),

P(W u,W s)→ R, β 7→ γ−1
s (β(1)).

Fix α ∈ P(W u,W s) and denote its connected component by Pα(W u,W s).
Identify p, q ∈ H as constant paths in Pα(W u,W s). Let v : [0, 1] →
P(W u,W s) with v(0) ≡ p and v(1) ≡ q and see it as map v : [0, 1]2 → M
via v(s, t) := v(s)(t). The square [0, 1]2 is contractible and we can find a
trivialization Φ := Φv : v∗TM → [0, 1]2 × R2n such that the symplectic
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form on the fibers is mapped to the standard ω0 on R2n ' Cn, Φ is con-
stant on {0} × [0, 1] and on {1} × [0, 1], and Φ(TpW

s) = iΦ(TpW
u) and

Φ(TqW
s) = iΦ(TqW

u).
Denote by ∂[0, 1]2 the boundary of [0, 1]2 and define the loop Λv : ∂[0, 1]2 →
L(n) starting in (0, 0) and running through (1, 0), (1, 1) and (0, 1) back to
(0, 0) piecewise via

(ξ, 0) 7→ Φ(Tv(ξ,0)W
u), (ξ, 1) 7→ Φ(Tv(ξ,1)W

s),

(1, η) 7→ e
iπη
2 Φ(TqW

u), (0, η) 7→ e
iπ(η−1)

2 Φ(TpW
s).

Under the above conventions, we define the relative Maslov index for p,
q ∈ H via µ(p, q) := µ(Λv). If π2(M) = 0, then c1|π2(M) = 0 (where c1

denotes the first Chern class of M) and the construction is independent from
the choosen path v and the trivialization Φ. Concerning the two-dimensional
situation, recall that the second homotopy class of a closed surfaces with
genus g ≥ 1 always vanishes.

From now on, (M,ω) is either (R2, dx ∧ dy) or a closed, two-dimensional
manifold with genus g ≥ 1. For i ∈ {u, s} the immersions γi : R → W i

induce an ordering <i resp. ≤i on W i via

γi(t) <i γi(t̃) ⇔ t < t̃ resp. γi(t) ≤i γi(t̃) ⇔ t ≤ t̃.

By abuse of notation, we say that p, q ∈ W i induce an ordering on W i

via setting p <i q resp. p ≤i q. For i ∈ {0, 1} consider p, q ∈ W i and set
tpi = γ−1

i (p), tqi := γ−1
i (q), t−i := min{tpi , t

q
i } and t+i := max{tpi , t

q
i }. We call

[p, q]u := γu([t−u , t
+
u ]) resp. [p, q]s := γs([t

−
s , t

+
s ])

the segments inW u resp.W s between p and q. The segments are independent
of the chosen immersion and a priori just sets of points, thus [p, q]i = [q, p]i.
Analogously, we define the open and half-open segments ]p, q[i and [p, q[i.

Now we assign to each p ∈ H a homotopy class in π0(P(W u,W s)) '
π1(M,x): Denote by cp : [0, 1] → W u ∪ W s a curve with cp(0) = x =
cp(1) which runs through [x, p]u to p and through [p, x]s back to x. Set
[p] := [cp] ∈ π1(M,x) and [−p] for the path with the inverse parametriza-
tion. Then H[x] := {p ∈ H | [p] = [x]} is the set of contractible homoclinic
points. H[x] is invariant under the action of ϕ. Moreover, if ϕ = ϕ1 is the

time-1 map of a flow and ξ : S1 →M , ξ(t) := ϕt(x) and ξ is contractible or
π1(M,x) abelian then [p] = [ϕn1 (p)] for all p ∈ H and n ∈ Z.

Remark 7. For contractible p, p̃, q ∈ H, we observe:

(1) µ(q, p) = −µ(p, q) and µ(p, q) + µ(q, p̃) = µ(p, p̃).
(2) µ(p, q) = µ(ϕn(p), ϕn(q)) for n ∈ Z, i.e. the (relative) Maslov index of

p and q is invariant under the Z-action of ϕ on H.
(3) µ(p, ϕn(p)) = 0 for all n ∈ Z.
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(4) µ(p, q) = µ(p, ϕn(q)) for n ∈ Z.

The (relative) Maslov index yields a grading µ : H[x] → Z via µ(p) := µ(p, x)
such that for contractible p and q holds µ(p, q) = µ(p, x)+µ(x, q) = µ(p, x)−
µ(q, x) = µ(p)− µ(q).

Remark 8. Let τ : (M̃, ω̃) → (M,ω) be the universal cover with τ∗ω = ω̃
and p, q ∈ H with [p] = [q]. Denote by [p̃, q̃]i the lift of [p, q]i to the universal

cover (M̃, ω̃) starting in p̃ ∈ τ−1(p). Then µ(p, q) = µ(p̃, q̃).

2.2. Immersions, di-gons and hearts. This subsection introduces cer-
tain di-gons, also known as 2-gons, lunes or half-moons (Chekanov [Che],
de Silva [dS], Gautschi & Robbin & Salamon [GauRS], Robbin [Ro]). They
will be crucial for the definition of the boundary operator of the Floer chain
complex.

A di-gon is the polygon D ⊂ R2 with two convex vertices at (−1, 0) and
(1, 0) sketched in Figure 1 (a). Denote its upper boundary by Bs and its
lower boundary by Bu.
A heart is either the polygon Db of Figure 1 (b) or the polygon Dc of Figure
1 (c). A heart is characterised by two vertices at (−1, 0) and (1, 0) where
one is convex and one concave. Denote their upper boundaries by Bs and
their lower boundaries by Bu.

Bs
Bs

Bs

-1 1

Bu

Bu

Bu

(b) (c)

Db Dc

(a)

D

-1 1 -1 1

Figure 1. Di-gon and heart.

We require the immersions in the following definitions to be immersions also
on the boundaries and vertices. Thus the image of a small neighbourhood of
a convex (concave) vertex of a polygon is a wedge-shaped region with angle
smaller (larger) than π.

Definition 9. Let D be the di-gon and p, q ∈ H with µ(p, q) = 1. We define
M(p, q) to be the space of smooth, immersed di-gons v : D →M which are
orientation preserving and satisfy v(Bu) ⊂W u, v(Bs) ⊂W s, v((−1, 0)) = p
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and v((1, 0)) = q. Denote by G(D) the group of orientation preserving dif-

feomorphisms of D which preserve the vertices and call M̂(p, q) :=M(p, q)/
G(D) the space of unparametrized immersed di-gons.

Since there is exactly one segment [p, q]i, i ∈ {s, u}, joining p, q ∈ H and

since π2(M) = 0 we deduce #M̂(p, q) ∈ {0, 1} for p and q with µ(p, q) = 1.

Definition 10. Consider the hearts Db and Dc and p, q ∈ H with µ(p, q) =
2. We define Nb(p, q) resp. Nc(p, q) to be the space of smooth immersed
hearts w : Db → M resp. w : Dc → M which are orientation preserving
and satisfy w(Bu) ⊂ W u, w(Bs) ⊂ W s, w(−1, 0) = p and w(1, 0) = q. We
set N (p, q) := Nb(p, q) ∪̇ Nc(p, q). Denote by G(Db) resp. G(Dc) the group
of orientation preserving diffeomorphisms of Db resp. Dc which preserve the

vertices and let N̂b(p, q) := Nb(p, q)/G(Db) resp. N̂c(p, q) := Nc(p, q)/G(Dc)

and N̂ (p, q) := N̂b(p, q) ∪̇ N̂c(p, q) be the spaces of unparametrized immersed
hearts.

If we work with the spacesM(p, q) and N (p, r) we always implicitly assume
p, q, r ∈ H with [p] = [q], [p] = [r], µ(p, q) = 1 and µ(p, r) = 2.

2.3. Winding number. In the following, we define the winding number for
di-gons and hearts. It will be used for analysing and classification purposes.

Consider the universal cover τ : M̃ → M with induced orientation as
topological manifold. For all z̃ ∈ M̃ , the orientation induces an isomor-
phism H2(M̃, M̃\{z̃}) ' Z and the contractibility of M̃ ' R2 implies

H1(M̃\{z̃}) ' H2(M̃, M̃\{z̃}). Denote the fundamental class of S1 by [S1].

Now consider a continuous path γ̃ : S1 → M̃ and z̃ ∈ M̃\ Im(γ̃). We define
the winding number of γ̃ w.r.t. z̃ by Indγ̃(z̃) := γ̃∗([S

1]) ∈ H1(M\{z̃}) ' Z.

Identifying M̃ with R2 by an orientation preserving diffeomorphism, the

winding number also can be seen as mapping degree of S1 → S1, t 7→ γ̃(t)−z̃
|γ̃(t)−z̃| .

Definition 11. Let A stand for D, Db or Dc and consider v : A→M and a
lift ṽ : A→ M̃ of v. The winding number Indṽ(z̃) of ṽ w.r.t. z̃ ∈ M̃\ṽ(∂A) is
defined as the winding number of the path ṽ|∂A w.r.t. z̃ with ∂A parametrized
counterclockwise.
The winding number of v w.r.t. z ∈M\v(∂A) is defined as

Indv(z) :=
∑

z̃∈τ−1(z)

Indṽ(z̃)

since Indṽ vanishes for all z̃ lying in the unbounded component of M̃\ṽ(∂A).

There is another way to compute the winding number of ṽ : A → M̃ :
For z̃ ∈ M̃\ṽ(∂A) let B̃ be a small ball around z̃ and similarly consider

small balls Bi around the zi ∈ τ−1(z̃). Identify ∂B̃ ' S1 ' ∂Bi and set
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Â := A\(
⋃
zi∈τ−1(z̃)Bi). Then using some kind of ‘local degree’ (see Bredon

[Br]) we obtain

Indṽ(z̃) = deg(∂A→ ∂B̃) = deg(∂Â→ ∂B̃) + deg(
⋃

zi∈τ−1(z̃)

∂Bi → ∂B̃).

Now if N and P are compact orientable manifolds of dimension n without
boundary and if a smooth α : N → P can be extended smoothly to some
(n + 1)-dimensional manifold Q with ∂Q = N then deg(α) = 0 (see for

example Milnor [Mi]). Recognizing Â as Q and (
⋃
zi∈τ−1(z̃) ∂Bi) ∪ ∂A as N

we deduce deg(∂Â→ ∂B̃) = 0 whereas the term deg(
⋃
zi∈τ−1(z̃) ∂Bi → ∂B̃)

yields for orientation preserving immersions:

Remark 12. For v ∈ M(p, q) and z ∈M\v(∂D) holds Indv(z) = #v−1(z)
and therefore in particular Indv ≥ 0. The analogous result is true for v ∈
N (p, r). If there is a component of M\v(∂A) with Indv < 0 then v is no
immersion.

The union of those components of M\v(∂D) with Indv > 0 is called the
interior Int(v) of v. The union of the others is called the exterior Ext(v) of
v (their winding number vanishes).

The following remark will be needed for the existence of the ‘cutting points’
in the cutting construction Theorem 15. There we will need to know that
the vertices of an immersion are not multiply covered. Now choose a metric
on M . Since the image of our immersions stays in a compact region the
following does not depend on the choice of the metric.

Remark 13. Let v ∈ M(p, q). Then there is ε > 0 such that Up :=
v−1(Bε(p)) is a connected neighbourhood of (−1, 0) ∈ D with v|Up injective.
As a consequence Indv = 1 on Bε(p) ∩ v(D) and v(Up) is the wedge-shaped
piece of Bε(p) bounded by ([p, q]u ∪ [p, q]s) ∩ Bε(p) with angle < π. exterior
of v. An analogous statement is true for q. For v ∈ N (p, r) with vertices p
and r the only change is > π for the concave vertex.

Here the lack of self-intersections of W u and W s plays an important role —
otherwise the statement is not true.
2.4. Gluing and cutting. Briefly, gluing of two immersed di-gons v ∈
M̂(p, q) and v̂ ∈ M̂(q, r) with µ(p, q) = 1 = µ(q, r) (and therefore µ(p, r) =
2) is the construction which recognizes the tupel (v, v̂) as an element of

N̂ (p, r). Cutting is the ‘inverse’ construction which starts with w ∈ N̂ (p, r)
and finds two significant points qu, qs ∈ H such that w can be seen either as

tupel (v, v̂) ∈ M̂(p, qu)×M̂(qu, r) or as tupel (v′, v̂′) ∈ M̂(p, qs)×M̂(qs, r).

Theorem 14 (Gluing). Let p, q, r ∈ H with [p] = [q] = [r] and µ(p, q) =

1 = µ(q, r). Let v ∈ M̂(p, q) and v̂ ∈ M̂(q, r). Then the gluing procedure #

for v and v̂ yields an immersed heart w := v̂#v ∈ N̂ (p, r).
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Proof. The four possible geometric positions of the three involved points
are described in Figure 2. The q which lies on that part of the unstable
manifold, which crossed the interior of the immersed heart after passing the
concave vertex, is called qu and analogously for qs. The gluing construction #
glues v ∈ M(p, qu) and v̂ ∈ M(qu, r) along the common boundary segment
[p, qu]u. For technical details see Chekanov [Che]. �

r

p

p

Wu

W s

W s

qu

qs
qu

qs

Wu

r

Figure 2. Immersions with µ(p) = µ(q) + 1 = µ(r) + 2.

We call the two connected components of W s\{x} resp. W u\{x} the
branches of the (un)stable manifolds. W u and W s are called strongly inter-
secting (w.r.t. x) if each branch of W u intersects each branch of W s, i.e.
W i

+ ∩W+
j 6= ∅ 6= W i

− ∩W+
j for i, j ∈ {0, 1} and i 6= j.

To be strongly intersecting is generic in C1-topology on closed n-dimensional
manifolds (Takens [Ta], Xia [Xia1]). For Cr-topology with 1 ≤ r ≤ ∞ there
are results by Robinson, Pixton and Oliveira on S2 and T 2. If the action
of the symplectomorphism on the first homology group is irreducible then
Oliveira [Ol] proved Cr-genericity for closed surfaces with genus g ≥ 2. This
hypothesis is not fulfilled by symplectomorphisms isotopic to the identity
(for example Hamiltonian diffeomorphisms). For the latter ones, Xia [Xia3]
proved strongly intersecting to be Cr-generic on closed surfaces.

Theorem 15 (Cutting). Let W u and W s be strongly intersecting and trans-
verse. Let p, r ∈ H with [p] = [r] and µ(p, r) = 2 and w ∈ N (p, r).
Then there are distinct, unique qu, qs ∈ H with µ(p, qi) = 1 = µ(qi, r)
and vi ∈M(p, qi), v̂i ∈M(qi, r) such that v̂i#vi = w for i ∈ {s, u}.

Note that a symplectomorphism ϕ is either orientation preserving on the
stable and unstable manifold or orientation reversing on both. In the first
case we call ϕ W -orientation preserving and in the latter one W -orientation
reversing.
Moreover recall Palis’ λ-lemma [Pa]: Given a small dimW u-dimensional disk
Du ⊂W u(x, ϕ) centered around x, p ∈W s(x, ϕ) and a dimW u-dimensional
disk D around p intersecting W s(x, ϕ) transversely, then

⋃
n≥0 ϕ

n(D) con-

tains an mu-disk arbitrarily Ck-close to Du.
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The proof of the cutting construction differs considerably from the one for
compact Lagrangian submanifolds which can be found in Chekanov [Che],
de Silva [dS], Gautschi & Robbin & Salamon [GauRS] or Robbin [Ro].

Proof. Let us start with the W -orientation preserving case and assume p to
be the concave vertex of w ∈ N (p, r), thus w : Db →M . Let w.l.o.g. r <i p
for i ∈ {s, u}.
Given a small disk neighbourhood D(x) of x in W u there is n ∈ N such that
ϕ−n(p) and ϕ−n(r) lie in D(x). If we can prove the existence of ‘cutting
points’ qu and qs for ϕ−n(p), ϕ−n(r) and ϕ−n ◦ w then ϕn(qu) and ϕn(qs)
are cutting points for p, r and w.
Now choose D(x) to be the ‘convergence disk’ Du ⊂ W u of the λ-lemma
and assume from now on w.l.o.g. p, r ∈ Du.

In order to find the cutting point qu, we follow the segment [p,∞[u. For a
certain time after p, it stays in the interior of w. We will prove that at some
point it passes w(∂Db) to the exterior of w and that the first such point will
be our desired qu. We define

qu := min{q ∈W u | p <u q, q ∈ ]r, p[s, [q, q + ε[u ∩ w(Db)
c 6= ∅ for ε > 0}

where the last condition deals with the possible lack of global injectivity.
Now we prove that such a minimum always exists. We use the notation for
the branches W u

± and W s
± as sketched in Figure 3 (a).

Case p = x 6= r: For the relative positions of p and r see Figure 3(b). W u
+ is

the branch of W u containing r. W s
+ is the branch of W s which starts in the

local picture on the same side of W u as [r, r+ ε]s for small ε > 0. Since W u

and W s are strongly intersecting and transverse there is q ∈W u
− tW

s
+ with

p <u q. Let tqi := γ−1
i (q) and consider a small neighbourhood of q in W u

−.
If sign(det(γ̇u(tqu), γ̇s(t

q
s))) is negative we denote the neighbourhood by Uu

and otherwise by Vu. These neighbourhoods meet W s transversely in q such
that the λ-lemma implies the Ck-convergence of disks Dn ⊂ ϕn(Uu) resp.
Dn ⊂ ϕn(Vu) to Du for n→∞. Recall that r ∈ Du and that [r, p]s intersects
W u in r transversely. Thus for given ε > 0, there is n0 large enough such
that Dn and [r, r+ ε]s intersect for n ≥ n0, see the extra bold long segments
in Figure 3 (b). Remark 13 states that, for ε > 0 small enough, the ball Bε(r)
splits into two wedge-shaped regions Wint ⊂ Int(w) and Wext ⊂ Ext(w) with
common boundary ([r, p]u ∪ [r, p]s) ∩Bε(r).
Thus for n large enough, Dn meets Wext before or after passing ]r, r + ε[s
depending on if Dn lies in an iterate of Uu or Vu. Therefore, the segment
[p,∞[u leaves Int(w) and meets Ext(w) such that points as claimed in the
definition of qu exist and so does the minimum qu.

Case p 6= x. Here we do not need the (un)stable manifolds to be strongly
intersecting. The sketches in Figure 3 are schematical and it is unimportant



HOMOCLINIC POINTS AND FLOER HOMOLOGY 13

(a)

(d)

(b)

(c)

p xr

p r x

x = p r

Our convention

xWu
− Wu

+

W s
+

W s
−

W s
−

Uu

Vu

Wu
+

W s
−

W s
+

qu

Uu

Uu

W s
+

W s
−

Wu
−

qu

W s
+

Wu
−

qu

Wu
−

Figure 3. Constructions for qu.

if x lies in the exterior of w or not. There are two subcases, namely if p ∈
W u
− tW

s
+ as in (c) or if p ∈W u

− tW
s
− as in (d).

We start with p ∈ W u
− t W

s
+ and consider a small neighbourhood around

p in W u
−. If sign(det(γ̇u(tpu), γ̇s(t

p
s))) is negative we denote the small neigh-

bourhood by Uu and otherwise by Vu. Since p ∈W s
+, the disks Dn ⊂ ϕn(Uu)

resp. Dn ⊂ ϕn(Vu) approach the ‘convergence disk’ Du centered at x from
the W s

+-side for n → ∞, see the extra bold long segments in Figure 3 (c).
As in the proof of case p = x, we consider the special neighbourhood sec-
tors Wint ⊂ Int(w) and Wext ⊂ Ext(w) of r provided by Remark 13. We
conclude that ]p,∞[u passes somewhere through Wext and therefore meets
the exterior of w. Thus points as claimed in the definition of qu exist and so
does the minimum qu.
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Case p ∈W u
− tW

s
− (sketched in Figure 3 (d)) proceeds analogously to case

p ∈ W u
− t W

s
+ except from the following fact: Now the disks Dn ⊂ ϕn(Uu)

resp. Dn ⊂ ϕn(Vu) approach the ‘convergence disk’ Du from the W s
−-side

for n→∞, see the extra bold long segments in Figure 3 (d). Therefore we
have to use the sectors Wint ⊂ Int(w) and Wext ⊂ Ext(w) of p instead of
those of r and then proceed as above.

Since we only need the oscillation behaviour predicted by the λ-lemma and
those special neighbourhood sectors around the vertices the proof carries
over to all possible relative positions of x, p and r within W u and W s in
case p 6= x.
Exchanging the roles of W u and W s, the constructions for qs are similar to
those for qu. If r is the concave vertex the proof proceeds similarily.

Now we will describe the cutting procedure from p to qu. Recall from
Remark 13 that w is injective on a small neighbourhood of p. If we con-
sider w−1([p, qu]u) then there is a unique segment in Db denoted by I whose
start point is w−1(p) = −1. By definition of qu, the segment [p, qu+ε]u leaves
w(Db) through qu for ε > 0. Thus there is q̃ ∈ w−1(qu) which has to be the
endpoint of I. In fact, since qu lies per definitionem on a boundary segment
parting the interior from the exterior w is injective in a neighbourhood of
qu such that {q̃} = w−1(qu) is even unique.
We now cut Db along I into Dv

b and Dv̂
b The boundary conditions of Dv

b are

Bv
u = I and Bv

s is the segment from −1 to q̃ in Bs. And for Dv̂
b we have

Bv̂
u = I ∪Bu and Bv̂

s is the segment from q̃ to 1 in Bs. Identify Dv
b and Dv̂

b

with the di-gon D via hv : Dv
b → D with hv(Bv

i ) = BD
i and hv̂ : Dv̂

b → D

with hv̂(bv̂i ) = BD
i for i ∈ {s, u} and define

v : D →M, v(z) := w((hv)−1(z)),

v̂ : D →M, v̂(z) := w((hv̂)−1(z)).

Since our techniques considered the branches of the (un)stable manifolds
separately the W -orientation reversing case is reduced to the W -orientation
preserving case by considering the W -orientation preserving ϕ2 instead of
ϕ. �

3. Primary Floer homology

Set pn := ϕn(p) for p ∈ H and n ∈ Z. Keep in mind that in this notation
p = p0.

3.1. Primary homoclinic points. This subsection introduces a very spe-
cial kind of homoclinic points, so-called (semi-)primary points. These points
are characterized by a very rigid geometric condition. Semi-primary points
are usually the first type of homoclinic points investigated by physicists and
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they play a crucial role in the Melnikov method (see for example Rom-Kedar
[RK1, RK2]).

p ∈ H\{x} is called semi-primary if ]x, p[u ∩ ]x, p[s = ∅. p ∈ H[x]\{x} is
primary if ]x, p[u ∩ ]x, p[s ∩ H[x] = ∅. Nonprimary points are called sec-
ondary. Clearly, iterates of a (semi-)primary point are again (semi-)primary.
If W u ∩W s 6= ∅ then semi-primary points always exist. We require [p] = [x]
in the definition of primary points, since this condition was already necessary
for the invariance of the Maslov index and the homotopy classes under the
Z-action of ϕ. The condition ‘. . .∩ H[x]’ will be necessary in the invariance
discussion.

Remark 16. (1) Let ϕ be W -orientation preserving, p ∈ H (semi-)primary
and denote the branches containing p by W u

p and W s
p . Then for every

(semi-)primary q ∈ (W u
p ∩W s

p )\{pn | n ∈ Z} there is a unique n ∈ Z
such that qn ∈ ]p, p1[u ∩ ]p, p1[s.

If ϕ is W -orientation reversing then p1 has to be replaced by p2 and
n by 2n.

(2) Let p be semi-primary and q primary within the same pair of branches.
If q ∈ ]p, p1[u then q /∈ ]x, p1[s. If q ∈ ]p, p1[s then q /∈ ]x, p[u. Moreover
there is k ∈ N0, n ∈ Z such that q ∈ ]pn, pn+1[u ∩ ]pn+k, pn+k+1[s. There
are schematic tangles with k > 0.

Now consider the universal covering τ : (M̃, ω̃) → (M,ω) with ω̃ = τ∗ω.

For x̃ ∈ τ−1(x) and i ∈ {s, u}, denote by W̃ i(x̃) the lift of W i passing
through x̃. We denote the lift of the segment [p, q]i starting in p̃ ∈ τ−1(p)
and ending in q̃ ∈ τ−1(q) by [p̃, q̃]i. Given x̃u, x̃s ∈ τ−1(x), we call p̃ ∈
W̃ u(x̃u) ∩ W̃ s(x̃s) homoclinic if x̃u = x̃s and otherwise heteroclinic. Lifting
the tangle (to x̃ ∈ τ−1(x)) means that we consider the tangle generated by

W̃ i := W̃ i(x̃) for i ∈ {s, u} on M̃ . With a contractible p ∈ W u ∩W s, we
associate p̃ ∈ τ−1(p) such that the lift of [p, x]i starting in p̃ ends in x̃. With
a noncontractible p, we associate p̃ such that the lift of [p, x]u starting in p̃
ends in x̃ = x̃u. Therefore contractible homoclinic points lift to homoclinic
points and noncontractible ones to heteroclinic ones.
p̃ ∈ W̃ u(x̃) ∩ W̃ s(x̃) is called primary if ]p̃, x̃[u ∩ ]p̃, x̃[s = ∅. For p̃, q̃,

r̃ ∈ W̃ u∩W̃ s, we defineM(p̃, q̃), M̂(p̃, q̃), N (p̃, r̃) and N̂ (p̃, r̃) in the obvious
way.

Now consider the tangle lifted to x̃ ∈ τ−1(x). p ∈ W u ∩W s is primary if

and only if p̃ ∈ W̃ u ∩ W̃ s is primary. Moreover, Remark 16 holds also for
the primary points in W̃ u ∩ W̃ s. The following statements are independent
of the chosen reference point x.

Lemma 17. Let p̃ ∈ W̃ u ∩ W̃ s be primary. Then µ(p̃) := µ(p̃, x̃) ∈
{±1,±2,±3}. There is either an embedded di-gon or an embedded heart
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or an embedded 2-gons with two concave vertices from p̃ to x̃ (resp. from x̃
to p̃ depending on the sign of the index). For the primary p := τ(p̃) follows
µ(p) := µ(p, x) ∈ {±1,±2,±3}.

Proof. Since [p̃] = [x̃], the two points can be connected by a path in
P(W u,W s). Since ]p̃, x[u ∩ ]p̃, x[s = ∅ the region enclosed by [p̃, x̃]u and
[p̃, x̃]s is an embedded polygon with two vertices. Assume the intersections
in p̃ and x̃ to be orthogonal and parametrize the segments [p̃, x̃]u from p̃ to x̃
and [p̃, x̃]s from x̃ to p̃. Then the Maslov index is twice the winding number
of the tangent vector of the segments. Thus only µ(p̃, x̃) ∈ {±1,±2,±3} can
be realized without violating the boundary condition ]p̃, x̃[u ∩ ]p̃, x̃[s = ∅.
Therefore µ(p) = µ(p̃) ∈ {±1,±2,±3} for p = τ(p̃). �

Note that the immersion between a primary p and the fixed point x does
not need to be globally injective since there might be noncontractible points
in ]x, p[u ∩ ]x, p[s.

Remark 18. (1) Let i ∈ {s, u}, p̃ ∈ W̃ u ∩ W̃ s be primary and p := τ(p̃).

Lift γi to γ̃i : R → W̃ i and obtain the ordering <i on W̃ i. W.l.o.g.
assume p <i ϕ(p); for W -orientation reversing ϕ use p <i ϕ

2(p). Then

p̃+ := max{q̃ ∈ W̃ s | q̃ <s p̃, q̃ ∈ ]x̃, p̃[u},

p̃− := min{q̃ ∈ W̃ u | p̃ <u q̃, q̃ ∈ ]x̃, p̃[s}
are primary and p̃± is called adjacent to p̃.

(2) Let p̃ be primary and q̃ = p̃±. Then ]p̃, q̃[u ∩ ]p̃, q̃[s = ∅. If moreover p̃
and q̃ are transverse then µ(p̃, q̃) ∈ {1,−1} and there is an embedded
di-gon between them.

(3) transverse primary points in ]p̃, p̃1[u ∩ ]p̃, p̃1[s. Let p̃ be primary and
order the primary points in [p̃, p̃−1]u∩ [p̃, p̃−1]s via p̃, p̃+, (p̃+)+, . . . , p̃

−1

and assume them transverse. Then their relative Maslov index alternates
between +1 and −1.

(4) Let all primary points p ∈W u∩W s be transverse. Then there are modulo
Z-action only finitely many primary points. The same is true for the
primary points in W̃ u ∩ W̃ s.

3.2. Signs and coherent orientations. Now we define the signs needed
for the definition of the boundary operator of the Floer chain complex.
The signs have to satisfy a certain compatibility with the cutting and gluing
procedure which is known in classical Floer theory as ‘coherent orientations’.
We will define two kinds of signs with slightly different properties depending
on the type of homoclinic points (primary or secondary) and the symplec-
tomorphism (W -orientation preserving or reversing).

For i ∈ {s, u}, associate to each branch W i
+ and W i

− its ‘jump direction’ as

orientation and denote it by o(W i
+) resp. o(W i

−). Let p, q be primary with
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µ(p, q) = 1 and v ∈ M(p, q). Associate to v(Bi) = [p, q]i the orientation
induced by the parametrization from p to q and call it opq. In (the proof
of) Proposition 26, we will show that x /∈ ]p, q[u ∩ ]p, q[s. Thus, there is a
branch Wpq ∈ {W u

+,W
u
−,W

s
+,W

s
−} containing both p and q. We set

m(p, q) :=


1 if µ(p, q) = 1, M(p, q) 6= ∅, o(Wpq) = opq,

−1 if µ(p, q) = 1, M(p, q) 6= ∅, o(Wpq) 6= opq,

0 otherwise.

If there are two branches W u
pq and W s

pq containing p and q then p and q are
adjacent and o(W u

pq) = opq = o(W s
pq), compare Figure 4. Thusm(p, q) is well-

defined. We do not need to distinguish the cases W -orientation preserving
and reversing since m(p, q) = m(pl, ql) for all l ∈ Z. The definition does not
generalize to arbitrary homoclinic points.

Lemma 19. Let p and r be primary with µ(p, r) = 2 and w ∈ N̂ (p, r).
For i ∈ {s, u} assume the existence of qi with µ(p, qi) = 1 = µ(qi, r) and

vi ∈ M̂(p, qi) and v̂i ∈ M̂(qi, r) such that v̂i#vi = w. Then

m(p, qu) ·m(qu, r) = −m(p, qs) ·m(qs, r).

Proof. Have a look at Proposition 29 and check in Figure 5 the eight possible

w = v̂i#vi ∈ N̂ (p, r) sketched in the left and right column. This yields the
claim. �

Whereas m(p, q) is well-defined only for primary points, there is another way
to define signs for arbitrary homoclinic points: Fix an orientation ou on W u.
Now let p, q ∈ H with µ(p, q) = 1 and provide [p, q]u with the orientation opq
induced by the parametrization from p to q. For W -orientation preserving
ϕ, we define

n(p, q) :=


+1 if M̂(p, q) 6= ∅ and opq = ou,

−1 if M̂(p, q) 6= ∅ and opq 6= ou,

0 if M̂(p, q) = ∅.
n(p, q) clearly also could be defined using an orientation on W s. For W -
orientation reversing ϕ we have to set n2(p, q) := n(p, q) mod 2. The signs
depend as follows from the chosen data: Set Hl[x] = {p ∈ H | µ(p, x) =

l, [p] = [x]} and provide W i with the orientation induced by γ̇i. Let σ01 :=
sign(det(γ̇u(0), γ̇s(0))) and denote the signs defined via the orientation on
W i by n(p, q,W i). Then

(20)
n(p, q,W u) = σ01n(p, q,W s) for p ∈ H2l

[x],

n(p, q,W u) = −σ01n(p, q,W s) for p ∈ H2l+1
[x]

for all q ∈ H[x] and l ∈ Z.
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Lemma 21. Let p, r ∈ H with µ(p, r) = 2 and w ∈ N (p, r). For i ∈ {s, u}
consider qi ∈ H with µ(p, qi) = 1 = µ(qi, r) and v̂i ∈ M(p, qi) and vi ∈
M(qi, r) such that v̂i#vi = w. Then

n(p, qu) · n(qu, r) = −n(p, qs) · n(qs, r)

and this relation also is true for n2.

Proof. Consider Figure 2, choose an orientation on W u and check that the
claim is true. If we choose the other orientation on W u all signs swap and
the relation remains true. �

3.3. Primary Floer homology. Now we are ready to define the Floer
chain complex. We assume from now on (if not stated otherwise) all homo-
clinic points to be primary and transverse.
We define on Hpr := {p ∈ H | p primary} an equivalence relation via p ∼
q ⇔ ∃ n ∈ Z with qn = p. We set H̃pr := Hpr/∼ and denote by 〈p〉 the

equivalence class of p. Note that #H̃pr < ∞ according to Remark 18. Due
to Remark 7, we can establish a well-defined homotopy class and a Maslov
index via [〈p〉] := [p], µ(〈p〉, 〈q〉) := µ(p, q) and µ(〈p〉) := µ(p, x). We define

Cm := Cm(x, ϕ;Z) :=
⊕
p∈Hpr
µ(p)=m

Zp,

dm : Cm → Cm−1, d(p) =
∑
q∈Hpr

µ(q)=µ(p)−1

m(p, q)q

on a generator p and extend d by linearity. ϕ induces ϕ∗ : C∗ → C∗ satisfying
ϕ∗ ◦ d = d ◦ ϕ∗. The sum is finite since #H̃pr <∞ and, as we will see later
in Proposition 28, #{n ∈ Z | M(p, qn) 6= ∅} <∞.

µ(p) = µ(pn) for n ∈ Z implies that the chain groups have infinite rank over
Z. But since µ(p) := µ(p, x) ∈ {±1,±2,±3} for p ∈ Hpr there are at most
six nonvanishing chain groups.

Theorem 22. d ◦ d = 0, i.e. (C∗, d∗) is a chain complex.

The proof of Theorem 22 is postponed to the following subsections. The
homology of (C∗, d) is

Hm := Hm(x, ϕ;Z) :=
ker dm

Im dm+1
.

Since the chain groups have infinite rank over Z this might also be the case
for the homology groups. In order to enforce finite rank, we will divide by
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the Z-action: For 〈p〉, 〈q〉 ∈ H̃pr set m(〈p〉, 〈q〉) :=
∑

n∈Zm(p, qn) and define

Cm := Cm(x, ϕ;Z) :=
⊕
〈p〉∈H̃pr
µ(〈p〉)=m

Z〈p〉,

∂m : Cm → Cm−1, ∂〈p〉 :=
∑
〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉

on a generator 〈p〉 and extend ∂ by linearity. The compatibility of the Z-
action with the Maslov index and the homotopy classes yields the well-
definedness of ∂.

We have rkZ(Cm) = #{〈p〉 ∈ H̃pr | µ(〈p〉) = m} < ∞. And due to Lemma
17, at most C±1, C±2 and C±3 are nonzero. Moreover, Remark 18 implies
rkZC±2 = rkZC±1 + rkZC±3.
If we generalize the notion of equivalence classes to finite sums via 〈p+ q〉 =
〈p〉+ 〈q〉 the differential can also be written as

∂〈p〉 = 〈dp〉 =
∑
q∈Hpr

µ(q)=µ(p)−1

m(p, q)〈q〉.

Therefore d2 = 0 immediately implies

Theorem 23. ∂ ◦ ∂ = 0, i.e. (C∗, ∂∗) is a chain complex.

We define the primary Floer homology of ϕ in x as

(24) Hm := Hm(x, ϕ;Z) :=
ker ∂m

Im ∂m+1
.

Since already the Cm have finite rank over Z so has Hm. All chain groups
Cm and homology groups Hm with m 6= ±1,±2,±3 vanish.

Homology and Cohomology. The question about cohomology instead of
homology leads in our situation to the choice between ϕ and ϕ−1 as under-
lying symplectomorphism. More precisely, H∗(x, ϕ) is related to H∗(x, ϕ

−1)
in the following way. Consider

Cm(x, ϕ;Z) :=
⊕
〈p〉∈H̃pr
µ(〈p〉)=m

Z〈p〉

with differential δ : Cm(x, ϕ;Z) → Cm+1(x, ϕ;Z) defined on the generators
by

δ(〈p〉) :=
∑
q∈Hpr

µ(q)=m+1

m(q, p)〈q〉.
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Then δ ◦ δ = 0 is proven analogously to ∂ ◦ ∂ = 0 and

H∗(x, ϕ;Z) :=
ker δ

Im δ

is called primary Floer cohomology of ϕ in x. Changing from ϕ to ϕ−1

transforms W u into W s and vice versa, but apart from this the homo-
clinic tangle remains untouched. Therefore the sign of the Maslov index
of a homoclinic point p = pϕ in the tangle generated by ϕ changes, when
considered as homoclinic point p = pϕ−1 in the tangle corresponding to ϕ−1,
i.e. µ(pϕ) = −µ(pϕ−1). This implies

Theorem 25. H∗(x, ϕ) = H−∗(x, ϕ
−1).

The signs n(p, q). The above chain complexes and homologies can be
defined analogously with n(p, q) resp. n2(p, q) (and Z/2Z-coefficients in the
latter case). We will see that Hm and Hm do not depend on the chosen data:
Let ϕ be W -orientation preserving. Changing the orientation of W u changes
the sign of the n(p, q). Thus d transforms into −d which has the same kernel
and image as d. (20) implies that the differential obtained by using an ori-
entation on W s instead of W u equals for fixed Maslov index ±1 times the
W u-induced differential. Thus ker dW

u

k = ker dW
s

k and Im dW
u

k = Im dW
s

k for
all k such that the homologies coincide. Hm does not depend on the choice
of the orientation for the same reasons as Hm.
If ϕ is W -orientation reversing we have to use Z/2Z-coefficients n2(p, q) if
we want to be able to divide by the Z-action.

If one computes the examples in Chapter 4 with n(p, q) instead with m(p, q)
one obtains isomorphic homologies, but the generators of the homology
groups differ.

3.4. Well-definedness, gluing and cutting. In this subsection, we will
prove Theorem 22. The proof is mainly based on classifications of immersions
of relative Maslov index 1 and 2.

Lift the homoclinic tangle w.r.t. x̃ ∈ τ−1(x). Given primary p, q ∈W u∩W s

with associated primary p̃, q̃ ∈ W̃ u ∩ W̃ s, the immersions in M(p, q) resp.
N (p, q) lift exactly to the immersions in M(p̃, q̃) resp. N (p̃, q̃). Primary
Floer (co)homology is well-defined for (ϕ, x) on M if and only if it is well-

defined for the lifted homoclinic tangle generated by W̃ u and W̃ s on M̃ .
Thus it is enough to prove the primary cutting and gluing procedure for the
lifted tangle W̃ u ∩ W̃ s on M̃ .

Proposition 26 (Classification for index difference 1). Let p, q ∈ H be
primary with µ(p, q) = 1 and let p̃ and q̃ the associated primary points in

W̃ u∩W̃ s. Then eitherM(p̃, q̃) = ∅ or v ∈M(p̃, q̃) is, in fact, an embedding.

The elements of M(p, q) do not need to be embeddings. Nor is it true for
noncontractible semi-primary points.
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Proof. In the following, we work with the lifted tangle on M̃ . We drop the
tilde associated to symbols on M̃ . Thus identify p = p̃ and q = q̃ etc.
The proof is tedious, but simple. [p] = [q] = [x] allows us to write
1 = µ(p, q) = µ(p, x) + µ(x, q) and Lemma 17 provides the four cases
(µ(p, x), µ(x, q)) ∈ {(−2, 3), (−1, 2), (2,−1), (3,−2)}. Since there are always
two possibilities to place the concave vertex of a standard heart the number
of cases multiplies by two. Moreover, we have to distinguish ]x, p[i ∩ ]x, q[i =
∅ or 6= ∅ for i ∈ {s, u}. Since W i is self-intersection free and one-dimensional
we conclude in case ]x, p[i ∩ ]x, q[i 6= ∅ either [x, p]i ⊂ [x, q]i or [x, q]i ⊂ [x, p]i.
This yields a lot of cases, but fortunately some of them are symmetric. We
recall from Lemma 17 that there is modulo parametrization exactly one
embedding between p and x and q and x. Since embeddings are by defini-
tion bijective there is — together with the boundary conditions — almost
no degree of freedom in sketching them. Figure 4 lists all possibly arising
immersions. �

Since, according to Proposition 26, immersions between primary homoclinic
points p̃ and q̃ of W̃ u ∩ W̃ s are in fact embeddings it is enough to show
]p̃, q̃[u ∩ ]p̃, q̃[s 6= ∅ to prevent their existence:

Lemma 27. Let p, q ∈ H[x]\{x} and pn := ϕn(p) etc. for n ∈ Z. Let p̃, q̃

and p̃n etc. be the associated points in W̃ u∩W̃ s. Then there is N ∈ N0 such
that for n ∈ Z with |n| ≥ N we have ]p̃, q̃n[u ∩ ]p̃, q̃n[s 6= ∅.

Proof. Let p̃ etc. be the point associated to p in the lifted tangle on M̃ . Let
ϕ be W -orientation preserving.
Consider the case x /∈ ]p, q[u and x /∈ ]p, q[s. Then there is N ∈ N0 such
that p̃1 ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for all n ≥ N and p̃−1 ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for all
n ≤ −N .
If x ∈ ]p, q[u ∩ ]p, q[s then x̃ ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for all n ∈ Z.
Consider the case x ∈ ]p, q[u and x /∈ ]p, q[s. Then there is N ∈ N0 such that
q̃N−1 ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for all n ≥ N and p̃−1 ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for all
n ≤ −N . In the case x /∈ ]p, q[u and x ∈ ]p, q[s conclude analogously.
Now consider W -orientation reversing ϕ. Here we have to distinguish
between even and odd n ∈ Z. Since ϕ2 is orientation preserving the above
proof carries over for even n if we replace p1 by p2 etc. Thus we only have
to prove the claim for odd n.
If x /∈ ]p, q[u, ]p, q[s then x̃ ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for all odd n.
If x ∈ ]p, q[u ∩ ]p, q[s there is N ∈ N0 such that p̃2 ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for
all odd n ≥ N and p̃−2 ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for all odd n ≤ −N .
If x ∈ ]p, q[u and x /∈ ]p, q[s then there is an odd N ∈ N0 such that p̃2 ∈
]p̃, q̃n[u ∩ ]p̃, q̃n[s for odd n ≥ N and q̃N+2 ∈ ]p̃, q̃n[u ∩ ]p̃, q̃n[s for odd
n ≤ −N .
If x /∈ ]p, q[u and x ∈ ]p, q[s conclude analogously. �
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Subcase ]x, p[u ⊂ ]x, q[u

(i) Case ]x, p[u ∩ ]x, q[u = ∅ 6= ]x, p[s ∩ ]x, q[s
Subcase ]x, p[s ⊂ ]x, q[s

p

qx p q

Wu

W s

W s

Wu x

]x, p[u ⊂ ]x, q[u, ]x, q[s ⊂ ]x, p[s

(−1, 2) (3,−2)
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q p x

Wu
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(ii) Case ]x, p[u ∩ ]x, q[u 6= ∅ = ]x, p[s ∩ ]x, q[s

(iii) Case ]x, p[u ∩ ]x, q[u 6= ∅ 6= ]x, p[u ∩ ]x, q[s

Wu Wu

Figure 4. Immersions of relative index 1 up to obvious symmetries.
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Now we prove that for p ∈ Hpr the differential d does not contain infin-
itely many iterates m(p, qn)qn of some primary q. This implies the well-
definedness of d and ∂.

Proposition 28. Let p, q ∈ Hpr and M(p, q) 6= ∅ and set qn := ϕn(q) for
n ∈ Z. Then

#{n ∈ Z | M(p, qn) 6= ∅} <∞.

Proof. Denote by p̃, q̃, q̃n etc. the associated points in W̃ u ∩ W̃ s and recall
that v ∈ M(p, q) exists if and only its lift ṽ ∈ M(p̃, q̃) exists. Lemma 27
yields the existence of some N > 0 such that ]p̃, q̃n[u ∩ ]p̃, q̃n[s 6= ∅ for all
n ∈ Z with |n| ≥ N .
Assume ṽn ∈ M(p̃, q̃n) 6= ∅ for some n with |n| ≥ N . Since [p̃, q̃n]u =
ṽn(Bu) and [p̃, q̃n]s = ṽn(Bs) there is zu ∈ Bu and zs ∈ Bs such that

ṽn(zu) = ṽn(zs). Since W̃ u and W̃ s do not have self-intersections it follows
zu, zs /∈ {(−1, 0), (1, 0)}. Therefore ṽn is not globally injective and thus no
embedding. The claim now follows from Proposition 26. �

The gluing theorem for primary points is clearly a special case of Theorem
14. But it is a priori not clear, that the cutting procedure yields two primary
‘cutting points’ qu and qs.

Proposition 29 (Classification for index difference 2). Let p, r ∈ Hpr
with µ(p, r) = 2 and let p̃ and r̃ be the associated points in W̃ u ∩ W̃ s. The

possibly arising immersed hearts w ∈ N̂ (p̃, r̃) appear shadowed in Figure 5.
w is an embedding apart from the case (µ(p̃, x̃), µ(x̃, r̃)) = (1, 1) where it is
not globally injective.

Proof. In the following, we work with the lifted tangle on M̃ . We drop the
tilde associated to symbols on M̃ , i.e. we identify p = p̃ and r = r̃ etc.
Since [p] = [r] = [x] we can write µ(p, r) = µ(p, x) + µ(x, r) = 2.
Now we proceed as in the proof of Proposition 26 and check the possi-
ble combinations for (µ(p, x), µ(x, r)). Lemma 17 restricts the possibilities
to (µ(p, x), µ(x, r)) ∈ {(3,−1), (1, 1), (−1, 3)} and we recall that the immer-
sions of index µ(p, x) and µ(x, r) between p and x and x and r are embed-
dings. As before, we will consider the cases ]x, p[i ∩ ]x, r[i = ∅ or 6= ∅. If
]x, p[i ∩ ]x, r[i 6= ∅ this implies [x, p]i ⊂ [x, r]i or [x, r]i ⊂ [x, p]i since W i

is free of self-intersections and dimW i = 1. All possibly arising immersions
are listed in Figure 5. �

It will turn out that for primary p and r with µ(p, r) = 2 either both cutting
points qu and qs are primary or none of them. In the proof of Theorem 15,
strongly intersecting is only needed if the concave vertex of the heart is the
fixed point. Since x /∈ Hpr we can drop this assumption in the following
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Figure 5. Cutting for primary points.
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statement. Moreover, in Theorem 15, the λ-lemma was applied to the inter-
section at the concave vertex of the immersion. Thus it is enough to require
only the primary points to be transverse.

Theorem 30 (Cutting for primary points). Let all primary points be trans-
verse and p, r ∈ Hpr with µ(p, r) = 2 and w ∈ N (p, r). Then there are unique
points qu and qs such that either both qi are primary admitting vi ∈M(p, qi)
and v̂i ∈M(qi, r) with v̂i#vi = w for i ∈ {s, u} or none of them is primary.

Proof. It is sufficient to show the claim for the lifted tangle generated by W̃ u

and W̃ s on M̃ . We drop the tilde associated to symbols on M̃ and identify
p̃ = p etc.
Let p and r be primary with µ(p, r) = 2. p and r are transverse intersec-
tion points such that the existence (and uniqueness) of the cutting points
qu and qs follows from the proof of Theorem 15. But qu and qs might be
nontransverse. We will prove that qu and qs are either both primary or both
nonprimary. If both are primary then they are, by assumption, transverse
and the claim follows from Theorem 15.
Proposition 29 together with Figure 5 describes all possible immersions of
index difference 2 and sketches qu and qs and the cuts to qu and qs. For
simplicity, the qi are sketched transverse.
Checking the shapes in Figure 5, we find that for all cases (µ(p, x), µ(x, r)) ∈
{(3,−1), (−1, 3)} the immersion w is an embedding and that qu and qs are
both primary. In the case ]x, p[u ∩ ]x, r[u 6= ∅ =]x, p[s ∩ ]x, r[s, we only
sketched the case qu ∈ [x, p]s, but also qu ∈ [x, r]s would be primary. In the
case ]x, p[u ∩ ]x, r[u = ∅ 6=]x, p[s ∩ ]x, r[s, we have to distinguish qs ∈ [x, p]u
or qs ∈ [x, r]u, but in both cases qs is primary.
Now consider the case (µ(p, x), µ(x, r)) = (1, 1). First we note that w is not
necessarily an embedding. One of the cutting points is the fixed point which
is per definitionem not primary. Furthermore, those segments which join the
other cutting point to x overcross in p or r such that this cutting point also
is nonprimary. �

Proof of Theorem 22. In the following, we work with the lifted tangle on M̃
and drop the tilde associated to symbols on M̃ and identify p = p̃ etc. We
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compute for a generator p ∈ Hpr

dm−1(dm(p)) = dm−1

 ∑
q∈Hpr

µ(q)=µ(p)−1

m(p, q)q


=

∑
r∈Hpr

µ(r)=µ(p)−2

∑
q∈Hpr

µ(q)=µ(p)−1

m(p, q) ·m(q, r)r

=
∑
r∈Hpr

µ(r)=µ(p)−2

 ∑
q∈Hpr

µ(q)=µ(p)−1

m(p, q) ·m(q, r)

 r.

Thus it is enough to show for fixed r∑
q∈Hpr

µ(q)=µ(p)−1

m(p, q) ·m(q, r) = 0.

If all sign products vanish we are done. If m(p, q) ·m(q, r) 6= 0 both signs

m(p, q) and m(q, r) must be nonzero. In that case M̂(p, q) and M̂(q, r) are

nonempty and by the gluing construction N̂ (p, r) is nonempty. Theorem 30
tells us that for fixed p and r there are either exactly two primary cutting
points qu and qs or none. We are in the first case since our q is one of them.
Since m(p, q) ·m(q, r) = 0 for all q 6= qu, qs the sum simplifies to

m(p, qu) ·m(qu, r) +m(p, qs) ·m(qs, r)

which vanishes since m(p, qu) · m(qu, r) = −m(p, qs) · m(qs, r) by Lemma
19. �

4. Examples

4.1. Computation of examples. In this subsection, we discuss the apti-
tude and accessibility of primary Floer homology for explicit computations.
We calculate two examples which arise from a slight perturbation of the
integrable systems sketched in Figure 6. For simplicity assume to be in R2n,
i.e. the sets of semi-primary and primary points coincide.

If we want to compute the primary Floer homology of an explicit tangle we
have to locate the primary points. Given a pair of intersecting branches of
W s and W u, we start at the fixed point x and run simultanously along both
branches until they intersect for the first time. This intersection point p is
primary. By Remark 16, all other primary points arising from this pair of
branches have exactly one representant in ]p, p1[s ∩ ]p, p1[u. Since all primary
points are transverse there is only a finite number of primary equivalence
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(a) (b)

Figure 6. ‘Figure eight’ and ‘tilted figure eight’ homoclinic loops.

classes and we locate their representants in ]p, p1[s ∩ ]p, p1[u applying suc-
cessively Remark 18. If we proceed in this way for all pairs of intersecting
branches we obtain representatives for all primary equivalence classes.

To discover for a given p all q with M(p, q) 6= ∅ is a little bit more tedious.
Proposition 28 and Lemma 27 assure that there is only a finite number of
canditates and that they are ‘not to far away’ from p. Therefore it remains
to check those candidates.

Thus, primary Floer homology is entirely determined by sufficiently large,
fixed, compact segments of W s and W u centered around x. Therefore pri-
mary Floer homology can always be computed — one only needs to plot a
finite part of the tangle with sufficient accuracy. Altogether, primary Floer
homology provides finite information of an infinite chaotic tangle.

Using the computation of the two examples below, we will assign homology
groups also to the homoclinic loops displayed in Figure 6. This will be done
in Corollary 34 using the invariance property of primary Floer homology.

4.2. Figure-eight example. We compute the primary Floer homology of
the schematic tangle in Figure 7. Such a tangle might arise from a figure-
eight homoclinic loop of an integrable system (Figure 6) by means of the
Melnikov method. The hyperbolic fixed point x and the elliptic fixed points
y and ỹ are printed extra bold and the Maslov grading of the primary points
is given. There are eight equivalence classes 〈p〉, 〈p̃〉, 〈q〉, 〈b〉, 〈q̃〉, 〈b̃〉, 〈r〉
and 〈r̃〉 with µ(〈p〉) = µ(〈p̃〉) = −1, µ(〈q〉) = µ(〈b〉) = µ(〈q̃〉) = µ(〈b̃〉) = −2
and µ(〈r〉) = µ(〈r̃〉) = −3. Using the m(p, q)-signs we obtain
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Figure 7. A ‘figure eight’ homoclinic tangle.
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∂〈p〉 = 〈q〉 − 〈q−1〉+ 〈b〉 − 〈b̃2〉 = 〈b〉 − 〈b̃〉, ∂〈q̃〉 = 〈r3〉 − 〈r̃〉
= 〈r〉 − 〈r̃〉,

∂〈p̃〉 = −〈q̃〉+ 〈q̃−1〉+ 〈b̃〉 − 〈b4〉 = −〈b〉+ 〈b̃〉, ∂〈b̃〉 = −〈r̃〉+ 〈r̃1〉 = 0,

∂〈q〉 = −〈r〉+ 〈r̃3〉 = −〈r〉+ 〈r̃〉, ∂〈r〉 = 0,

∂〈b〉 = 〈r〉 − 〈r−1〉 = 0, ∂〈r̃〉 = 0.

and using the n(p, q)-signs with the orientation on W u induced by setting
x <u p we obtain

∂〈p〉 = 〈q〉 − 〈q−1〉+ 〈b〉 − 〈b̃2〉 = 〈b〉 − 〈b̃〉, ∂〈q̃〉 = 〈r3〉+ 〈r̃〉
= 〈r〉+ 〈r̃〉,

∂〈p̃〉 = 〈q̃〉 − 〈q̃−1〉 − 〈b̃〉+ 〈b4〉 = 〈b〉 − 〈b̃〉, ∂〈b̃〉 = 〈r̃〉 − 〈r̃1〉 = 0,

∂〈q〉 = −〈r〉 − 〈r̃3〉 = −〈r〉 − 〈r̃〉 = −(〈r〉+ 〈r̃〉), ∂〈r〉 = 0,

∂〈b〉 = 〈r〉 − 〈r−1〉 = 0, ∂〈r̃〉 = 0.

The different signs lead to different boundary operators and different gen-
erators of the homologies. Nevertheless, they turn out to be isomorphic:

H−1(x, ϕ,m-signs) = Z(〈p〉+ 〈p̃〉) ' Z(〈p〉 − 〈p̃〉) = H−1(x, ϕ, n-signs),

H−2(x, ϕ,m-signs) =
Z〈b〉 ⊕ Z〈b̃〉 ⊕ Z(〈q〉+ 〈q̃〉)

Z(〈b〉 − 〈b̃〉)
= H−2(x, ϕ, n-signs),

H−3(x, ϕ,m-signs) =
Z〈r〉 ⊕ Z〈r̃〉
Z(〈r〉 − 〈r̃〉)

' Z〈r〉 ⊕ Z〈r̃〉
Z(〈r〉+ 〈r̃〉)

= H−3(x, ϕ, n-signs).

4.3. Tilted figure-eight example. By perturbing a tilted figure-eight
homoclinic loop as in Figure 6, the homoclinic tangle of Figure 8 might
arise.

There are the eight equivalence classes 〈p̃〉, 〈q̃〉, 〈s〉, 〈s̃〉, 〈r〉, 〈r̃〉, 〈p〉 and
〈q〉 with Maslov index µ(〈p̃〉) = 3, µ(〈q̃〉) = µ(〈s〉) = µ(〈s̃〉) = 2, µ(〈r〉) =
µ(〈r̃〉) = 1, µ(〈p〉) = −1 and µ(〈q〉) = −2. Using the m(p, q)-signs, we obtain
as boundary operator

∂〈p̃〉 = −〈q̃〉+ 〈q̃1〉 − 〈s〉+ 〈s̃−3〉 = −〈s〉+ 〈s̃〉, ∂〈r〉 = 0,

∂〈q̃〉 = 〈r−1〉 − 〈r̃−3〉 = 〈r〉 − 〈r̃〉, ∂〈r̃〉 = 0,

∂〈s〉 = 〈r〉 − 〈r−1〉 = 0, ∂〈p〉 = 〈q〉 − 〈q−1〉 = 0,

∂〈s̃〉 = −〈r̃〉+ 〈r̃1〉 = 0, ∂〈q〉 = 0.
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Figure 8. A ‘tilted figure eight’ homoclinic tangle.

For the n(p, q)-signs, we fix an orientation of W u via chosing a parametriza-
tion in direction from x to p. This leads to

∂〈p̃〉 = 〈q̃〉 − 〈q̃1〉+ 〈s〉 − 〈s̃−3〉 = 〈s〉 − 〈s̃〉, ∂〈r〉 = 0,

∂〈q̃〉 = 〈r−1〉+ 〈r̃−3〉 = 〈r〉+ 〈r̃〉, ∂〈r̃〉 = 0,

∂〈s〉 = 〈r〉 − 〈r−1〉 = 0, ∂〈p〉 = 〈q〉 − 〈q−1〉 = 0,

∂〈s̃〉 = 〈r̃〉 − 〈r̃1〉 = 0, ∂〈q〉 = 0.
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As homology, we obtain Hl = 0 for all l /∈ {±1,±2} regardless of the chosen
signs. But for the remaining four groups we compute

H2(x, ϕ,m-signs) =
Z〈s〉 ⊕ Z〈s̃〉
Z(−〈s〉+ 〈s̃〉)

' Z〈s〉 ⊕ Z〈s̃〉
Z(〈s〉 − 〈s̃〉)

= H2(x, ϕ, n-signs),

H1(x, ϕ,m-signs) =
Z〈r〉 ⊕ Z〈r̃〉
Z(〈r〉 − 〈r̃〉)

' Z〈r〉 ⊕ Z〈r̃〉
Z(〈r〉+ 〈r̃〉)

= H1(x, ϕ, n-signs),

H−1(x, ϕ,m-signs) = Z〈p〉 = H−1(x, ϕ, n-signs)

H−2(x, ϕ,m-signs) = Z〈q〉 = H−2(x, ϕ, n-signs).

5. Invariance

In classical Lagrangian Floer theory, invariance of the homology under
Hamiltonian perturbations of the underlying Lagrangians is an important
feature. Thus one can choose a particular nice Lagrangian within the Hamil-
tonian isotopy class for the computation of the homology.

Our situation differs strongly from the classical one. Whereas in the classical
situation a Hamiltonian diffeomorphism f is applied directly to a Lagrangian
L changing it to f(L), the change here occurs indirectly. We are going to per-
turb the underlying symplectomorphism ϕ which results in changing both
the stable and unstable manifolds. Our invariance proof is inspired by Floer’s
original proof in [Fl3] which uses explicit chain homotopies. The more mod-
ern ansatz via homotopy of homotopies is unfortunately not applicable since
it is not compatible with the bifurcation nature of primary points. We will
use the invariance to assign homology groups to the homoclinic loops in
Figure 6.

Primary points are printed extra bold in figures. In order to obtain smaller
sketches, we sometimes draw the hyperbolic fixed point x ‘splitted’ into two
copies. In this section, (M,ω) is a closed symplectic two-dimensional man-
ifold with genus g ≥ 1. The group of smooth diffeomorphisms Diff(M) is
endowed with the Whitney topology (which coincides on compact manifolds
with the Cr-topology) and Diffω(M) ⊂ Diff(M) is the group of symplecto-
morphisms.

5.1. Main results. Let ϕ ∈ Diffk(M) with k ≥ 1 and x ∈ Fix(ϕ) hyper-

bolic and ψ ∈ Diffk(M) sufficiently Ck-near to ϕ. Then it is wellknown that
ψ has a hyperbolic fixed point y near x. W i(y, ψ) is Ck-near W i(x, ϕ) for
i ∈ {u, s}, at least on compact neighbourhoods of y and x in W i(y, ψ) and
W i(x, ϕ). y is called the continuation of x and the signs of the corresponding
eigenvalues coincide.
Let ϕ, ψ ∈ Diffω(M) and x ∈ Fix(ϕ) and y ∈ Fix(ψ) both hyperbolic. An
isotopy (between (x, ϕ) and (y, ψ)) is a smooth path Φ : [0, 1] → Diffω(M),
τ 7→ Φ(τ) =: Φτ with Φ0 = ϕ, Φ1 = ψ, x0 = x and x1 = y and xτ ∈ Fix(Φτ )
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as continuation between x and y for all τ ∈ [0, 1]. Attaching τ to a symbol
associates it to (xτ ,Φτ ), i.e.Hτpr denotes the set of primary points of (xτ ,Φτ )
etc. (x, ϕ) is called contractibly strongly intersecting (csi) if W u and W s are
strongly intersecting and if each pair of branches has contractible homoclinic
points. An isotopy Φ is csi if (xτ ,Φτ ) is csi for all τ ∈ [0, 1].

Theorem 31 (Invariance). Let (M,ω) be a closed symplectic two-
dimensional manifold with genus g ≥ 1. Let ϕ, ψ ∈ Diffω(M) with hyperbolic
fixed points x ∈ Fix(ϕ) and y ∈ Fix(ψ). Let (x, ϕ) and (y, ψ) be csi and let
all primary points of ϕ and ψ be transverse. Assume there is a csi isotopy
Φ from (x, ϕ) to (y, ψ). Then

H∗(x, ϕ) ' H∗(y, ψ).

We will prove Theorem 31 in the following subsections. The proof carries over
to compactly supported symplectomorphisms on R2. ‘Csi’ and ‘compactly
supported’ are crucial:

Remark 32. There are ϕ, ψ ∈ Diffdx∧dy(R2) with hyperbolic fixed points
x ∈ Fix(ϕ) and y ∈ Fix(ψ) which can be joint by a symplectic isotopy and
which have

(1) different number of pairs of intersecting branches,
(2) H∗(x, ϕ) 6= H∗(y, ψ).

Proof. For small ε > 0, consider the path Φε : [0, 1] → Diffdx∧dy(R2) given
by

Φε
τ (x, y) := (x+ y + εfτ (x), y + εfτ (x))

with fτ (x) := −τx3 − (1 − τ)x2 + x. We have Φε
τ (0, 0) = (0, 0) with

DΦε
τ (0, 0) =

(
1+ε 1
ε 1

)
as hyperbolic fixed point. Now set ϕ := Φε

0 and
ψ := Φε

1. ϕ is the volume preserving Hénon map and its homoclinic tangle is
sketched in Figure 9 (a): ϕ has one pair of intersecting branches. The tangle
of ψ is sketched in Figure 9 (b) and has four pairs of intersecting branches.
We compute H2((0, 0), ϕ) ' Z, H1((0, 0), ϕ) ' Z and Hn((0, 0), ϕ) = 0 oth-
erwise. But ψ has H3((0, 0), ψ) 6= 0, thus H∗((0, 0), ϕ) 6= H∗((0, 0), ψ). �

As an application, we obtain the following statement.

Corollary 33 (existence and bifurcation criterion). Assume the conditions
of Theorem 31 for (M,ω), (x, ϕ) and (y, ψ), but H∗(x, ϕ) 6= H∗(y, ψ). Then
(x, ϕ) and (y, ψ) cannot be joint by a csi isotopy. Thus, if there is a path
(Φτ )τ∈[0,1] ∈ Diffω(M) between ϕ and ψ then

(1) either Φ is no isotopy, i.e. there is τ0 ∈ [0, 1] where xτ0 vanishes or
undergoes a bifurcation,

(2) or, if Φ is an isotopy, there has to be a pair of branches and some
τ0 ∈ [0, 1] where all contractible homoclinic points vanish, i.e. there are
homoclinic bifurcations.
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Figure 9. Homoclinic tangle of the quadratic map (a) and
the cubic map (b).

Now apply the invariance property to assign homology groups to homoclinic
loops of autonomous Hamiltonian systems. Let H : R2 → R be a compactly
supported, autonomous smooth Hamiltonian function and X its Hamilton-
ian vector field. Assume X to have locally a phase portrait like Figure 6 (a)
or (b). Let ε > 0 be small and let Y be a smooth nonautonomous vector
field with support in the support of H.
By Melnikov’s method [Me], [GH], the time-one map ϕε of the nonau-
tonomous system ż(t) = X(z(t)) + εY (t, z(t)) now has a homoclinic tangle
instead of a homoclinic loop. The Melnikov function measures the existence
and ‘width’ of the arising homoclinic tangle (for higher iterates see Rom-
Kedar [RK1, RK2]). Therefore one knows quite well how the tangle behaves
for ε→ 0.
In case of Figure 6 (a), the tangle looks roughly like the one of Figure 7. In
case of Figure 6 (b), the tangle resembles somewhat Figure 8. The isotopy
ε 7→ ϕε satisfies the requirements of Theorem 31 for small ε > 0. The natural
parametrization of the homoclinic loops induces the signs of the Maslov
indices: If the loop winds (counter)clockwise, the arising branches of the
unstable and stable manifold have primary points with positive (negative)
Maslov index. We summarize this as follows.

Corollary 34. Figure-eight homoclinic loops are characterized by

Hσ·1 = Z, Hσ·2 = Z⊕ Z, Hσ·3 = Z
where σ = 1 for clockwise and σ = −1 for counterclockwise parametrization.
In case of the tilted figure-eight homoclinic loop, both cases lead, due to
symmetry, to

H−2 = H−1 = H1 = H2 = Z, H±3 = 0.

In Theorem 31, we impose the transversality condition only on the primary
points of (x, ϕ) and (y, ψ). This is convenient for applications since it can
be checked easily using Remark 16 and Remark 18. But our proof strategy
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requires perturbations of Φ. Thus we have to show that slight perturbations
of the start and endpoint preserve the associated primary Floer homologies.

Proposition 35. Let (M,ω) be a closed, two-dimensional symplectic man-
ifold with genus g ≥ 1. Let ϕ ∈ Diffω(M) and x ∈ Fix(ϕ) hyperbolic. Let
(x, ϕ) be csi and all primary points transverse. Then, for all ϕ̂ ∈ Diffω(M)
sufficiently close to ϕ, holds

H∗(x, ϕ) = H∗(x̂, ϕ̂).

where x̂ ∈ Fix(ϕ̂) is the continuation of x.

The proof of Proposition 35 is postponed to Paragraph 5.6.

Remark 36. (1) Whereas, in the two-dimensional setting, primary Floer
homology can be defined also for nonsymplectic diffeomorphisms, invari-
ance only is natural within the class of symplectomorphisms.

(2) We conjecture that Hamiltonian diffeomorphisms are naturally csi.
(3) In contrast to classical Lagrangian Floer theory, invariance of primary

Floer homology relies on the nontrivial result of (generical) existence of
intersection points of the Lagrangians.

5.2. Outline of the proof of Theorem 31. In order to prove Theorem
31, we have to deal with bifurcations of homoclinic points. We denote the
bifurcation parameter by τ with tangency at τ0. Generically, a homoclinic
tangency is simple and the picture looks (after a suitable symplectic coordi-
nate change) locally like the graph of f + C(τ − τ0) intersecting the x-axis
where f is a quadratic, homogenous and nondegenerate function and C > 0.
Passing from τ < τ0 to τ > τ0 (or vice versa), we briefly call a move and omit
the bifurcation parameter τ . By abuse of notation, we speak of an (r, s)-move
if the arising resp. vanishing two points are called r and s. In fact, we always
have a family of (rn, sn)n∈Z-moves. Given an (r, s)-move, there is always an
embedded di-gon between r and s since ]r, s[u ∩ ]r, s[s = ∅. If r and s are
primary then they are adjacent to each other. Moreover, x /∈ [r, s]u ∪ [r, s]s
and therefore r and s always lie on the same branches.

Proof of Theorem 31. First, we perturb the isotopy Φ in order to obtain the
above mentioned generic bifurcations. This is possible since csi is an open
property in Diffω(M). Since the set of all τ ∈ [0, 1], for which all primary
points are nontransverse, is discrete we can perturb the isotopy once again
slightly, in order to obtain for all τ ∈ [0, 1] a transverse primary point within
each pair of intersection branches.
Recall the properties of primary points from Remark 16 and Remark 18.
Given a primary p, we call [p, p1]u ∪ [p, p1]s together with the positions of

[p, p1]u ∩ [p, p1]s and the immersions (embeddings on M̃) between adjacent
points the frame induced by p. Every primary equivalence class associated
to that pair of branches and different from p has exactly one representative
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in the frame induced by p. As long as p persist as primary point its frame
allows to observe all primary bifurcations. Now we cover [0, 1] by a finite
number of overlapping intervals associated to persisting primary points.

Primary points can only arise resp. vanish at certain distinguished parts of
the compact frame segments [p, p1]u and [p, p1]s, see Remark 18 and Figure
13. Thus there are only finitely many τ ∈ [0, 1], where primary points can
arise resp. vanish. As Proposition 39 and Lemma 52 will show, bifurcations
of secondary points either do not affect the chain complex or are coupled to
certain primary bifurcations. Since primary Floer theory lives within com-
pact segments centered around the fixed point, we can model the relevant
bifurcations of the isotopy as a sequence of moves as in knot theory.

Now let us discuss the moves more detailed. W.l.o.g. we will assume from
now on that, in case of a bifurcation in p at time τ0, the tangency p unfolds
into two points for τ > τ0 and vanishes for τ < τ0. This we briefly call after
resp. before the bifurcation or move. We call a point involved in a move if it
is either the homoclinic tangency at time τ0 or one of the arising transverse
homoclinic points. Persistent transverse primary points p and q are called
combinatorically affected by a move if the value of m(p, q) is changed by the
move. By abuse of notation, we call in this case also the elements ofM(p, q)
affected by the move.
There are two possibilities to generate (analogously destroy) a primary point
p by a move:

a) p arises as intersection point.
b) p was secondary and becomes primary. This phenomenon we call a

primary-secondary flip, briefly a flip.

In the latter case, the point does not necessarily need to be involved in
the move itself, cf. Figure 13. Primary points cannot switch to nontrivial
homotopy classes or vice versa due to ‘· · ·∩H[x]’ in the definition of ‘primary’.
Since there are always two points involved in a bifurcation the following
types of moves are possible:

a) If both arising points are primary the move is called primary.
b) If one of the arising points is primary and the other one secondary the

move is called mixed.
c) If both arising points are secondary the move is called secondary.

We note

Lemma 37. Let p be not involved itself in a given move, but let p undergo
a primary-secondary flip. Then the move is a mixed one.

Proof of Lemma 37. Consider the lifted tangle. The situation is sketched in
Figure 10. In (i), p is primary before the move. In (ii – iv), the possible types
of moves are listed which turn p secondary — all of them are mixed. �
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Figure 10. Causes for a primary-secondary flip.

Having Lemma 37 and Figure 10 in mind, we conclude the following changes
of the set of primary points under the different types of moves.

Corollary 38. (1) A primary move generates two primary points and does
not flip any.

(2) A mixed move generates one primary point, but flips a certain number
of primary points secondary.

(3) A secondary move neither generates primary points nor can flip some
of them secondary, i.e. the set of primary points stays untouched.

Corollary 38 characterizes how the different types of moves affect the gener-
ator set of the chain groups. We will inquire about the potential changes of
the boundary operator in the next subsections. It will be proven in Propo-
sition 39, Theorem 47, Theorem 48 and Theorem 50 that all three kinds of
moves leave the homology invariant which proves Theorem 31. �

5.3. Invariance under secondary moves. For simplicity, we work with
the lifted homoclinic tangle on the universal cover. According to Corollary
38, the generator set of the chain complex stays unchanged under secondary
moves and we will show now that this is also true for the boundary operator.

Proposition 39. Secondary moves do not affect embeddings between pri-
mary points.

Proof. We argue by contradiction: Let u be an embedding between primary
points p and q with µ(p, q) = 1. Consider an (r, s)-move such that {r, s} =
]p, q[u ∩ ]p, q[s. We show: If r and s are secondary then the (r, s)-move
already flipped either p or q secondary before r and s could arise. The proof
is tedious, but elementary. We just have to check for the embeddings of
Figure 4 all combinatorial possibilities of (r, s)-moves affecting the boundary
[p, q]u ∪ [p, q]s such that {r, s} = ]p, q[u ∩ ]p, q[s.
We only prove the assertion exemplarily in the case of Figure 4 (i) with
µ(p, q) = (−1, 2) which is resketched in Figure 11 (i). The strategy and
result for the other cases in Figure 4 are the same.
Consider Figure 11 (i) and the boundary [p, q]u ∪ [p, q]s of the embedding
between p and q. ]p, q[u\{x} consists of the two connected components ]p, x[u
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Figure 11. The effect of moves on an embedding between
primary points p and q.

and ]q, x[u. Since r and s always lie in the same branch we have to distinguish
the cases r, s ∈ ]p, x[u (see Figure 11 (ii), (vi), (vii)) and r, s ∈ ]q, x[u (see
Figure 11 (iii), (iv), (v)). Moreover, we have to distinguish if p is connected
within W s first to s (see Figure 11 (ii), (iii)) or to r (see Figure 11 (iv) –
(vii)). The cases (iv) and (v) on the one hand and (vi) and (vii) on the other
hand are basically the same.
We deduce that (ii) is a primary move and that (iii), (iv) and (v) are mixed
ones. In (vi) and (vii) the points r and s are both secondary. But before the
move, starting in the situation of (i), generates the intersection points r and
s in (vi) and (vii) it has to pass through ]p, x[s generating the intersection
points r′ and s′ which yields a mixed (r′, s′)-move flipping p secondary. �

Proposition 39 and Corollary 38 imply the invariance of primary Floer
homology under secondary moves. Moreover, we note that, according to
the proof of Proposition 39, a mixed move affecting an embedding between
two primary points always flips one of them secondary.

5.4. Invariance under primary moves. Now we prove the invariance of
primary Floer homology under primary moves. The proof generalizes ideas
of Floer [Fl3] and de Silva [dS].

In Figure 12, the two possibilities for primary moves are sketched which are
deduced from Figure 4 (up to symmetries).
Given u ∈ M(p, q), consider a primary (r, s)-move such that for some
m ∈ Z the familiy element (rm, sm) affects u, i.e. [rm, sm]i ⊂ ]p, q[i for
i ∈ {u, s}. Then there is no n ∈ Z6=m such that (rn, sn) affects u: Let the
symplectomorphism be W -orientation preserving and w.l.o.g. m = 0. Since
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Figure 12. The primary (r, s)-move.

x /∈ [p, q]u∩ [p, q]s at least one of the points p, q lies in the same branch as r
and s and w.l.o.g. let it be p. If there would be an n 6= 0 with [rn, sn]i ⊂ ]p, q[i
then there is an iterate pk with pk ∈ [r, rn]u ∩ [r, rn]s ⊂ ]p, q[u ∩ ]p, q[s. But
then already pk ∈ ]p, q[u ∩ ]p, q[s before the primary (r, s)-move took place.
Thus u is no embedding. For a W -orientation reversing symplectomorphism
consider its square.

We denote by <·, ·> : Hpr×Hpr → {0, 1} the Kronecker symbol and extend
it to the chain complex by linearity.
For an isotopy Φ which has a primary tangency at τ0 and which dis-
plays a primary (r, s)-move for τ ∈ [τ0 − ε, τ0 + ε] we abbreviate Hpr :=
Hpr(Φτ0−ε, xτ0−ε) and identify H′pr := Hpr(Φτ0+ε, xτ0+ε) = Hpr ∪ {rn, sn |
n ∈ Z}. Moreover set (C∗, d) := (C∗(xτ0−ε,Φτ0−ε), dxτ0−ε,Φτ0−ε) and

(C′∗, d
′) := (C∗(xτ0+ε,Φτ0+ε), dxτ0+ε,Φτ0+ε). Mark signs after the move by a

prime, i.e. m′(·, ·). Given a primary (r, s)-move, we define the projection

π : C′∗ → C∗, π(p) = p−
∑
n∈Z

<p, rn>rn −<p, sn>sn.

The inclusion Hpr ↪→ H′pr induces the homomorphism i : C∗ → C′∗. π and
i commute with the Z-action on the chain complexes. W.l.o.g. assume for
the remaining subsection that for a primary (r, s)-move holds µ(r, s) = 1 as
sketched in Figure 12.

Proposition 40. For all primary p, q ∈ Hpr and all primary (r, s)-moves
holds

m(p, q) = m′(i(p), i(q))−
∑
n∈Z

m′(i(p), sn)m′(rn, sn)m′(rn, i(q)).

Proof. We know that the primary (r, s)-move changes Hpr to H′pr = Hpr ∪
{rn, sn | n ∈ Z}. Figure 12 sketches the possible geometric positions of p, q,
r, s. Recall that for primary points p and q an embedding u ∈ M(p, q) is
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combinatorically affected by the primary (r, s)-move if and only if there is
exactly one n ∈ Z such that ]p, q[u ∩ ]p, q[s= {rn, sn} after the move.
If the embedding is combinatorically affected by rn and sn then it
corresponds under the move to three embeddings between rn and q,
rn and sn and p and sn. Using some gluing construction within a

small neighbourhood U containing the move, we obtain M̂(p, q) '
M̂(rn, q) × M̂(rn, s) × M̂(p, sn). Counting with orientation, we find
m(p, q) = m′(i(p), sn) = m′(rn, i(q)) = −m′(rn, sn) and thus m(p, q) =
−m′(i(p), sn)m′(rn, sn)m′(rn, i(q)). For k ∈ Z6=n the embedding u ∈M(p, q)
stays unchanged and m′(i(p), sk)m′(rk, sk)m′(rk, i(q)) = 0.

If u is not combinatorically affected by the move then either M̂(p, sl) =

∅ or M̂(rl, q) = ∅ for all l ∈ Z. In this case we have
−m′(i(p), sl)m′(rl, sl)m′(rl, i(q)) = 0 and m(p, q) = m′(i(p), i(q)), thus alto-
gether m(p, q) = m′(i(p), i(q))−

∑
n∈Zm

′(i(p), sn)m′(rn, sn)m′(rn, i(q)). �

Now we express the boundary operator d in terms of d′.

Lemma 41.

dp = π(d′i(p)−
∑
n∈Z

m′(i(p), sn)m′(rn, sn)d′rn) for µ(i(p), r) = 0,

dp = π(d′i(p)) otherwise.

Proof. We compute formally

d′i(p) =
∑

µ(i(p),q̃)=1

q̃ /∈{rn,sn|n∈Z}

m′(i(p), q̃)q̃ +
∑
n∈Z

m′(i(p), rn)rn +
∑
n∈Z

m′(i(p), sn)sn,

d′rm =
∑

µ(rm,q̃)=1

q̃ /∈{sn|n∈Z}

m′(i(p), q̃)q̃ +
∑
n∈Z

m′(rm, sn)sn

and, making use of the Kronecker symbol via <∂p, q> = m(p, q) etc., we
rewrite Proposition 40 as

(42) <dp, q> = <d′i(p)−
∑
n∈Z

m′(i(p), sn)m′(rn, sn)d′rn, i(q)>.

Applying π to d′i(p) and d′rm kills all rn- and sn-terms. We end up exactly
with those terms which occur (maybe multiplied by m′(i(p), sn)m′(rn, sn))
in (42). So we obtain dp = π(d′i(p) −

∑
n∈Zm

′(i(p), sn)m′(rn, sn)d′rn) for
µ(i(p), r) = 0 and dp = π(d′i(p)) otherwise. �

Now note the following technical statement:

Lemma 43. Consider a primary (r, s)-move. Then for k, l ∈ Z holds
m′(rk, sl) = 0 for k 6= l.
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Proof. For fixed m, the points rm and sm are adjacent, but not rm and sm−1

and sm and rm+1: otherwise 〈r〉 and 〈l〉 would be the only primary equiva-
lence classes of their pair of intersecting branches implying nonintersecting
branches before the move in contradiction to the assumption on the isotopy.
From Remark 18 and Remark 18 we deduce ]rm, sn[u ∩ ]rm, sn[s 6= ∅ for
|m− n| ≥ 1 and thus M(rm, sn) = ∅ and m′(rm, sn) = 0. �

For the following proofs, keep in mind that m(p, q)m(p, q) ∈ {0, 1}.

Lemma 44. We define on the generators

f : (C′∗, d
′)→ (C∗, d), f(p) := π(p−

∑
n∈Z

m′(rn, sn)<p, sn>d′rn),

g : (C∗, d)→ (C′∗, d
′), g(p) := i(p)−

∑
n∈Z

m′(rn, sn)m′(i(p), sn)rn

and extend them by linearity. Then f and g are Z-equivariant chain maps.

Proof. For m ∈ Z we compute

f(rm) = 0, f(sm) = −m′(rm, sm)πd′rm, f(p) = π(p) for p 6= rm, sm.

Recall µ(rm, sm) = 1 and M̂(rm, sm) 6= ∅ such that m′(rm, sm) = ±1 and
keep the equations

dp = π(d′i(p)−
∑
n∈Z

m′(p, sn)m′(rn, sn)d′rn) for µ(i(p), r) = 0,

dp = π(d′i(p)) otherwise

from Lemma 41 in mind. For f , we obtain

f(d′rm) = f(iπd′rm +
∑
n∈Z

m′(rm, sn)sn)
43
= f(iπd′rm +m′(rm, sm)sm)

= πiπd′rm − 0 + 0−m′(rm, sm)m′(rm, sm)π(d′rm)

= πd′rm − πd′rm = 0 = d0

= df(rm),

df(sm) = d(−m′(rm, sm)πd′rm)
41
= πd′(−m′(rm, sm)iπd′rm)

= −m′(rm, sm)πd′iπd′rm

= −m′(rm, sm)πd′(d′rm −
∑
n∈Z

m′(rm, sn)sn)

43
= −m′(rm, sm)(πd′d′rm −m′(rm, sm)πd′sm)

= πd′sm

= f(d′sm).
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For p 6= rm, sm and m ∈ Z, we obtain

f(d′p) = f(iπd′p+
∑
n∈Z

m′(p, rn)rn +m′(p, sn)sn)

= πiπd′p− π

(∑
l∈Z

m′(rl, sl)<iπd′p, sl>d′rl

)

+ π

(∑
n∈Z

m′(p, rn)rn

)

− π

(∑
l∈Z

m′(rl, sl)<
∑
n∈Z

m′(p, rn)rn, sl>d′rl

)

+ π

(∑
n∈Z

m′(p, sn)sn

)

− π

(∑
l∈Z

m′(rl, sl)<
∑
n∈Z

m′(p, sn)sn, sl>d′rl

)
= πiπd′p− 0 + 0− 0 + 0−

∑
l∈Z

m′(p, sl)m′(rl, sl)πd′rl

= πd′p−
∑
l∈Z

m′(p, sl)m′(rl, sl)πd′rl

= πd′iπp−
∑
l∈Z

m′(p, sl)m′(rl, sl)πd′rl

41
= dπp

= df(p).

Now we extend the definition of m′(p, q) etc. by linearity from primary points
to elements of C′∗, i.e. m′(

∑
j pj , q) :=

∑
jm
′(pj , q), and consider g:

Case µ(i(p), r) = 0: We first show

(45) iπd′g(p) = d′g(p)
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which follows from <d′g(p), rm> = 0 due to µ(i(p), rm) = 0 for m ∈ Z and

<d′g(p), sm> = m′(g(p), sm) = m′(i(p)−
∑
n∈Z

m′(rn, sn)m′(i(p), sn)rn, sm)

= m′(i(p), sm)−
∑
n∈Z

m′(rn, sn)m′(i(p), sn)m′(rn, sm)

43
= m′(i(p), sm)−m′(rm, sm)m′(i(p), sm)m′(rm, sm)

= m′(i(p), sm)−m′(i(p), sm)

= 0.

Now we obtain

g(dp)
µ(i(p),r)=0

= i(dp)
41
= iπd′(i(p)−

∑
n∈Z

m′(i(p), sn)m′(rn, sn)rn)

= iπd′g(p)
45
= d′g(p).

Case µ(i(p), r) 6= 0: First note

(46) m′(d′i(p), sm) = <d′(d′i(p)), sm> = 0

and then compute

g(dp)
41
= g(πd′i(p))

= iπd′i(p)−
∑
n∈Z

m′(rn, sn)m′(iπd′i(p), sn)rn

= iπd′i(p)−
∑
n∈Z

m′(rn, sn)m′(d′i(p)

−
∑
l∈Z

m′(i(p), rl)rl −m′(i(p), sl)sl, sn)rn

= iπd′i(p)−
∑
n∈Z

m′(rn, sn)(m′(d′i(p), sn)

−
∑
l∈Z

m′(i(p), rl)m′(rl, sn)− 0)rn

(46)
= iπd′i(p) +

∑
n∈Z

m′(rn, sn)m′(i(p), rn)m′(rn, sn)rn

= iπd′i(p) +
∑
n∈Z

m′(i(p), rn)rn

µ(i(p),r)6=0
= d′i(p)

µ(i(p),r)6=0
= d′(g(p)).

Since π and i are Z-equivariant so are f and g. �
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Now we show that f and g induce isomorphisms between the homologies of
(C′∗, d

′) and (C∗, d).

Theorem 47. The homologies of (C′∗, d
′) and (C∗, d) are isomorphic.

Proof. For f and g from Lemma 44, we show that f∗ : H(C′∗, d
′)→ H(C∗, d)

and g∗ : H(C∗, d)→ H(C′∗, d
′) are inverse to each other. It is enough to show

f ◦ g ' IdC∗ and g ◦ f ' IdC′∗ where ' stands for homotopic by a chain
homotopy. f ◦ g : (C∗, d)→ (C∗, d) is even the identity:

f(g(p)) = f(i(p))−
∑
n∈Z

m′(rn, sn)m′(i(p), sn)f(rn) = f(i(p))

= πi(p)− π

(∑
n∈Z

m′(rn, sn)<i(p), sn>d′rn

)
= πi(p) = IdC∗(p).

Unfortunately, this is not true for g ◦ f . But we can find a chain homotopy
h : (C′∗, d

′)→ (C′∗+1, d
′) satisfying g ◦ f − IdC′∗ = h ◦ d′ + d′ ◦ h. Choose

h(p) := −
∑
n∈Z

<sn, p>m′(rn, sn)rn

and compute for m ∈ Z

(h ◦ d′ + d′ ◦ h)(rm)

= −
∑
n∈Z

<sn, d′rm>m′(rn, sn)rn − d′

(∑
n∈Z

<sn, rm>m′(rn, sn)rn

)
= −

∑
n∈Z

m′(rm, sn)m′(rn, sn)rn

43
= −m′(rm, sm)m′(rm, sm)rm

= −rm,

and

(h ◦ d′ + d′ ◦ h)(sm)

= −
∑
n∈Z

<sn, d′sm>m′(rn, sn)rn −
∑
n∈Z

<sn, sm>m′(rn, sn)d′rn

= −m′(rm, sm)d′rm
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and for p 6= rm, sm for m ∈ Z

(h ◦ d′ + d′ ◦ h)(p)

= −
∑
n∈Z

<sn, d′p>m′(rn, sn)rn − d′

(∑
n∈Z

<sn, p>m′(rn, sn)rn

)
= −

∑
n∈Z

m′(p, sn)m′(rn, sn)rn.

On the other hand, we obtain

(g ◦ f − IdC′∗)(r
m) = g(f(rm))− rm = −rm

and

(g ◦ f − IdC′∗)(s
m)

= g(π(sm)− π

(∑
n∈Z

m′(rn, sn)<sm, sn>d′rn

)
)− sm

= g(−m′(rm, sm)πd′rm)− sm

= −m′(rm, sm)g(πd′rm)− sm

= −m′(rm, sm)

(
iπd′rm −

∑
n∈Z

m′(rn, sn)m′(iπd′rm, sn)rn

)
− sm

= −m′(rm, sm)iπd′rm − sm

= −m′(rm, sm)(d′rm −
∑
n∈Z

m′(rm, sn)sn)− sm

43
= −m′(rm, sm)d′rm +m′(rm, sm)m′(rm, sm)sm − sm

= −m′(rm, sm)d′rm

and for p 6= rm, sm for m ∈ Z

(g ◦ f − IdC′∗)(p) = g

(
π(p)−

∑
n∈Z

m′(rn, sn)<p, sn>πd′rn

)
− p

= g(π(p))− p

= iπ(p)−
∑
n∈Z

m′(rn, sn)m′(iπ(p), sn)rn − p

= −
∑
n∈Z

m′(rn, sn)m′(p, sn)rn.

Comparing the results yields g ◦ f − IdC′∗ = h ◦ d′ + d′ ◦ h which proves the
claim. �



HOMOCLINIC POINTS AND FLOER HOMOLOGY 45

Moreover, note that also the chain homotopy h commutes with the Z-action
on the chain complexes. Now we divide by the Z-action. Define C∗ and C ′∗
analogously to C∗ and C′∗. Since f , g and h commute with the Z-action on
the chain complexes they pass to C∗ and C ′∗ and we obtain

Theorem 48. The homologies of (C∗, ∂) and (C ′∗, ∂
′) are isomorphic, i.e.

primary moves leave the primary Floer homology invariant.

5.5. Invariance under mixed moves. The invariance under mixed moves
will be reduced to the invariance under primary and secondary moves. If not
stated otherwise, we will work with the lifted tangles on the universal cover.

Now we want to investigate how mixed moves look like. If a (r, s)-move
flips a primary points p secondary the segments ]p, x[u and ]p, x[s have to
intersect after the move. In particular, r, s and p have to lie in the same
pair of branches. Since the (un)stable manifolds are free of self-intersections
a mixed move always takes place within a fixed frame, i.e. the mixed move
cannot ‘overlap’ into another iterate of the frame. With Remark 18 in mind,
mixed moves look as sketched in Figure 13 (where p2n+1 still lies in the
frame induced by p). Mixed moves come along with 2n + 1 flips and are
called simple if n = 0.

2n+ 12n+ 1

(ii)

(i)

x

p
x

p2p1

x

s p2p1 rp
x

x

p2n+2

xxp1
p2n+1

x

p2n+2

r s
p2n+1

p1p p

Figure 13. Mixed (r, s)-moves with one flip in (i) and 2n+1
flips in (ii).

Before we consider the invariance under mixed moves we note the following.
Without the condition ‘· · · ∩ H[x]’ in the definition of ‘primary’, primary
Floer homology would not be invariant: Consider Figure 14 where a move
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circles around genus. Assume for sake of simplicity that only the branches
containing p intersect. In our convention, the move is secondary and thus
leaves the homology invariant. Dropping ‘· · ·∩H[x]’ is equivalent to using the
contractible semi-primary points as generators of the chain complex. Before
the move, p and q are contractible and semi-primary, but after the move q is
no longer semi-primary. The generated r is secondary and s semi-primary,
but not contractible. Thus it is excluded as generator. Before the move we
obtain H−1 = Z〈p〉 and H−2 = Z〈q〉 and H∗ = 0 for n 6= −1,−2. But after
the move there is only p left as generator. Thus H−1 = Z〈p〉 and H∗ = 0
otherwise. This phenomenon inspires the definition of semi-primary Floer
homology in Theorem 57.

x p−1

r

s

W s

p

q
−2

−1

Figure 14. Arising of nontrivial homotopy classes.

Proposition 49. Primary Floer homology stays invariant under simple
mixed moves.

Proof. Consider Figure 13 (i): the simple mixed (r, s)-move can be recog-
nized as an identification followed by the secondary (p1, r)-move. Since both
leave the homology invariant so does the simple mixed move. An explicit
chain complex isomorphism is given by f : (C∗, ∂) −→ (C ′∗, ∂

′), a 7→ a for

a ∈ H̃pr\{〈p1〉} and 〈p1〉 7→ 〈s〉. �

Now we consider the invariance under arbitrary mixed moves.

Theorem 50. Primary Floer homology is invariant under mixed moves.

Proof. For simple mixed moves, the claim was already proven in Proposi-
tion 49. Now consider Figure 13 (ii). The mixed move can be recognized
as a sequence of primary moves (p2, p3), . . . , (p2n, p2n+1), followed by a
simple mixed (r, s)-move and a sequence of secondary moves (p2, p3), . . . ,
(p2n, p2n+1). This yields the claim. �
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5.6. The proof of Proposition 35. Let ϕ ∈ Diffω(M) with hyperbolic
x ∈ Fix(ϕ). Let (x, ϕ) be csi and let all primary points be transverse. First
we generalize Lemma 37.

Lemma 51. (1) Let ϕ̂ ∈ Diffω(M) be a small perturbation of ϕ and x̂ the
continuation of x. Let pϕ ∈ Hpr(ϕ) be primary and let pϕ persist as
transverse homoclinic points pϕ̂, but nonprimary. Then there is q ∈
Hpr(ϕ̂) which is no continuation of any primary point of ϕ.

(2) Let (x, ϕ) be csi and let all primary points be transverse. Then for suffi-
ciently small perturbations ϕ̂ ∈ Diffω(M) of ϕ, all primary points remain
transverse and no primary points arise or vanish.

Proof. First item: We work with the lifted tangles of ϕ and ϕ̂, but we drop
the tilde for sake of readability. The segments [x, pϕ]i and [x̂, pϕ̂]i are close.
Since pϕ is primary ]x, pϕ[u ∩ ]x, pϕ[s = ∅. But pϕ̂ is nonprimary, thus
]x̂, pϕ̂[u ∩ ]x̂, pϕ̂[s 6= ∅. x̂ and pϕ̂ remain transverse. Figure 15 (ii) – (iv) lists
the three types which prevent pϕ̂ to be primary. In all three cases, there
is a primary q ∈ ]x̂, pϕ̂[u ∩ ]x̂, pϕ̂[s which has no corresponding point in
]x, pϕ[u ∩ ]x, pϕ[s and thus in Hpr(ϕ).
Second item: Since all primary points of ϕ are transverse they persist at
least as transverse intersection points for small perturbations. Any primary-
secondary flip would require the rise of a new primary point. But primary
points only arise in frames and the compactness of the frame prevents this
for sufficiently small perturbations. �

(ii)

qx̂

(iii)

q
x̂

(iv)

q
pϕ̂

x̂x L0

L1

(i)

pϕ pϕ̂
pϕ̂

Figure 15. Causes for primary-secondary flips.

Thus also in this generalized situation, a primary-secondary flip is coupled
with the rise of a new primary point. Now we generalize Proposition 39.

Lemma 52. Let ϕ ∈ Diffω(M) be csi with x ∈ Fix(ϕ) hyperbolic and all
primary points transverse. Let ϕ̂ ∈ Diffω(M) be small perturbation of ϕ
such that all primary points persist transverse. Consider primary pϕ and
qϕ with µ(pϕ, qϕ) = 1 and denote their continuation by pϕ̂ and qϕ̂. Then
m(pϕ, qϕ) = m(pϕ̂, qϕ̂).

Proof. For simplicity, abbreviate p := pϕ̂ and q := qϕ̂ Clearly µ(pϕ, qϕ) =
µ(p, q) and if m(pϕ, qϕ) 6= 0 6= m(p, q) then their signs coincide. Thus it is
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enough to show M(pϕ, qϕ) 6= ∅ if and only if M(p, q) 6= ∅. We will work on
the universal cover with the lifted tangles.
We have to check if the proof of Proposition 39 carries over to our more
general situation. Let M(pϕ, qϕ) 6= ∅ and assume M(p, q) = ∅, i.e.
]p, q[u ∩ ]p, q[s 6= ∅.
For that, we have to admit perturbations as in the dashed boxes in Figure
15 and check a generalization of Figure 11 etc. which yields the claim. �

Proof of Proposition 35. For sufficiently small perturbations, the primary
points persist by Lemma 51 (2). Thus the generator set of primary homo-
clinic chain complex stays unchanged. Moreover, the boundary operator per-
sists due to Lemma 52. Thus the homology remains unchanged. �

6. Dynamics and homoclinic Floer theory

6.1. Conjugacy. Since conjugacy does not affect the intersection behaviour
of homoclinic tangles one expects primary Floer homology to be invari-
ant under conjugacy. Nevertheless, one has to be a little careful. If one is
only interested in the topological information, then it is enough to have
a homeomorphisms h conjugating ϕ, ψ ∈ Diffω(M), i.e. ϕ ◦ h = h ◦ ψ:
If x ∈ Fix(ψ) then h(x) ∈ Fix(ϕ) and H∗(x, ψ) = H∗(h(x), ϕ) since
h(W i(x, ψ)) = W i(h(x), ϕ) for i ∈ {s, u}.
But if symplectic properties should be preserved (as for example the sym-
plectic volume

∫
v∗ω of an immersion v) we have to require h to be sym-

plectic.
6.2. rkH∗(x, ϕ) ≤ rkH∗(x, ϕn). Now denote by 〈p1〉, . . . , 〈pk〉 the gen-

erators of C∗(x, ϕ) and set pji := ϕj(pi). For n ∈ N0, we have Wϕ
i =

Wϕn

i for i ∈ {s, u} and Wϕ
i = Wϕ−n

j for i 6= j ∈ {s, u}. Note that

the number of equivalence classes multiplies: C∗(x, ϕ
n) is generated by

〈p0
1〉, . . . , 〈p0

k〉, 〈p1
1〉, . . . , 〈p

n−1
k 〉. Abbreviate Zn := Z/nZ = {0̄, 1̄, . . . , n− 1}

and set ϕl∗ = l̄. There is a Zn-action on the generators via

Zn × C∗(x, ϕn)→ C∗(x, ϕ
n), ϕl∗.〈p

j
i 〉 := 〈pj+l mod ni 〉 = 〈ϕl(pji )〉

and extend it by linearity to the complex. We notice ϕl∗.(∂〈p
j
i 〉) = ∂〈ϕl(pji )〉

such that the Zn-action descends to homology. If we use the m(p, q)-signs
we assume Q-coefficients and so we do for n(p, q)-signs if ϕ is W -orientation
preserving ϕ and n ∈ N0. In the orientation reversing case, assume Z2 as
coefficient ring for the n(p, q)-signs if n = 2m + 1 ∈ N odd. Then Theorem
25 allows us to treat simultanously also negative exponents and we define

f : C∗(x, ϕ
n;K) ' C−∗(x, ϕ−n,K)→ C∗(x, ϕ;K), f(〈pji 〉) := 〈pi〉,

g : C∗(x, ϕ;K)→ C∗(x, ϕ
n;K) ' C−∗(x, ϕ−n;K), g(〈pi〉) :=

1

n

n−1∑
j=0

〈pji 〉
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where K stands for the suitable coefficient ring. f and g are chain maps and
we compute f ◦ g = IdC∗(x,ϕ;K). Denote by g∗ and f∗ the induced maps on
the (co)homology.

Proposition 53. g∗ is injective, f∗ surjective and

rkH∗(x, ϕ;K) ≤ rkH∗(x, ϕ
n;K) = rkH−∗(x, ϕ−n;K).

The difference is measured by the long exact sequence

· · · → Hl(ker f ;K)→ Hl(x, ϕ
n;K)→ Hl(x, ϕ;K)→ Hl−1(ker f,K)→ · · ·

Proof. We drop the coefficient ring K in the notation in favour of better
readability. f ◦ g = IdC∗(x,ϕ) implies the injectivity of g∗ and surjectivity of
f∗ which yield the dimension estimates. The range of g are the invariants
under the Zn-action and the kernel of f the coinvariants which are both
subcomplexes of C∗(x, ϕ

n). We obtain the short exact sequence of chain
complexes

(54) ((ker f)∗, ∂) ↪→ (C∗(x, ϕ
n), ∂)�

(
C∗(x, ϕ

n)

(ker f)∗
, ∂̄

)
where ∂̄ is induced by the projection. Moreover

h :

(
C∗(x, ϕ

n)

(ker f)∗
, ∂̄

)
→ (Im(g)∗, ∂), [c] 7→

n−1∑
l=0

ϕl∗(c)

is an isomorphism and satisfies h ◦ ∂̄ = ∂ ◦ h, thus an isomorphism of chain
complexes. Since also g : C∗(x, ϕ) → Im(g)∗ is an isomorphism of chain
complexes we obtain by means of the long exact sequence of (54)

· · · → Hl(ker f)→ Hl(x, ϕ
n)→ Hl(x, ϕ)→ Hl−1(ker f)→ · · ·

�

Now let us discuss under which circumstances we might have equality in
Proposition 53. We call a smooth Hamiltonian function H : R × M →
R (with compact support) normalized if

∫
M Ht d vol = 0 for all t where

Ht := H(t, ·). Let X be its nonautonomous vector field. Denote by ϕ(t,t0) the
nonautonomous flow of ż(t) = X(t, z(t)) starting at time t0, i.e. ϕ := ϕ(1,0)

is the usual time-1 map. If we assume in addition H(t, ·) = H(t+ 1, ·) then
ϕ(n,0) = ϕn(1,0) = ϕn and ϕ and ϕn are joint by the isotopy τ 7→ ϕ(1+(n−1)τ,0).

Changing the parametrization of a Hamiltonian path is easy: Given τ 7→
ψ(τ,0) with Hamiltonian F (t, z), we obtain τ 7→ ψ(b(τ),0) using b′(t)F (b(t), z)
as Hamiltonian.
Conversely, Banyaga [Ba] proved that for every path of Hamiltonian diffeo-
morphisms τ 7→ ψτ , there is a normalized Hamiltonian having ψτ = ψ(τ,0)

as nonautonomous flow. Therefore we conclude
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Corollary 55. Equality for Hamiltonian diffeomorphisms in Proposition
53 is tied to the question of invariance of primary Floer homology under
Hamiltonian isotopies, i.e. the question if Hamiltonian isotopies fulfil the
requirements of Theorem 31. In Remark 36, we conjecture the answer to be
affirmative.

If there is (conjecturally) equality for Hamiltonian diffeomorphisms in
Proposition 53 we need to know how large the groups of Hamiltonian dif-
feomorphisms Ham(M,ω) ⊂ Diffω(M) actually is. Assume M to be closed
and denote by Diff0

ω(M) the component of the identity in Diffω(M). The
difference between Diff0

ω(M) and Ham(M,ω) is measured via

Diff0
ω(M)/Ham(M,ω) = H1(M,R)/Γ

where Γ ⊂ H1(M,R) is the so-called flux group (cf. Polterovich [Pol2]). Thus
for manifolds with vanishing first cohomology class, we have Diff0

ω(M) =
Ham(M,ω). Examples with H(x, ϕ) < H(x, ϕn) might arise for non-
Hamiltonian symplectomorphisms, especially symplectomorphisms not iso-
topic to the identity.

Another interesting aspect is the relationship between H(x, ϕn) and
Hm(x, ϕ). One might ask if actually H(x, ϕn) might somehow converge to
Hm(x, ϕ). This turns out to be not true at least for Hamiltonian diffeomor-
phisms.

Proposition 56. There is ϕ ∈ Ham(M,ω) with H(x, ϕn) 6= H(x, ϕ) ∀ n.

Proof. Consider the homoclinic tangle in Figure 9 (a). There are exactly two
distinct equivalence classes of primary points. Let us denote them by 〈p〉 and
〈q〉 and assume w.l.o.g. µ(〈p〉) = −1 and µ(〈q〉) = −2. Then ∂〈p〉 = 〈q〉 −
〈q〉 = 0 and ∂〈q〉 = 0 and we obtain H−1(x, ϕ) ' Z〈p〉 and H−2(x, ϕ) ' Z〈q〉.
Moreover, we calculate explicitly H−1(x, ϕn) ' Z ' H−2(x, ϕn) for n ∈ N.
On the other hand, we compute C−1 = SpanZ{pl | l ∈ Z} and C−2 =
SpanZ{ql | l ∈ Z} and dpl = ql−ql−1 and dql = 0 for all l ∈ Z. Thus H−1 = 0
and H−2 = SpanZ{qn | n ∈ Z}/SpanZ{qn + qn−1} ' Z and therefore H−1 6=
H−1. �

6.3. rk H̃∗(x, ϕ) < rk H̃∗(x, ϕn). In this section, we define a version
of homoclinic Floer homology based on contractible semi-primary points,
called semi-primary Floer homology. The construction is analogous to pri-
mary Floer homology except for the invariance property in Theorem 31.
The weaker invariance property of semi-primary Floer homology allows a
better sensitivity for the underlying symplectomorphism. For example, cer-
tain interactions of the tangle and the topology of the manifold are noticed
to which primary Floer homology is oblivious. Moreover, semi-primary Floer
homology distinguishes between ϕ and ϕn for certain symplectomorphisms
ϕ.
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Denote by Hs := {p ∈ H[x] | ]x, p[u ∩ ]x, p[s = ∅} the set of contractible

semi-primary points and by H̃s := Hs/∼ the set of contractible semi-primary
equivalence classes where p ∼ q if and only if p = qn for some n ∈ Z. As
before, the equivalence classes are denoted by 〈p〉. On R2, the notion of
primary and semi-primary coincide since R2 is contractible. Thus assume
from now on that (M,ω) is a surface with genus g ≥ 1.

We define the semi-primary Floer chain complex via

C̃k := C̃(x, ϕ) :=
⊕
〈p〉∈H̃s
µ(〈p〉)=k

Z〈p〉, ∂̃〈p〉 :=
∑
〈q〉∈H̃s

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉

and extend the boundary operator linearly to ∂̃ : C̃∗ → C̃∗−1.

Theorem 57. It holds ∂̃ ◦ ∂̃ = 0 and H̃∗(x, ϕ) := ker ∂̃∗/ Im ∂̃∗+1 is called
semi-primary Floer homology.

Proof. Since the set of contractible semiprimary points is a subset of the
set of primary points most of the proofs for primary Floer homology carry
over. But we have to check the cutting procedure: since we are restricting
the boundary operator to the subset Hs ⊂ Hpr of the primary points we
have to make sure that the cutting points are also in Hs.
More precisely, we have to proof an analogon of Proposition 29 and Theorem
30 for contractible semiprimary points. This can be deduced from the already
existing primary classification Proposition 29 and Figure 5 as follows:
Let p, r ∈ Hs with µ(p, r) = 2. Since p and r are contractible and semipri-
mary, they satisfy ]p, x[s ∩ ]p, x[u = ∅ = ]r, x[s ∩ ]r, x[u and both ‘loops’
[p, x]s ∪ [p, x]u and [r, x]s ∪ [r, x]u span a 2-gon. This yields us the same
pictures and positioning for p and r as in Figure 5, but this time on the
manifold and not on the universal cover. Then we notice that we have 2-
gons with vertices p and r of relative Maslov index ±2 in the middle column
of Figure 5 and 2-gons with vertices x and r resp. p of relative index ±3
in the right and left column of Figure 5. We observe that, in the left and
right column, the cutting procedure takes place within this 2-gon of relative
Maslov index ±3. Thus it does not matter if we are on the universal cover
or on the manifold itself — the cutting works in the very same way as for
primary points and provides us with two contractible semiprimary cutting
points qs and qu.
Now let us consider the middle column. Remember, the 2-gon with vertices
r and p lies on the manifold. Consider the small ‘overlapping nose’. qs and
qu are not primary whether or not the ‘overlapping nose’ wraps around some
genus like in Figure 14. And neither are they contractible semiprimary.

Thus we reproved the classification in Figure 5 for contractible semiprimary
points which implies an analogon of the cutting procedure Theorem 30 (and
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of Lemma 19). Altogether, we deduce ∂̃ ◦ ∂̃ = 0 and the existence of semipri-
mary Floer homology. �

The difference of Hpr and Hs is only noticable on manifolds with genus and
their different properties come apparent in the following example. A brief
look at Figure 14 tells us that, on the one hand, a semi-primary point is
lost as generator since the move turns q from (semi-)primary to primary
and that, on the other hand, the new arising semi-primary point s is not
contractible. This observation leads to

Example 58. Consider the example of Figure 14 and assume for simplicity,
that only the branches containing p intersect (which is entirely possible if M
is not closed). Then the semi-primary Floer homology is given by

H̃−1(x, ϕ) ' Z and H̃∗(x, ϕ) = 0 otherwise.

Let σ(n) = −1 for n ∈ Z>0 and σ(n) = 1 for n ∈ Z<0. Then we obtain

H̃σ(n)(x, ϕ
n) ' Zn and H̃∗(x, ϕ

n) = 0 otherwise.

Proof. In Figure 14, p is (semi-)primary and contractible with µ(p) = −1.
q is primary (and contractible) with µ(q) = −2, but not semi-primary. s
is semi-primary and not contractible. r is secondary and not contractible.
Thus we obtain C̃−1(x, ϕ) = Z〈p〉 and C̃∗(x, ϕ) = 0 otherwise. The boundary

operator is given by ∂̃〈p〉 = 0 and thus H̃∗(x, ϕ) = C̃∗(x, ϕ).
Now we consider iterates of the symplectomorphism. For n ∈ Z>0, we obtain
the complex C̃−1(x, ϕn) = SpanZ{〈p0〉, . . . , 〈pn−1〉} and C̃∗(x, ϕ

n) = 0 oth-

erwise. The boundary operator is given by ∂̃〈pl〉 = 0 for 0 ≤ l ≤ n − 1 and

thus H̃∗(x, ϕ
n) = C̃∗(x, ϕ

n) ' Zn. For n ∈ Z<0, W s and W u are exchanged
which leads to the change of the Maslov index. �

The computation of primary Floer homology for ϕ and ϕn for the example
in Figure 14 was partially done before Theorem 50 and in the proof of
Proposition 56 and we recall

H−1(x, ϕ) = C−1(x, ϕ) ' Z and H−2(x, ϕ) = C−2(x, ϕ) ' Z.

For higher iterates with n ∈ Z>0, we found C−1(x, ϕn) =
SpanZ{〈p0〉, . . . , 〈pn−1〉} and C−2(x, ϕn) = SpanZ{〈q0〉 . . . 〈qn−1〉} and
H−1(x, ϕn) = H−1(x, ϕ) ' Z and H−2(x, ϕn) = H−2(x, ϕ) ' Z. For negative
n, we have H2(x, ϕn) ' Z and H1(x, ϕn) ' Z.

As long as all primary points are also semi-primary, H∗(x, ϕ) and H̃∗(x, ϕ)
coincide. The difference becomes apparent as soon as a move circles around
some genus and turns a semi-primary point primary. For primary Floer
homology, this kind of move is in fact secondary. The arising of r and s
turns q from semi-primary to primary which is not noticed by primary Floer



HOMOCLINIC POINTS AND FLOER HOMOLOGY 53

homology. Semi-primary Floer homology is sensitive to this move since it
means the loss of a generator.

The distinction between homoclinic points p with contractible or noncon-
tractible loop [x, p]u∪ [x, p]s arise naturally in systems on the torus or cylin-
der resp. annulus. Hockett & Holmes [HH] study the existence and impact
of such (semi-primary) homoclinic points on the annulus. If [x, p]u∪ [x, p]s is
contractible they call p non-rotary. If [x, p]u ∪ [x, p]s winds k times around
the hole of the annulus, they call p k-rotary. Noncontractible, semi-primary
points therefore fit as 1-rotary orbits in their framework.

6.4. Chaotic Floer homology. The difference of primary Floer homology
and semi-primary Floer homology is due to their different generator sets. In
this subsection, we define a version of homoclinic Floer homology which
is based on primary points as generators, but whose boundary operator is
different from the one in primary Floer homology.

We want to include some of the nearby chaos in the definition of homoclinic
Floer homology. Before we start, recall some classical results about the exis-
tence of periodic points near a homoclinic tangle. Birkhoff [Bi] proved in
1935 that there is an intricate amount of (mostly high)periodic points near
a homoclinic one which was formalized by Smale’s horseshoe. For periodic
points, there is Conley’s conjecture which claims the existence of infinitely
many periodic points on certain symplectic manifolds. By now, it has been
established for certain manifolds, cf. Ginzburg [Gi], Hingston [Hi].

Now we will define a homoclinic Floer homology which takes also peri-
odic points of the underlying symplectomorphism into account. Assume
ϕ ∈ Diffω(M) and x ∈ Fix(x) hyperbolic. Depending on the iteration num-
ber n ∈ Z, we assign new signs to primary points p, q ∈ H(ϕn, x) via

νn(p, q) :=

{
m(p, q) if ∅ 6=M(p, q) 3 u, Fix(ϕn) ∩ Im(u) = ∅
0 otherwise.

Set νn(〈p〉, 〈q〉) :=
∑

l∈Z νn(p, ql) and define the chain complexes as C
(n)
∗ :=

C∗(x, ϕ
n;Z). The boundary operators are

D (n) : C
(n)
∗ → C

(n)
∗−1, D (n)(〈p〉) :=

∑
〈q〉∈H̃pr(ϕn)

νn(〈p〉,〈q〉)=1

νn(〈p〉, 〈q〉)〈q〉

on a generator and are extended to D (n) by linearity.

Theorem 59. It holds D (n) ◦ D (n) = 0 and Ĥ∗(x, ϕ
n) := Ĥ∗(x, ϕ

n;Z) :=
ker D

(n)
∗

Im D
(n)
∗+1

is called chaotic Floer homology.
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Proof. Compared to primary Floer homology, chaotic Floer homology also
uses primary points as generators, but employs a modified boundary opera-
tor which counts ‘less’ digons than the one of primary Floer homology. Thus
the gluing procedure and also the finiteness of the sum in the definition of
the boundary operator carry directly over from primary Floer homology.
And also the cutting procedure is still valid: Let n ∈ N and consider the
primary points of ϕn. For p, r ∈ Hpr(ϕn) with µ(p, r) = 2, Theorem 30
yields the two cutting points qs, qu ∈ Hpr(ϕn) since counting or not counting
a di-gon with the new sign νn(·, ·) is independent from the existence of the
cutting points.
Thus we only have to prove an analogon of Lemma 19 for the new signs
νn(·, ·). Consider the possible cutting situations in Figure 16. If there are no
fixed points of ϕn in the ranges of the involved di-gons as in Figure 16 (a),
the signs νn(·, ·) coincide with the signs m(·, ·) and Lemma 19 holds true.
Now assume that there are fixed point(s) in the range(s). For instance, as

r

p

p

Wu
W s

qs
qu

qs

Wu

r

W s

qu

(b)(a)

y

Figure 16. Signs in chaotic Floer homology.

in Figure 16 (b), let y ∈ Fix(ϕn) lie in the range of all di-gons in M(p, qs),
but not in the range of the di-gons in M(qs, r). We compute

νn(p, qs) · νn(qs, r) = 0 · νn(qs, r) = 0,

−νn(p, qu) · νn(qu, r) = −νn(p, qu) · 0 = 0.

Other placements of (possibly several) fixed points yield similar calculations.
Thus we proved an analogon of Lemma 19 which yields the claim. �

Remark 60. (1) Chaotic primary Floer homology is invariant under con-
jugation.

(2) The additional condition on the signs renders an invariance discussion
for arbitrary high n futile since the fixed point condition prevents moves.
Invariance makes only sense for fixed n and then one would have to
require the existence of continuations of all involved periodic points.
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The main importance of chaotic Floer homology lies in its change under
iteration. Therefore let us consider the dynamics of n 7→ Ĥ∗(x, ϕ

n) in an
explicit example.

x

(i)
(ii)

(iii)

p0

q1

q0

y

−2

−1

p−1 x
z1 z0q0 q−1

x

x

q1 q0 q−1q2

x

q1

p1 p0

p2 p1 p0

Figure 17. Chaos near the homoclinic tangle.

Recall the notation ϕn(p) =: pn with p = p0. Let ϕ ∈ Diffω(R2) have
the homoclinic tangle sketched in Figure 17 (i) and assume the following
additional data: Let Fix(ϕ) = {x, y} and set Perk(ϕ) to be the set of periodic
points whose smallest period is k. Assume Per2(ϕ) = {z0, z1} and Per3(ϕ) =
∅ and that only the branches containing p intersect. The homoclinic tangles
of ϕ2 and ϕ3 are drawn in Figure 17 (ii) and (iii) where we have splitted
x into two copies. Assume the positions of x, y, z0 and z1 as in Figure 17.
Now we compute the chaotic Floer homology for n ∈ {1, 2, 3}.
Example 61. Under the above assumption, we obtain

For n = 1 : Ĥ−1(x, ϕ) ' Z and Ĥ−2(x, ϕ) ' Z,

For n = 2 : Ĥ−1(x, ϕ2) = 0 and Ĥ−2(x, ϕ2) = 0,

For n = 3 : Ĥ−1(x, ϕ3) ' Z and Ĥ−2(x, ϕ3) ' Z.

Proof. For n = 1 we have C
(1)
−1 = Z〈p〉 and C

(1)
−2 = Z〈q〉. The boundary

operator is D (1)〈p〉 = −〈q〉+〈q〉 = 0 and D (1)〈q〉 = 0. Thus Ĥ∗(x, ϕ) ' C
(1)
∗ .

For n = 2 we obtain C
(2)
−1 = Z〈p0〉 ⊕ Z〈p1〉 and C

(2)
−2 = Z〈q0〉 ⊕ Z〈q1〉. The

boundary operator is given by D(2)〈p0〉 = 〈q0〉 and D(2)〈p1〉 = 〈q1〉. This

yields Ĥ−1(x, ϕ2) = 0 and Ĥ−2(x, ϕ2) = 0.
For n = 3, there is

C
(3)
−1 = Z〈p0〉 ⊕ Z〈p1〉 ⊕ Z〈p2〉, D (3)〈p0〉 = 〈q0〉 − 〈q2〉, D (3)〈q0〉 = 0,

C
(3)
−2 = Z〈q0〉 ⊕ Z〈q1〉 ⊕ Z〈q2〉, D (3)〈p1〉 = 〈q1〉 − 〈q0〉, D (3)〈q1〉 = 0,

D (3)〈p2〉 = 〈q2〉 − 〈q1〉, D (3)〈q2〉 = 0
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and we compute Ĥ−1(x, ϕ3) ' Z ' Ĥ−2(x, ϕ3). �

Recall that we calculated the primary Floer homology for the iterates of ϕ
in Proposition 56 and obtained H−1(x, ϕn) ' Z and H−2(x, ϕn) ' Z for all
n ∈ Z>0 which was oblivious to the iteration.

This simple example demonstrates the properties of chaotic Floer homol-
ogy very well. For the higher iterates we know that z ∈ Fix(ϕ) implies
z ∈ Fix(ϕn) and z ∈ Fix(ϕl) ∩ Fix(ϕk) implies z ∈ Fix(ϕk·l). But apart
from those ‘old ones’, new fixed points might or will arise according to our
discussion above.

The dynamical behaviour of n 7→ HFix
∗ (x, ϕn) leads to a symplectic zeta

function

ζx,ϕ(z) := exp

( ∞∑
n=1

χ(Ĥ∗(x, ϕ
n))

n
zn

)
where χ(HFix

∗ (x, ϕn)) denotes the Euler characteristic of Ĥ∗(x, ϕ
n). Zeta

function have been studies a lot in number theory, algebraic geometry and
dynamics. For an overview see for instance Fel’shtyn [Fe1, Fe2].

Question 62. a) Is there ϕ such that ζ(x, ϕ) is rational? If yes, which ϕ?
b) Is there a relation to the classical (symplectic) zeta function?
c) Are there applications to Nielsen theory and Reidemeister torsion whose

relation to dynamical zeta functions is described in Fel’shtyn [Fe1]?
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