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CHAPTER 1

Floer theory in symplectic dynamics and
hyperkähler geometry

Symplectic geometry is one of the most active topics in modern geometry.
One rapidly developing part of symplectic geometry is Floer theory. This
chapter will focus on applications of Floer theory to symplectic dynamics
and hyperkähler geometry. Since symplectic geometry provides the frame-
work for Hamiltonian dynamics, it is naturally linked to celestial mechanics
and other topics in physics.

1. Introduction

A symplectic manifold (M, ω) is a smooth manifold M with a closed non-
degenerate 2-form ω. For example (R2n,

∑n
i=1 dxi ∧ dyi), cotangent bundles

with the exterior derivative of the Liouville 1-form and surfaces equipped
with their volume forms are symplectic. Note that symplectic manifolds are
even dimensional, but not every even dimensional manifold is symplectic.
Diffeomorphisms which leave the symplectic form invariant are called sym-
plectomorphisms. They form the group

Symp(M, ω) := { f ∈ Diff(M) | f ∗ω = ω}.

The group of Hamiltonian diffeomorphisms

Ham(M, ω) ⊆ Symp(M, ω)

is a very important subgroup and is defined as follows. Take a smooth func-
tion F : M × S1 → R and abbreviate Ft := F(·, t) and define its (nonau-
tonomous) Hamiltonian vector field XF

t via

ω(XF
t , ·) = −dFt(·).

The associated (nonautonomous) ODE

ż(t) = XF
t (z(t))

is called the (nonautonomous) Hamiltonian equation and its (nonau-
tonomous) flow is called Hamiltonian flow and usually denoted by ϕt = ϕF

t .
If we can write a symplectomorphism as time-1 map of a Hamiltonian flow
we call it a Hamiltonian diffeomorphism. A Hamiltonian diffeomorphism is
nondegenerate if its graph intersects the diagonal in M × M transversely.

1



2 1. FLOER THEORY

The development of Floer theory was particularly stimulated by V.I. Arnold.

Conjecture 1.1 (Arnold conjecture, 1960s). Let (M, ω) be a closed sym-
plectic manifold and ϕ ∈ Ham(M, ω) nondegenerate. Then

|Fix(ϕ)| ≥
dim M∑

i=0

rk Hi(M;Z)

Arnold linked in his conjecture the number of fixed points to the topology of
the underlying manifold, more precisely to the sum over the Betti numbers.
There are at least three formulations of the conjecture:

1) Counting fixed points of a Hamiltonian diffeomorphism ϕ.
2) Counting 1-periodic orbits of a Hamiltonian flow whose time-1 map co-

incides with ϕ.
3) Counting intersection points of graphϕ with the diagonal in M × M.

The reformulation as an intersection problem motivated Floer [Fl1, Fl2,
Fl3] to devise some kind of infinite dimensional Morse theory for the ‘L2-
gradient flow’ of the symplectic action functional — nowadays known as
Floer theory. Note that Floer theory was subsequently also defined for the
other formulations.

Now let us briefly sketch the idea behind Floer theory. It took until 1983
for the first partial proof of Arnold’s Conjecture when Conley & Zehnder
[CoZ] showed it for the 2n-torus. The breakthrough came a few years later
with Floer’s works [Fl1, Fl2, Fl3] where he identified the fixed points of
a Hamiltonian diffeomorphism with intersection points of the graph of the
Hamiltonian diffeomorphism with the diagonal in the symplectic manifold
(M × M, ω ⊕ (−ω)), i.e. he turned the fixed point problem into an intersec-
tion problem. A distinguished class of submanifolds in symplectic geome-
try are Lagrangian submanifolds, i.e. submanifolds on which the symplectic
form vanishes and whose dimension is half the dimension of M. As it turns
out, the above mentioned diagonal and graph are Lagrangian submanifolds
which is essential for analysis purposes. But even more important, Floer
recognized the intersection points of the diagonal and the graph as critical
points of the symplectic action functional which, in turn, he considered as
some kind of Morse function on the path space. The associated ‘infinite di-
mensional Morse theory’ is nowadays called Floer theory and the associated
homology theory is referred to as Floer homology.

Originally, Floer theory was developed to study Hamiltonian dynamical
systems, more precisely, it was destined for counting the number of 1-
periodic Hamiltonian solutions. But its ideas and techniques are not lim-
ited to periodic orbits or the symplectic framework. The aim of this chapter
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is to present two new types of Floer homology and their applications and
ramifications:

(a) Four variants of Floer homologies for the study of homoclinic Hamil-
tonian orbits on symplectic manifolds.

(b) Two different settings for Floer homology on hyperkähler manifolds.

It is an almost hopeless task (and not the aim of this work) to give an
overview of the archievements and applications of Floer theory in geom-
etry, dynamics, algebra and many other areas of mathematics. We refer the
interested reader to the excellent introduction by Audin & Damian [AuD]
and the more advanced book by McDuff & Salamon [McS]. Just to men-
tion a few speciemen in the now rapidly growing zoo of variants and ap-
plications, there are by now Rabinowitz-Floer homology, Heegaard Floer
theory, Knot Floer homology, Seiberg-Witten Floer homology, (Embedded)
Contact homology, Symplectic Field Theory etc. etc.

2. Homoclinic Floer theory

Let us first fix some notions in homoclinic dynamics, before we proceed to
the definition of homolinic Floer homology.

2.1. Notions in homoclinic dynamics. Consider a smooth manifold N
and a diffeomorphism f ∈ Diff(N). A point x ∈ N is an m-periodic if there
exists m ∈ N such that f m(x) = x. 1-periodic points are usually called fixed
points. A fixed point x is hyperbolic if the eigenvalues of the linearization
D f (x) of f in x have modulus different from 1. The stable manifold of a
hyperbolic fixed point x is defined by

W s( f , x) := {p ∈ N | lim
n→∞

f n(p) = x}

and the unstable manifold is given by

Wu( f , x) := {p ∈ N | lim
n→−∞

f n(p) = x}.

The connected components of W s( f , x)\{x} resp. Wu( f , x)\{x} are the
branches of W s( f , x) resp. Wu( f , x). A point p ∈ N is called homoclinic
(w.r.t. x) if p ∈ W s( f , x) ∩ Wu( f , x), cf. Figure 1.1. We denote the set of
homoclinic points of x ∈ Fix( f ) by

H( f , x) := W s( f , x) ∩Wu( f , x).

The set { f n(p) | n ∈ Z} is called the orbit of p ∈ N. The orbit of a periodic
resp. homoclinic point is called a periodic resp. homoclinic orbit.
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2.2. The motivation for homoclinic Floer theory. The study of a dy-
namical system usually starts with its fixed points and periodic points. The
next more complicated type of points are homoclinic ones. Poincaré [Poi1],
[Poi2] noticed the existence of homoclinic points around 1890 when work-
ing on the n-body problem. About 40 years later, Birkhoff [Bi] proved
the existence of high-periodic points near homoclinic ones. The dynamics
of homoclinic points were described by Smale [Sm1, Sm2] the 1960s by
means of his ‘horseshoe’. Later on, perturbation theory, calculus of varia-
tions and numerics became popular tools in the investigation of homoclinic
points, but many questions remain unsolved.

Now, how are homoclinic points linked to Floer homology, or, more pre-
cisely, why does it make sense to think about Floer homology generated by
homoclinic points?
The common link is their formulation as intersection problems: By defini-
tion, homoclinic points are the intersection set of stable and unstable man-
ifold. And, as we saw above, Floer homology arises from the Lagrangian
intersection problem ‘diagonal ∩ graph’. Since being Lagrangian is cru-
cial for the construction of Floer homology we have to check if the stable
and unstable manifolds can be Lagrangians. It turns out that, for symplec-
tomorphisms, the stable and unstable manifolds are always Lagrangians.
This are good news. But there are also bad ones. The intersection of stable
and unstable manifolds usually form a ‘homoclinic tangle’ (cf. Figure 1.1).
More precisely, the stable and unstable manifold are usually only injectively
immersed and give rise to an abundance of intersection points whereas in
Floer’s setting (and its generalizations), the Lagrangians are usually com-
pact or at least ‘sufficiently nice’. There are some techniques in classical
Floer theory how to deal with ‘too many’ intersections points, but they fail
for stable and unstable manifolds.

Up to our knowledge, not many people studied homoclinic points with sym-
plectic techniques before. There is the work by Hofer & Wysocki [HofW]
who use pseudo-holomorphic curves and Fredholm theory. Cieliebak &
Séré [CiS] combine variational technics and pseudo-holomorphic curves.
and finally Lisi [Li] uses Lagrangian embedding techniques to generalize
Coti Zelati & Ekeland & Séré [CZES].

2.3. Four homoclinic Floer homologies. In our works [Hoh1, Hoh2,
Hoh3], we developped four different types of homoclinic Floer homologies,
i.e. Floer homologies generated by homoclinic points. Although their prop-
erties are very different, their construction is very similar such that we will
line it out only in the case of so-called primary homoclinic Floer homology



2. HOMOCLINIC FLOER THEORY 5

Figure 1.1. The intersection behaviour of transversely inter-
secting stable (red) and unstable (blue) manifold of a hyper-
bolic fixed point.

As already mentioned above, the (un)stable manifolds are ‘highly noncom-
pact’. This turns the analysis (Fredholm theory, Gromov compactness etc.)
which is necessary to set up classical Floer theory into a hopeless task.
Fortunately several authors (cf. de Silva [dS], Felshtyn [Fe], Gautschi &
Robbin & Salamon [GaRS]) noticed that one does not need analysis if
one works on 2-dimensional manifolds. On 2-dimensional manifold, one
can use instead combinatorics. In our situation, this gets rid of the analysis
problems, but the difficulties related to the abundance of intersection points
remain untouched.

Assume from now on that (M, ω) is R2 or a closed surface of genus g ≥
1 equipped with symplectic forms. Let ϕ be a symplectomorphisms with
hyperbolic fixed point x and transversely intersecting (un)stable manifolds
W s := W s(ϕ, x) and Wu := Wu(ϕ, x). Note that automatically dim W s =

dim Wu = 1. Let p, q ∈ H = W s ∩ Wu be homoclinic points and denote
by [p, q]i the (one dimensional!) unoriented segment between p and q in W i

for i ∈ {s, u}. Iterating ϕ yields a Z-actionH × Z→ H , (p, n) 7→ ϕn(p). For
transversely intersecting W s ∩ Wu, the sets H and H/Z are both infinite.
Let cp : [0, 1] → Wu ∪ W s be a curve with cp(0) = x = cp(1) which runs
through [x, p]u to p and through [p, x]s back to x. [p] := [cp] ∈ π1(M, x)
denotes the homotopy class of p and

H[x] := {p ∈ H | [p] = [x]}

is the set of contractible homoclinic points. It is in fact invariant under the
action of ϕ. If p, q ∈ H with [p] = [q], then there is a (relative) Maslov
index µ(p, q) ∈ Z. In dimension two, one can think of it as follows. If the
segments [p, q]s and [p, q]u intersect each other perpendicular at p and q,
we can identify µ(p, q) with twice the winding number of the unit tangent



6 1. FLOER THEORY

vector of a loop starting in p, running through [p, q]u to q and through [p, q]s

back to p (where we have to flip the tangent vector +90◦ at q and −90◦ at
p). This yields a grading

µ : H[x] → Z, µ(p) := µ(p, x)

and, for p, q ∈ H[x], we have

µ(p, q) = µ(p, x) + µ(x, q) = µ(p, x) − µ(q, x) = µ(p) − µ(q).

As we already indicated above, the set of homoclinic points is too big to
generate a well-defined Floer homology. Thus we will focus on the follow-
ing subsets.

Definition 1.2. p ∈ H \ {x} is semi-primary if ]x, p[s ∩ ]x, p[u = ∅. A
contractible p ∈ H[x] \ {x} is called primary if ]p, x[s ∩ ]p, x[u ∩ H[x] = ∅

and the set of primary points is denoted byHpr.

(Semi-)primary points have very nice properties.

Lemma 1.3 (Hohloch [Hoh1, Hoh2]).
(i) For a primary point p holds µ(p) = µ(p, x) ∈ {±1,±2,±3}, i.e. the

Maslov index is bounded.
(ii) If W s and Wu intersect transversely then H̃pr := Hpr/Z is finite.

The equivalence class of p ∈ Hpr in H̃pr = Hpr/Z is 〈p〉. Via

[〈p〉] := [p] and µ(〈p〉, 〈q〉) := µ(p, q) and µ(〈p〉) := µ(p, x)

we obtain well-defined homotopy classes and Maslov indices on the quo-
tient space.

After these preparations, we can line out the construction of primary Floer
homology. We start with the boundary operator. Fix a convex 2-gon D in
R2 with convex vertices at (−1, 0) and (1, 0), we call its lower edge Bu and
its upper edge Bs. Given p, q ∈ H with µ(p) − µ(q) = 1, the moduli space
M(p, q) is the space of smooth, immersed 2-gons v : D → M which are
orientation preserving and satisfy v(Bu) ⊂ Wu, v(Bs) ⊂ W s, v(−1, 0) = p and
v(1, 0) = q. If G(D) is the group of orientation preserving diffeomorphisms
of D which preserve the vertices, we set

M̂(p, q) :=M(p, q)/G(D).

Consider W i
+ and W i

−, the branches of the (un)stable manifolds where i ∈
{s, u}. We put on them their ‘jump direction’ as orientation and we denote
it by o(W i

+) resp. o(W i
−). There is also a way to impose an orientation on

segments: Given p, q ∈ Hpr with µ(p, q) = 1 and v ∈ M(p, q) , ∅ we give
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v(Bi) = [p, q]i the orientation induced by the parametrization direction from
p to q and call it opq. This allows us to to define the following signs

m(p, q) :=


1 if µ(p, q) = 1, M(p, q) , ∅, o(Wpq) = opq,

−1 if µ(p, q) = 1, M(p, q) , ∅, o(Wpq) , opq,

0 otherwise

which is well-defined according to Hohloch [Hoh1, Hoh2]. These signs
pass to the quotient via

m(〈p〉, 〈q〉) :=
∑
n∈Z

m(p, ϕn(q)) for 〈p〉, 〈q〉 ∈ H̃pr.

Now we are ready to define the primary Floer chain groups with the asso-
ciated boundary operator. We set

Ck := Ck(ϕ, x;Z) :=
⊕
〈p〉∈H̃pr
µ(〈p〉)=k

Z〈p〉, ∂〈p〉 :=
∑
〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉

on a generator 〈p〉 and extend ∂ by linearity. Note that the rank of all groups
is finite (since there are only finitely many generators) and moreover Ck = 0
for k < {±1,±2,±3} (cf. Lemma 1.3).

Theorem 1.4 (Hohloch [Hoh1, Hoh2]).
(i) ∂ ◦ ∂ = 0, i.e. (C∗, ∂∗) is a chain complex and

Hk := Hk(ϕ, x;Z) :=
ker ∂k

Im ∂k+1

is called primary homoclinic Floer homology of ϕ in x.
(ii) We have Hk = 0 for k , ±1,±2,±3.

The so-called breaking and gluing procedure (sketched for Morse trajec-
tories in Figure 3.2) is the heart of the proof which in turn relies on the
classification of M̂(p, q) and of immersions of relative Maslov index 2.

Remark 1.5. Primary Floer homology is completely determined by a finite
number of primary homoclinic points located in (possibly large) compact
segments of the (un)stable manifolds centered around the fixed point.

This means in particular that, given a decent plot of a tangle, we can always
compute primary homoclinic Floer homology explicitly. Moreover, H∗ is
invariant under conjugation, thus making all constructions natural. But there
is also another form of invariance.

Theorem 1.6 (Hohloch [Hoh1, Hoh2]). H∗ is invariant under so-called csi-
isotopies (which are a quite large class of perturbations of the underlying
symplectomorphism).
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Let us briefly summerize the other variants of homoclinic Floer theory be-
fore explaining some of their features in more detail.

Theorem 1.7. Apart from primary homoclinic Floer homology, there exist
another three variants of homoclinic Floer homology.

1) Semi-primary homoclinic Floer homology (cf. Hohloch [Hoh1, Hoh2])
is defined analogously to primary homoclinic Floer homology, but uses
semi-primary points as generators. It has weaker invariance properties,
but can easier detect topology of the underlying manifold.

2) Chaotic homoclinic Floer homology (cf. Hohloch [Hoh1, Hoh2]) takes
not only primary homoclinic points, but also higher periodic points into
account. It gives rise to a zeta function.

3) Cylinder homoclinic Floer homology (cf. Hohloch [Hoh3]) is generated
by noncontractible points on the cylinder. It is related to known quanti-
ties in dynamical systems like the absolute flux and Mather’s difference
in action.

Apart from measuring algebraic properties of homoclinic points, homo-
clinic Floer homology has a physical meaning in terms of ‘transport’ as
defined in MacKay & Meiss & Percival [MacMP]. A central notion in their
paper is the absolute flux of a symplectomorphism ϕ w.r.t. a simply closed
curve c. In the plane, it is defined as the volume of the set of points which
are swept out of the interior of the curve:

F luxϕ(c) = volω(ϕ(Int(c)) ∩ Ext(c)).

By associating a certain curve to a homoclinic point, MacKay & Meiss &
Percival [MacMP] define the flux through a homoclinic point and recognize
it (under certain assumptions) as Mather’s [Ma] difference in action 4W.

Theorem 1.8 (Hohloch [Hoh3]). The relative symplectic action of two ad-
jacent generators of primary and cylinder homoclinic Floer homology co-
incides (under certain natural assumptions) with their flux and Mather’s
difference in action 4W.

The flux of a (semi-)primary point p transforms

F luxϕn(p) = nF luxϕ(p).

Therefore it has the same growth behaviour as the symplectic action and
(mean) Maslov index in classical Floer theory (which are both invariant in
our setting). Growth behaviour of Hamiltonian diffeomorphisms is an im-
portant ingredient in Polterovich’s [Pol] Hamiltonian version of the Zimmer
program. We proved for homoclinic Floer homology
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Theorem 1.9 (Hohloch [Hoh3]). For the filtered primary and cylinder ho-
moclinic Floer groups holds under certain natural assumptions

rk(H]b−ε,b+ε](ϕn, x)) = n rk(H]b−ε,b+ε](ϕ, x)).

Call the data (W s,Wu,W s ∩ Wu) a homoclinic tangle. Inspired by Collins
[Co] work on so-called trellises (which can be thought of as ‘finite’ parts of
a homoclinic tangle) we find

Theorem 1.10 (Hohloch [Hoh4]). (a) Given a homoclinic tangle, it con-
tains a trellis which already computes the homoclinic Floer homology
of the homoclinic tangle.

(b) The number of generators of primary homoclinic Floer homology in R2

is greater or equal to twice the number of pairs of intersecting branches
of the underlying tangle.

Let us summarize the main properties of the homoclinic Floer homologies
in a table (cf. Hohloch [Hoh4]).

Primary FH Semi-pr. FH Cylinder FH Chaotic FH
Generator primary,

contractible
semi-primary,
contractible

‘primary’,
noncontr.

primary,
contractible

Invariance strong weak strong no
Growth
ϕ vs. ϕn

Filtered FH:
linear growth

examples of lin-
ear growth

Filtered FH:
linear growth

‘subsequence’
k 7→Ĥ∗(x,(ϕn)k)

Transport turnstiles,
flux = action

turnstiles not in-
volved

turnstiles,
flux = action
= 4W

turnstiles not in-
volved

Number
theory

ζ-function

3. Homoclinic Floer homology: Future projects

3.1. Chaotic Floer homology and zeta functions. As already men-
tioned in Theorem 1.7, there is a version of homoclinic Floer homology
which notices the higher periodic points near the homoclinic ones. It is
called chaotic homoclinic Floer homology and it is denoted by Ĥ∗(x, ϕn)
for n ∈ N. To the sequence n 7→ Ĥ∗(x, ϕn), we assign a symplectic zeta
function via

ζx,ϕ(z) := exp

 ∞∑
n=1

χ(Ĥ∗(x, ϕn))
n

zn


where χ(Ĥ∗(x, ϕn)) denotes the Euler characteristic of Ĥ∗(x, ϕn). We want
to investigate the properties of this zeta function and plan to link them to
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the growth behaviour of symplectomorphisms and we intend to study its
relation to Collins’ [Co] zeta function.

3.2. Classification of homoclinic Floer homology. This project con-
tinues in the spirit of Theorem 1.10: In Hohloch [Hoh4], we compare
Collins [Co] results for trellises to our homoclinic Floer theory. Among
others, Collins is using so-called ‘pruning isotopies’ in oder to change and
reduce the form of his trellises. Theorem 1.10 allows us to use parts of
Collins techniques which in turn should allow us to prove

Conjecture 1.11. (a) In a minimal trellis, there are exactly two primary
points in each pair of intersecting branches.

(b) Using (a), we can classify primary homoclinic Floer homologies on R2

(and maybe also on other surfaces).

4. Hyperkähler Floer theory

4.1. Introduction and definitions. Since Floer’s seminal idea at the
end of the 1980’s, Floer theory has been applied to many different questions.
Due to its success, there are now many variants of this theory, but only a few
fundamentally different types. Hyperkähler Floer homology was devised
in Hohloch & Noetzel & Salamon [HNS1, HNS2] and differs essentially
from the previous types. It was reproved and generalized by Ginzburg &
Hein [GiH1, GiH2] and Salamon [Sa]. Hohloch [Hoh9] rewrites it as an
infinite dimensional Hamiltonian systems. As the name already suggests,
hyperkähler Floer theory relates Floer theory to hyperkähler geometry.

Hyperkähler manifolds are manifolds with three complex structures satis-
fying certain compatibility conditions:

Definition 1.12. A manifold X is hyperkähler if there are three complex
structures I1, I2 and I3 and a metric 〈·, ·〉 such that I1I2 = −I2I1 = I3 and
〈·, ·〉 = 〈Ii·, Ii·〉 and ωi := 〈Ii·, ·〉 are symplectic forms for 1 ≤ i ≤ 3.

These manifolds are much more rigid than Kähler manifolds which only
have one complex structure; in fact, 〈·, ·〉 is Kähler w.r.t. I1, I2 and I3.
Whereas symplectic manifolds are always 2n-dimensional, hyperkähler
manifolds are always 4n-dimensional. The standard example are the quater-
nions H with complex structures i, j and k. In dimension four, there are not
many compact hyperkähler manifolds, only the 4-torus and K3-surfaces.
Hyperkähler manifolds show up in Berger’s holonomy group based clas-
sification as those having holonomy group Sp(n). They are Ricci-flat and
thus Calabi-Yau such that in particular the first Chern class vanishes. Flat
compact hyperkähler manifolds are 4n-tori modulo a finite group action.
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In physics, hyperkähler manifolds appear naturally in the supersymmet-
ric σ-model which studies so-called triholomorphic maps between two hy-
perkähler manifolds.

4.2. Definition of hyperkähler Floer homology. The main difference
to the classical Floer theories is that hyperkähler Floer theory is based on the
analysis of a ‘triholomorphic’ equation (now also sometimes called Fueter
equation) instead of the Cauchy-Riemann equation. Whereas, in classical
Floer theory, the critical points of the symplectic actions functional are 1-
periodic Hamiltonian solutions, hyperkähler Floer theory studies the critical
points of the so-called hypersymplectic action functional which are certain
‘triholomorphic 3-manifolds’. There are two main settings for hyperkähler
Floer homology.

4.2.1. Setting on the 3-torus. Let X be a hyperkähler manifold with
complex structures I1, I2, I3 and symplectic forms ω1, ω2, ω3. Consider the
3-torus T3 = (R/Z)3 = S1 × S1 × S1 with standard coordinates t = (t1, t2, t3),
standard vector fields ∂1 := ∂

∂t1
, ∂2 := ∂

∂t2
∂3 := ∂

∂t3
and volume form σ :=

dt1 ∧ dt2 ∧ dt3. Pick a (constant) matrix (ai j) ∈ GL(3,R) and set

v1 :=
3∑

k=1

a1k∂k, v2 :=
3∑

k=1

a2k∂k, v3 :=
3∑

k=1

a3k∂k.

The Lie derivative Lviσ vanishes for v1, v2 and v3 meaning that the three
(constant) vector fields v1, v2, v3 are σ-volume preserving.

Now consider the space of maps F := { f ∈ C∞(T3, X) | f contractible}. Its
universal cover can be identified with

F̃ =


( f , [F1], [F2], [F3])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ∈ F ,

F1 ∈ C∞(D × S1 × S1, X), F1|T3 = f ,

F2 ∈ C∞(S1 × D × S1, X), F2|T3 = f ,

F3 ∈ C∞(S1 × S1 × D, X), F3|T3 = f


where D is the closed unit disk in R2 and [Fλ] is the homotopy class of
Fλ relative to the boundary where F1(e2πit1 , t2, t3) = f (t1, t2, t3) etc. Let us
simplify the notation via F1

t2t3 := F1(·, t2, t3) etc. and define for 1 ≤ j, k ≤ 3

A jk : F̃ → R, A jk( f ) := −

1∫
0

1∫
0

∫
D

(Fk
tµtν)

∗ω jdtµdtν.

This is in fact the symplectic action w.r.t. ω j of the loop tk 7→ f (t) averaged
over the other two variables tµ, tν. Recalling the previously chosen matrix
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a = (a jk), we define the hypersymplectic action functional

A := Aa :=
3∑

j,k=1

a jkA jk : F̃ → R.

Given a ‘T3-nonautonomous’ Hamiltonian function H : X × T3 → R, we
obtain the perturbed hypersymplectic action functional AH via

AH( f ) := A ( f ) −
∫
T3

H( f (t), t)dt.

Since T3 ' S1 × S1 × S1 this construction on the ‘torus loop space’ is very
similar to the construction of the classical symplectic action functional on
a cover of the standard loop space (see for example McDuff & Salamon
[McS], p. 154).

In order to obtain an equation for the critical points of A , we calculate for
instance

dA12( f , [F1], [F2], [F3]).ξ = −

1∫
0

1∫
0

1∫
0

ω1| f (t)(ξ(t), ∂2 f (t))dt1dt2dt3

=

∫
T3

〈ξ, I1∂2 f 〉dt

where ξ is a vector field along f . If we abbreviate ∂vi f := d f (vi) for 1 ≤ i ≤
3 we obtain for A =

∑3
j,k=1 a jkA jk that the critical points Crit(A ) are maps

f ∈ F̃ with
∂/ f := I1∂v1 f + I2∂v2 f + I3∂v3 f = 0

and f ∈ Crit(AH) satisfies

(1.13) ∂/ H f := ∂/ f − grad H( f ) = 0

where the gradient grad H( f )|t := grad H( f (t), t) is taken w.r.t. the X-valued
variable of H and the metric 〈·, ·〉.

4.2.2. Setting with hypercontact structures. Let X be a hyperkähler
manifold with complex structures I1, I2, I3 and symplectic forms ω1, ω2, ω3.
A 1-form α on a 2n + 1-dimensional manifold N is contact if α ∧ (dα)n is
a volume form on N where (dα)n is the n-fold wedge product of dα. The
vector field v = vα is its Reeb vector field if dα(v, ·) = 0 and α(v) = 1.

Definition 1.14. A triple of contact forms (α1, α2, α3) on a three-
dimensional manifold N is a hypercontact structure (or ‘taut contact
sphere’ [GeG1, GeG2]), if αi ∧ dαi = α j ∧ dα j for all i, j and αi ∧ dα j =
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−α j ∧ dαi for i , j. It is called Cartan if the associated Reeb vector fields
vi form a dual frame, i.e. αi(v j) = δi j.

Cartan manifolds are (quotients of) SU(2) ' S 3 as proved by Geiges &
Gonzalo [GeG1, GeG2]. The (unperturbed) hypersymplectic action func-
tional on such manifolds is given by

A : C∞(N, X)→ R, A( f ) := −
∫
N

α1 ∧ f ∗ω1 + α2 ∧ f ∗ω2 + α3 ∧ f ∗ω3.

Critical points f ∈ C∞(N, X) ofA are characterized by

∂/ f := I1d f (v1) + I2d f (v2) + I3d f (v3) = 0

and ∂/ is an elliptic operator of Dirac type. The equation of the negative
gradient flow coincides in certain cases with the Cauchy-Riemann-Fueter
equation of the supersymmetric σ-model. The negative gradient flow lines
u : R × M → X ofA are defined by ∂su = −dA(u) and turn out to satisfy

∂su + ∂/ u = 0.

More details on the involved analysis and new bubbling-off phenomena are
given in the Section Hyperkähler Floer theory: Future projects. Given a
Hamiltonian function H : X × N → R, the perturbed equation is

∂/ H( f ) := ∂/ f − grad H( f ) = 0

where the gradient is computed w.r.t. the first argument.

4.3. Main results. Note that we obtain the same equation in both set-
ting. A solution of ∂/ f = 0 or ∂/ H f = 0 is called nondegenerate if the lin-
earized operator for the equation is bijective.
By elliptic regularity, every W1,p solution of the above equations is in fact
smooth (cf. Hohloch & Noetzel & Salamon [HNS2], Theorem 3.1).

Theorem 1.15 (Hyperkähler Arnold Conjecture, Hohloch & Noetzel &
Salamon [HNS1, HNS2]). Let N be either a compact Cartan hypercon-
tact 3-manifold (with Reeb vector fields vi) or the 3-torus (with a constant
frame vi). Let X be a compact flat hyperkähler manifold. Then the space
of solutions of ∂/ H f = 0 is compact. Moreover, if the contractible solutions
are all nondegenerate, then their number is bounded below by the sum of
the Z2-Betti numbers of X (‘Hyperkähler Arnold conjecture’). In particular,
∂/ H f = 0 has a contractible solution for every H.

The proof of Theorem 1.15 is based on the construction of Floer theory
and its computation which we will sketch briefly in the following. Assume
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the setting and notation of Theorem 1.15. For a generic H, define the chain
complex

CFk(N, X; H;Z/2Z) :=
⊕

f∈Crit(AH )
µH( f )=k

Z/2Z f

whose groups are finitely generated ([HNS2], Theorem 3.6) and where the
index

µH : Crit(AH)→ Z
is induced by the spectral flow ([HNS2], equation (50)). Given f −, f + ∈

Crit(AH), the moduli space

M ( f −, f +; H)

consists of those u : R × N → X with (s, x) ∈ R × N satisfying

∂su + ∂/ Hu := ∂su + I1∂v1u + I2∂v2u + I3∂v3 − grad H(u) = 0

lim
s→±∞

u(s, x) = f ±(x),

lim
s→±∞

AH(u(s, ·)) = AH( f ±),

sup
R×N
‖du‖ < ∞.

For generic H, these moduli spaces are smooth manifolds of dimension
µH( f −) − µH( f +) ([HNS2], Theorem 4.3). Moreover, if u ∈ M ( f −, f +; H),
then, for all τ ∈ R, the function (s, x) 7→ u(s+τ, x) lies also in M ( f −, f +; H),
i.e. there is an R-action on the moduli space. If µH( f −) − µH( f +) = 1, then
the cardinality of the quotient M ( f −, f +; H)/R is finite as Theorem 3.15 in
[HNS2] assures. Thus, for µH( f −) − µH( f +) = 1, it makes sense to define
the (mod 2) signs

n( f −, f +) := #M ( f −, f +; H)/R modulo 2.

Now we can define the boundary operator

∂H : CFk(N, X; H;Z/2Z)→ CFk−1(N, X; H;Z/2Z),

∂H f − :=
∑

f∈Crit(AH )
µH( f +)=k−1

n( f −, f +) f +

The following theorem states among others that ∂H ◦ ∂H = 0. The resulting
homology is called hyperkähler Floer homology.

Theorem 1.16 (Hohloch & Noetzel & Salamon [HNS1, HNS2]). Let N
and X be as in Theorem 1.15 and fix a class τ ∈ π0(C∞(N, X)). Then, for a
generic perturbation H : X × N → R, there is a natural Floer homology
group HF∗(N, X, τ; H) associated to a chain complex generated by the solu-
tions of ∂/ H f = 0. The Floer homology groups associated to different choices
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of H are naturally isomorphic. Moreover, for the component τ0 of the con-
stant maps there is a natural isomorphism HF∗(N, X, τ0; H) � H∗(X;Z/2Z).

As already mentioned at the beginning of this section, Salamon [Sa] refor-
mulated and relaxed certain conditions in the construction. Theorem 1.15
inspired Ginzburg & Hein [GiH1, GiH2] to reprove the hyperkähler Arnold
conjecture using Conley & Zehnder’s method of finite dimensional approx-
imation and to establish also the degenerate version.

In the torus setting, there exists a dynamical interpretation of the ‘triholo-
morphic 3-tori’: the solutions of ∂/ f = 0 and ∂/ H f = 0 can be written as
1-periodic solutions of an infinite dimensional Hamiltonian system.

Theorem 1.17 (Hohloch [Hoh7]). Let N be a 3-torus with constant frame
(v1, v2, v3). Then the solutions of ∂/ f = 0 and ∂/ H f = 0 can be written as
solutions of a suitable Hamiltonian system on the universal cover of the
iterated loop space of X. For flat X, the construction descends to the iterated
loop space.

Theorem 1.17 exchanges a PDE on a finite dimensional manifold with an
ODE in infinite dimensions. This looks like some trade-off, but studying
infinite dimensional Hamiltonian systems is not a hopeless task as Kuksin
[Ku1, Ku2] showed. The motivation for the reformulation was to come up
with a nicer description of the index used in hyperkähler Floer homology.
As already mentioned above, the index is abstractly defined by the spectral
flow of a certain operator. But in classical Floer theory, the Conley-Zehnder
index provides a nice geometric interpretation of the index and we hope to
find an analogue using the Hamiltonian setting for hyperkähler Floer ho-
mology as sketched in the next section.

5. Hyperkähler Floer theory: Future projects

5.1. A geometric index for Hyperkähler Floer theory. In classi-
cal Floer theory, the Maslov index has a nice geometric interpretation,
namely the Conley-Zehnder index. In Hohloch & Noetzel & Salamon
[HNS1, HNS2], the Maslov index µH( f ) of a solution f of ∂/ H f = 0 is
formally defined via the spectral flow of a certain Fredholm operator. Using
the 3-torus setting, there may be a chance to give it a geometric meaning.

In finite dimensions, the Maslov index is an explicit isomorphism from the
fundamental group of the Lagrangian Grassmannian to Z. But in infinite di-
mensions, the corresponding space is contractible. Nevertheless, by restrict-
ing to the Fredholm Lagrangians, the fundamental group is again isomor-
phic to Z. For such settings, the notion of a Maslov index with properties
similar to those in finite dimensions had been established (Booß-Bavnbek
& Lesch & Zhu [BLZ], Furutani & Otsuki [FuO] and others).
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‘Theorem’ 1.18 (Hohloch [Hoh9]). Assume the setting of Theorem 1.17.
Then the Maslov index can be interpreted as a ‘Fredholm Maslov index’ of
the associated Cauchy data space.

5.2. Hyperkähler Floer theory: Bubbling-off in the nonflat case.
The analysis of hyperkähler Floer homology relies on the energy identity

E( f ) :=
1
2

∫
M

|d f |2 volM = A( f ) +
1
2

∫
M

|∂/ f |2 volM

which yields, in particular, E( f ) = A( f ) for solutions ∂/ f = 0. In order to
define Floer homology, we perturb the action functional with a Hamiltonian
function H toAH and consider the pertubed equation ∂/ H f = 0. The energy
density eu of gradient flow lines ∂su + ∂/ Hu = 0 satisfies an a priori estimate

(1.19) Leu + ru ≥ −A − B(eu)
3
2

whereL is a Laplace-Beltrami type operator, ru a sum over certain sectional
curvatures along u and A, B > 0 constants. In the classical Floer setting, the
corresponding a priori estimate is ∆e ≥ −A − Be2. In order to follow the
classical constructions, we assume nonpositive sectional curvature for X
and obtain Leu ≥ −A− B(eu)

3
2 . Since hyperkähler manifolds have vanishing

Ricci curvature, nonpositive sectional curvature implies flatness for X.

The generalization to the nonflat case is not simply done by a better exploit
of (1.19) and finer estimates — one also has to deal with a new bubbling-off

phenomenon. Whereas in the classical Floer setting bubbling-off of pseudo-
holomorphic spheres only takes place at isolated points, bubbling-off might
happen here along codimension-2 subsets. This is analogous to Donaldson-
Thomas theory where Walpuski [Wa] recently analysed the bubbling be-
haviour of so-called ‘Fueter sections’ in G2-manifolds. We intend to use
these new insights to study the bubbling phenomena in hyperkähler Floer
theory.

Conjecture 1.20 (with Thomas Walpuski). The bubbling happens along
‘generalized Hopf circles’ which may intersect each other.



CHAPTER 2

Compact semi-toric integrable systems and
Hamiltonian S1-actions

Integrable Hamiltonian systems are a very nice class of Hamiltonian sys-
tems since their phase space is foliated by invariant submanifolds. Examples
are harmonic oscillators, Lagrange, Euler and Kovalevskaya tops, and any
Hamiltonian system on a two dimensional manifold. In this chapter, we will
focus on integrable Hamiltonian systems on compact 4-dimensional mani-
folds without boundary and their relation to Hamiltonian S1-actions. More
precisely, we are linking Pelayo & Vũ Ngo. c’s [PV1, PV2] recent classi-
fication of semi-toric systems to Karshon’s [Ka] classification of effective
Hamiltonian S1-actions.

1. Introduction and definitions

Before we delve into the definition and properties of integrable systems,
let us keep the following important fact in mind: When working with Floer
theory, usually nonautonomous Hamiltonian systems are studied since au-
tonomous systems cause problems for the involved analysis. In contrast,
integrable systems are always autonomous systems.

1.1. Definitions and conventions. Let (M, ω) be a compact connected
symplectic manifold of dimension 2n without boundary. Given a smooth
function F : M → R, the (autonomous) Hamiltonian vector field XF is
defined via ω(XF , ·) = −dF. The (autonomous) Hamiltonian equation is
given by

ż = XF(z)
and its flow is denoted by ϕF

t . The Poisson bracket induced by ω is given by

{·, ·} : C∞(M;R) ×C∞(M;R)→ C∞(M;R),

{F1, F2} := ω(XF1 , XF2).

A Hamiltonian Rk-action on (M, ω) is a smooth map Φ := (F1, . . . , Fk) :
M → Rk such that {Fi, F j} = 0 for all 1 ≤ i, j ≤ k. The condition {Fi, F j} = 0
is equivalent to ϕFi ◦ ϕF j = ϕF j ◦ ϕFi . The action is given by

Rk × M → M, (t = (t1, . . . , tk), x) 7→ ϕF1
t1 ◦ · · · ◦ ϕ

Fk
tk (x).

17
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We will call the triple (M, ω,Φ) a Hamiltonian Rk-space with moment map
Φ. A completely integrable system is a Hamiltonian Rn-space (M, ω,Φ)
where XF1 , . . . , XFn are almost everywhere linearly independent. A Hamil-
tonian Tk-space is a Hamiltonian Rk-space (M, ω,Φ) where the flows ϕF1

t1 ,
. . . , ϕFk

tk are periodic, the vector fields XF1 , . . . , XFn are almost everywhere
linearly independent, and the induced torus action is effective. A Hamilton-
ian S1-space is a Hamiltonian T1-space.

Examples of completely integrable systems are harmonic oscillators, La-
grange, Euler and Kovalevskaya tops, n-toric 2n-manifolds and any Hamil-
tonian system on a two dimensional manifold. The latter is based on the
simple observation that Hamiltonian solutions z : R → M stay in level sets
of the associated Hamiltonian function H since

(H ◦ z)′(t) = DH|z(t).ż(t) = −ω(XH(z(t)), ż(t)) = −ω(XH(z(t)), XH(z(t))) = 0.

In the whole chapter, (M, ω) is a connected, closed symplectic manifold.
Unless otherwise stated, group actions on manifolds are effective, i.e. there
are no non-trivial elements of the group which act trivially on the whole
space. We use the identification S1 = R/2πZ.

1.2. Classifications of integrable systems. Integrable systems have
been studied under various aspects. To give a complete overview is beyond
the scope of this work such that we will only mention those aspects which
are of interest to our work.

1.2.1. Topological classifications. There is the topological classifica-
tion of completely integrable systems due to Fomenko [Fo] and his school
who considered constant-energy surfaces and how they can be built.

1.2.2. Local classification near singular points by normal forms.
There is the local classification of singularities by means of normal forms
established by Eliasson [El1, El1] and Miranda & Zung [MiZ]. We sketch
it briefly.

Let (M, ω,Φ) be an completely integrable system. A point p ∈ M is singular
or critical if rk DΦ is not maximal at p. A singular or critical value for Φ

is a value of Φ whose pre-image contains a singular point. By abuse of
notation, we often do not distinguish between singular points and values.
In the following, singular points are assumed to be nondegenerate in the
sense of Williamson [Wi] which means a generalization of the Morse-Bott
condition in the symplectic category (cf. also Zung [Zu]).
The local normal form due to Eliasson and Miranda & Zung states that there
are nice new coordinates (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn) and new integrals
q1, . . . , qn near a nondegenerate critical point of the following kind.

1) Elliptic component: q j(x, ξ) = 1
2 (x2

j + ξ2
j ).
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2) Hyperbolic component: q j(x, ξ) = x jξ j.
3) Focus-focus component (coming in pairs):{ q j−1(x, ξ) = x j−1ξ j − x jξ j−1,

q j(x, ξ) = x j−1ξ j−1 + x jξ j.
4) Nonsingular component: q j(x, ξ) = ξ j.

In this work, we are not dealing with hyperbolic singularities. Thus, in di-
mension four, only the following combinations remain which we summa-
rize under the name of almost toric singular points.
1) Elliptic-elliptic points: Φee = (q1, q2) with q1 = 1

2 (x2
1+ξ2

1), q2 = 1
2 (x2

2+ξ2
2).

2) Focus-focus points: Φff = (q1, q2) with q1 = x1ξ2− x2ξ1, q2 = x1ξ1 + x2ξ2.
3) Elliptic-regular orbits: Φer = (q1, q2) with q1 = 1

2 (x2
1 + ξ2

1), q2 = ξ2.
The proofs of Theorem 2.8 and Theorem 2.9 will rely a lot on these normal
forms.

1.2.3. Toric manifolds. Toric manifolds are a very special class of
completely integrable systems as we will see in a moment.

A convex polygon in Rn is simple if there are exactly n edges meeting at
each vertex. A simple polygon is rational if all edges have rational slope. A
vertex of a simple, rational polygon is smooth if its primitive tangent vec-
tors generate the lattice Zn. A Delzant polygon is a convex, simple, rational
polygon whose vertices are all smooth.

These polygons play an essential roll in the classification of toric manifolds.

Theorem 2.1 (Delzant [De]). Let (M, ω) be a 2n-dimensional connected,
closed symplectic manifold and let Φ : M → Rn be the moment map of
an effective torus action. Then Φ(M) =: ∆ is a simple, rational, smooth
polygon, called Delzant polygon. Any such polygon determines a symplectic
toric manifold (up to symplectomorphisms preserving the momentum map).

The proofs of Theorem 2.8 and Theorem 2.9 will use as much features of
toric systems as possible.

1.2.4. Semi-toric systems. Pelayo & Vũ Ngo. c [PV1, PV2] classified
so-called semi-toric systems on (not necessarily compact) 4-dimensional
manifolds. For an overview, we refer to Pelayo & Vũ Ngo. c [PV3]. Since
we will relate their classification to Karshon’s classification of Hamiltonian
S1-spaces we will always assume the manifolds to be compact. For reasons,
which become later apparent, let us take a more category theoretic aproach.

Definition 2.2. Let (M, ω) be a compact connected symplectic 4-
dimensional manifold. The category of compact semi-toric systems ST is
given by:

(1) The objects are completely integrable Hamiltonian systems
(M, ω,Φ = (J,H)) whose singular points are almost toric with



20 2. COMPACT SEMI-TORIC INTEGRABLE SYSTEMS

exactly one focus-focus point in a focus-focus fibre and such that
(M, ω, J) is a Hamiltonian S1-space. Such systems are called com-
pact semi-toric systems.

(2) The morphisms are pairs (Ψ, ψ), where Ψ : (M1, ω1) → (M2, ω2)
is a symplectomorphism and ψ : Φ1(M1) ⊂ R2 → Φ2(M2) ⊂
R2 is a locally defined diffeomorphism of the form ψ(x, y) =

(ψ(1), ψ(2))(x, y) = (x, ψ(2)(x, y)) making the following diagram
commute

(M1, ω1) Ψ //

Φ1
��

(M2, ω2)

Φ2
��

R2
ψ

// R2.

We will use the short notation (Ψ, ψ) : (M1, ω1,Φ1)→ (M2, ω2,Φ2) and call
them isomorphisms of compact semi-toric systems.

Having exactly one focus-focus point in a focus-focus fibre is a generic
property and also assumed in Pelayo & Vũ Ngo. c [PV2]. For technical con-
venience (it simplifies the definition of signs and cuts in a semi-toric poly-
gon), we moreover assume that any map f : B = Φ(M)→ R2 whose image
yields a polygon is orientation preserving.

Semi-toric systems induce an S1 × R-action which places them ‘between’
general integrable systems which have an R × R-action and toric systems
with an S1 × S1-action. Semi-toric systems differ from toric systems by the
existence of focus-focus singularities. But they do not carry an arbitrary
number of them:

Proposition 2.3 (Vũ Ngo. c [Vu2], Cor. 5.10). A semi-toric system has only
a finite number of focus-focus critical values.

Pelayo & Vũ Ngo. c [PV1] use the following five invariants to classify semi-
toric systems. Let (M, ω,Φ = (J,H)) be a (not necessarily compact) semi-
toric system. Its list of semi-toric invariants consists of the following items.

(1) The number m f of focus-focus points c1, . . . , cm f .
(2) m f Taylor series S i := S i(ci) ∈ R[[X,Y]] for 1 ≤ i ≤ m f associated

to the focus-focus points.
The Taylor series S i of the focus-focus point ci is a local invari-
ant of ci and does not interact with any of the other Taylor series
or invariants in the list. Roughly, Vũ Ngo. c constructs a ‘generat-
ing function’ Si for the Lagrangian fibration near the focus-focus
point ci which extends smoothly over the focus-focus singularity.
Its Taylor series is S i and its constant term vanishes due to con-
struction. For details see Vũ Ngo. c [Vu1].
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(3) The (equivalence class of a) semi-toric polygon [PΦ
ε ] :=

[(PΦ, (li)
m f

i=1, (εi)
m f

i=1)] where the li are vertical cuts into the polygon
through the focus-focus points and the εi are associated signs.
PΦ
ε is obtained by a ‘straightening procedure’ of the ‘curved poly-

gon’ Φ(M).
(4) The heights 0 < hi < length(li ∩ P

Φ) for 1 ≤ i ≤ m f of the focus-
focus points in the semi-toric polygon.

(5) The twisting index is (an equivalence class of)
(PΦ, (li)

m f

i=1, (εi)
m f

i=1, (ki)
m f

i=1) where the ki are integers which de-
scribe the twistedness locally around ci w.r.t. the globally chosen
toric momentum map. Thus it is a global invariant, but ki is
independent of k j for 1 ≤ i , j ≤ m f . For details consult Pelayo &
Vũ Ngo. c [PV2, PV1].

Theorem 2.4 (Pelayo & Vũ Ngo. c [PV1, PV2]).
1) Two semi-toric integrable systems are isomorphic if and only if they have

the same semi-toric invariants (cf. [PV1], Theorem 6.2).
2) Given a list of ‘semi-toric ingredients’, there exists a 4-dimensional

semi-toric system having the semi-toric ingredients as semi-toric invari-
ants (cf. [PV2]).

An important observation is the fact that the underlying manifold is compact
if and only if the semi-toric polygon is compact.

1.3. Classification of 4-dimensional Hamiltonian S1-spaces. For
later purposes, let us consider Hamiltonian S1-spaces from a more category
theoretical point of view.

Definition 2.5. Let (M, ω) be a compact symplectic 4-dimensional mani-
fold. The categoryHamS1 is defined by:

(1) Objects: Hamiltonian S1-spaces (M, ω, J).
(2) Morphisms: symplectomorphisms Ψ : (M1, ω1) → (M2, ω2) mak-

ing the following diagram

(M1, ω1) Ψ //

J1 ##

(M2, ω2)

J2{{
R

commute. We use the notation Ψ : (M1, ω1, J1)→ (M2, ω2, J2) and
and call them isomorphisms of Hamiltonian S1-spaces.

Denote by MS
1

the fixed point set of the S1-action. Karshon [Ka] assigns
to each (isomorphism class of a) Hamiltonian S1-space (M, ω, J) a labeled,
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directed graph Γ = (V, E) consisting of the set of vertices V and the set of
edges E which are obtained as follows.

Vertex set V: For every connected component in MS
1

draw a vertex.
Those associated to fixed surfaces are drawn as ‘fat
vertices’.

Labeling of V: Each vertex is labeled by the value of J on the corre-
sponding component of the fixed point set.
A fat vertex is additionally labeled by the genus of the
corresponding surface Σ and its normalized symplec-
tic area 1

2π

∫
Σ
ω.

Edge set E: Every Zk-sphere, k ≥ 2, (cf. Karshon [Ka]) gives rise
to a directed edge going from its south to its north
pole.

Labeling of E: Label each edge with the isotropy weight of the cor-
responding Zk-sphere if k ≥ 2.

These labeled, directed graphs classify Hamiltonian S1-spaces:

Theorem 2.6 (Karshon [Ka], Theorem 4.1). Two 4-dimensional Hamilton-
ian S1-spaces are isomorphic if and only if their directed labeled graphs are
equal.

The following statement turned out to be essential for our work.

Theorem 2.7 (Karshon [Ka], Prop. 5.16 and 5.21). Given a 4-dimensional
Hamiltonian S1-space (M, ω, J), the following are equivalent:
(1) The S1-action extends to an effective Hamiltonian 2-torus action with

moment map given by (J,H) : M → R2, i.e. the triple (M, ω, (J,H)) is a
symplectic toric manifold.

(2) Each fixed surface has genus zero and each non-extremal level set of J
contains at most two non-free orbits.

(3) Each fixed surface has genus zero and there is a compatible metric for
which there are no more than two non-trivial chains of gradient spheres.

Therefore we call a Hamiltonian S1-space (M, ω, J) extendable if it satisfies
any of the conditions of Theorem 2.7. Otherwise it is nonextendable.

2. From compact semi-toric systems to Hamiltonian S1-actions

Let (M, ω) be a connected, closed, symplectic 4-manifold. In this section,
we will show how Pelayo & Vũ Ngo. c’s invariants of a compact semi-toric
system (M, ω,Φ = (J,H)) interact with Karshon’s labeled, directed graph
of the underlying Hamiltonian S1-space (M, ω, J).
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First notice that we have a functor

F : ST → HamS1 ,
(M, ω,Φ = (J,H)) 7→ (M, ω, J),
(Ψ, ψ) 7→ Ψ,

i.e. we obtain the underlying space (M, ω, J) from (M, ω,Φ = (J,H)) by
‘forgetting’ H and this is compatible with the isomorphisms of semi-toric
systems and Hamiltonian S1-spaces.

Let us call a semi-toric polygon decorated with focus-focus critical values
(‘points’), cuts and signs a labeled convex polygon. Pelayo & Vũ Ngo. c
[PV1] ask for the minimal set of invariants of (M, ω,Φ = (J,H)) in order to
recover the labeled directed graph of (M, ω, J). The answer is

Theorem 2.8 (Hohloch & Sabatini & Sepe [HSS]). Any labeled convex
polygon associated to a semi-toric system (M, ω,Φ = (J,H)) yields the
labeled directed graph associated to the underlying Hamiltonian S1-space
(M, ω, J).

Thus the first and third invariant in Pelayo & Vũ Ngo. c’s classification en-
code all information about the underlying Hamiltonian S1-space.

The proof of Theorem 2.8 makes use of the toric features of a semi-toric
system. Toric systems are completely classified by the image of their mo-
ment map, i.e. their Delzant polygon, see Theorem 2.1. How to pass from
a Delzant polygon to the labeled directed graph is nicely described by
Karshon. We mimic her ideas as much as possible, but needed new methods
to deal with the focus-focus points. Here the local normal form by Eliasson
and Miranda & Zung is important as well as the connectedness of the fibers
of a semi-toric system. We summarize the situation in Figure 2.1.

We call a semi-toric system adaptable if its underlying Hamiltonian S1-
action can be extended to an effective Hamiltonian T2-action. The study
of adaptable versus nonadaptable semi-toric systems leads to the following
observation.

Theorem 2.9 (Hohloch & Sabatini & Sepe [HSS]).
(a) A semi-toric system (M, ω,Φ) is adaptable if and only if one of its asso-

ciated labeled convex polygons is Delzant.
(b) Let (M, ω,Φ = (J,H)) be an adaptable system and denote by (M, ω, J)

its underlying Hamiltonian S1-space. The family of labeled convex poly-
gons associated to (M, ω,Φ = (J,H)) contains all Delzant polygons
whose corresponding symplectic toric manifolds have (M, ω, J) as their
associated Hamiltonian S1-space.

This gives a nice and useful criterion for distinguishing between adaptable
and nonadaptable systems. Moreover, Example 4.12 in Hohloch & Sabatini
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( (

# focus-focus,

semi-toric sys.

Pelayo & Vu NgocDelzant

toric system

Karshon

R × R-action

labeled, directed graph

S1 × R-action

Hamiltonian
S1-action

compl. int. sys.

S1 × S1-action

forget H
(Karshon)

forget H(HSS)

semi-toric polygon

Figure 2.1. Overview.

& Sepe [HSS] shows the construction of a nonadaptable system which, to
the best of our knowledge, is the first such example in the literature. We
consider the moment polytope of a toric system on CP1 × CP1 blown up
at two points (Figure 2.2 (a)), apply a nodal trade (Figure 2.2 (b)) and a
suitable piecewise integral affine transformation (Figure 2.2 (c)) and blow
up the vertex (0, 0) to obtain a nonadaptable system in Figure 2.2 (d). For
details we refer the reader to Hohloch & Sabatini & Sepe [HSS].

(0, 0) (1, 0)

(1, 3) (2, 3)

(2, 1)

(0, 2)

(a) (b) (c) (d)

Figure 2.2. Example 4.12 in Hohloch & Sabatini & Sepe [HSS].

3. Future projects

In contrast to the earlier work Hohloch & Sabatini & Sepe [HSS], where
the transition from compact semi-toric systems to Hamiltonian S1-spaces is
studied, this new joint project Hohloch & Sabatini & Sepe & Symington
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[HSSS] sheds light on the transition from Hamiltonian S1-spaces to com-
pact semi-toric systems. This is motivated by Karshon [Ka] who describes
under which conditions a Hamiltonian S1-spaces extends to a T2-action. We
are investigating when it extends to a compact semi-toric system, i.e. an
S1 × R-action with ‘nice’ singularities. The situation is sketched in Figure
2.3.

( (

?(Karshon)
extendable

(Karshon)

semi-toric sys.

Pelayo & Vu NgocDelzant

toric system

Karshon

R × R-actionS1 × R-action

Hamiltonian
S1-action

compl. int. sys.

S1 × S1-action

labeled, directed graph

forget H
(HSS)

forget H

Figure 2.3. Future projects.

‘Theorem’ 2.10 (Hohloch & Sabatini & Sepe & Symington [HSSS]). Given
a ‘weakly extendable’ Karshon graph, there exists a compact semi-toric
polygon (and thus a semi-toric system) which yields the Karshon graph
when forgetting the R-action.

The proof of this theorem involves the definition of ‘semi-toric blow-ups’
and ‘semi-toric nodal trades and slides’ which exist in the literature for
S1- and T2-equivariant settings. Karshon [Ka] proved that all Hamilton-
ian S1-spaces can be obtained from three different types of spaces using
S1-equivariant blow-ups. We intend to prove an analogous statement in the
semi-toric world.

Conjecture 2.11 (Hohloch & Sabatini & Sepe & Symington [HSSS]).
Compact semi-toric systems can be obtained from a finite number of ‘min-
imal’ compact semi-toric systems using the blow-up and nodal trade and
slide operations.





CHAPTER 3

Higher Morse moduli spaces and n-categories

In this chapter, we show a connection between Morse theory and higher
category theory. More precisely, we will construct a so-called almost strict
n-category by repeatedly doing Morse theory on Morse moduli spaces. The
resulting n-category X generalizes Cohen & Jones & Segal’s [CJS] Flow
category and looks very complicated. Thus we looked for n-category func-
tors from X to ‘easier’ almost strict n-categories in order to imitate rep-
resentation theory of groups where one studies homomorphisms (‘repre-
sentations’) from a given group into a ‘nicer’ group. We found two other
almost strict n-categoriesV andW and two almost strict n-category func-
tors F : X → V and G : X →W which are based on the dimension of the
Morse moduli spaces and the Morse index.

1. Almost strict n-categories

There is a whole zoo of notions and definitions of higher categories in the
literature. The main distinction is between ‘weak’ versus ‘strict’ categories
where ‘weak’ in contrast to strict means that certain properties only have
to hold ‘up to some deformation’, for instance instead of ‘associativity’,
one only has ‘associativity up to homotopy’. Leinster’s book [Le] gives a
good overview and introduction to higher category theory and we stick to
its notions and conventions. We will first repeat the definition of strict n-
categories (which goes back to Ehresmann) before we introduce the new
notion of ‘almost strict’ n-categories.

Definition 3.1. Given n ∈ N, an n-globular set Y is a collection of sets
{Y(`) | 0 ≤ ` ≤ n} together with source and target functions s, t : Y(`) →
Y(` − 1) for 1 ≤ ` ≤ n satisfying s ◦ s = s ◦ t and t ◦ s = t ◦ t. Elements
A` ∈ Y(`) are called `-cells.

Figure 3.1 suggests to think of `-cells as `-dimensional disks. For 0 ≤ p <
` ≤ n, the set

Y(`) ×p Y(`) := {(C, A) ∈ Y(`) × Y(`) | s`−p(C) = t`−p(A)}

describes those `-cells A and C which can be composed along a p-cell, i.e.
it encodes the matching conditions for the composition of cells.

27
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A0

A1

A0 B0

(b)(a)

A1

A0 A2 B0

B1

(c)

Figure 3.1. (a) 0-cell A0 ∈ Y(0), (b) displays a 1-cell A1 ∈

Y(1) with s(A1) = A0 ∈ Y(0) and t(A1) = B0 ∈ Y(0), (c)
sketches a 2-cell A2 ∈ Y(2) with s(A2) = A1, t(A2) = B1 ∈

Y(1) and therefore s(A1) = s(B1) = A0 and t(A1) = t(B1) =

B0.

Definition 3.2. Let n ∈ N. A strict n-category Y is an n-globular set Y
equipped with

• a function ◦p : Y(l) ×p Y(l) → Y(l) for all 0 ≤ p < l ≤ n. We set
◦p(Cl, Al) =: Cl ◦p Al and call it composite of Al and Cl.
• a function 1 : Y(l)→ Y(l + 1) for all 0 ≤ l < n. We set 1Al := 1(Al)

and call it the identity on Al.
These have to satisfy the following axioms:
(a) (Sources and targets of composites) For 0 ≤ p < l ≤ n and (Cl, Al) ∈

Y(l) ×p Y(l) we require

for p = l − 1 : s(Cl ◦p Al) = s(Al),
t(Cl ◦p Al) = t(Cl),

for p ≤ l − 2 : s(Cl ◦p Al) = s(Cl) ◦p s(Al),
t(Cl ◦p Al) = t(Cl) ◦p t(Al).

(b) (Sources and targets of identities) For 0 ≤ l < n and Al ∈ Y(l) we
require

s(1Al) = Al = t(1Al).
(c) (Associativity) For 0 ≤ p < l ≤ n and Al, Cl, El ∈ Y(l) with (El,Cl),

(Cl, Al) ∈ Y(l) ×p Y(l) we require

(El ◦p Cl) ◦p Al = El ◦p (Cl ◦p Al).

(d) (Identities) For 0 ≤ p < l ≤ n and Al ∈ Y(l) we require

1l−p(tl−p(Al)) ◦p Al = Al = Al ◦p 1l−p(sl−p(Al)).

(e) (Binary interchange) For 0 ≤ q < p < l ≤ n and Al, Cl, El, Hl ∈ Y(l)
with

(Hl, El), (Cl, Al) ∈ Y(l) ×p Y(l) and (Hl,Cl), (El, Al) ∈ Y(l) ×q Y(l)
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we require

(Hl ◦p El) ◦q (Cl ◦p Al) = (Hl ◦q Cl) ◦p (El ◦q Al).

(f) (Nullary interchange) For 0 ≤ p < l < n and (Cl, Al) ∈ Y(l) ×p Y(l) we
require 1Cl ◦p 1Al = 1Cl◦pAl .

If Y and Z are strict n-categories we define a strict n-functor F as a map
F : Y → Z of the underlying n-globular sets commuting with composition
and identities. This defines a category of strict n-categories.

Strict categories are rare in real life. The following definition relaxes the
requirements slightly.

Definition 3.3 (Hohloch [Hoh5]). An almost strict n-category satisfies the
requirements of a strict n-category up to canonical isomorphism. Let A
and B be two almost strict n-categories with n-globular sets A and B. An
almost strict n-category functor F : A → B, briefly an n-functor, is a map
F : A → B of the underlying n-globular sets commuting with composition
and identities. This defines the category of almost strict n-categories.

In geometry, being identical ‘up to canonical isomorphism’ is often identi-
fied with ‘being identical’ since otherwise for instance the cartesian product
would have to be called ‘associative up to canonical isomorphism’ which
nobody does. Our main interest lies in geometry, thus we voted for calling
the above n-category ‘almost strict’ instead of ‘not very weak’.

2. Morse moduli spaces on smooth manifolds without boundary.

In the following, we recall briefly the approach to Morse theory via dy-
namical systems, i.e. using the negative gradient flow of a Morse function
instead of handle attachements. For details, we refer the reader to the books
by Schwarz [Sch] and Audin & Damian [AuD].

Let M be a compact m-dimensional manifold without boundary. A smooth
function f : M → R is a Morse function if its Hessian D2 f is nondegenerate
at the critical points Crit( f ) := {x ∈ M | D f (x) = 0}. The Morse index
Ind(x) of a critical point x is the number of negative eigenvalues of D2 f (x).
For a Riemannian metric g on M, we denote by gradg f the gradient of f
w.r.t. the metric g. The negative gradient flow ϕt of the pair ( f , g) is given
by the (autonomous) ODE

ϕ̇t = − gradg f (ϕt).

By
W s( f , x) := W s( f , g, x) := {p ∈ M | lim

t→+∞
ϕt(p) = x}
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we denote the stable manifold of a critical point x ∈ Crit( f ) and by

Wu( f , x) := Wu( f , g, x) := {p ∈ M | lim
t→−∞

ϕt(p) = x}

its unstable manifold. A pair ( f , g) is Morse-Smale if W s( f , g, x) and
Wu( f , g, y) intersect transversely for all critical points x, y ∈ Crit( f ). The
Morse moduli space between x, y ∈ Crit( f ) is the space of smooth curves

M(x, y) :=M(x, y, f , g) :=

γ : R→ M

∣∣∣∣∣∣∣∣∣∣∣
γ̇(t) = − gradg f (γ(t)),
lim

t→−∞
γ(t) = x,

lim
t→+∞

γ(t) = y

 .
The elements of M(x, y) are those negative gradient flow lines which join
x to y. The space can also be seen as the intersection Wu(x, f ) ∩ W s( f , y).
If ( f , g) is Morse-Smale the moduli space M(x, y) is a smooth manifold
of dimension Ind(x) − Ind(y). If Ind(y) > Ind(x) then M(x, y) is empty.
Since we are dealing with an autonomous ODE the moduli space carries a
natural R-action. More precisely, given γ ∈ M(x, y) and σ ∈ R, the curve
γσ defined by γσ(t) := γ(t + σ) is also a negative gradient flow line. Thus
there is an action R ×M(x, y)→M(x, y), (γ, σ) 7→ γσ. The quotient space
by the action is the unparametrized moduli spaceM(x, y)/R.

An m-dimensional manifold with corners is an m-dimensional manifold
which is locally modeled on Rm

+ := (R≥0)m. If ψ = (ψ1, . . . , ψm) : U ⊆ N →
Rm

+ is a chart of an m-dimensional manifold with corners N and x ∈ U, set

depth(x) := #{i | ψi(x) = 0, 1 ≤ i ≤ m}.

A face of N is the closure of a connected component of {x ∈ N | depth(x) =

1}. If k is the number of faces, we fix an order of the faces and denote them
by ∂1N, . . . , ∂kN. The connected components of {x ∈ N | depth(x) = l} =:
Ddim N−l are called the (dim N − l)-strata of N.

Definition 3.4. Let N be an m-dimensional manifold with corners having k
faces ∂1N, . . . , ∂kN. We call N a 〈k〉-manifold if
(a) Each x ∈ N lies in depth(x) faces.
(b) ∂1N ∪ · · · ∪ ∂kN = ∂N.
(c) For all 1 ≤ i, j ≤ k with i , j the intersection ∂iN ∩ ∂ jN is a face of

both ∂iN and ∂ jN.

Note that in this convention the faces ∂iN ⊂ N are manifolds with corners,
but the boundary ∂N is not. There are several conventions in the literature
and we have chosen Joyce’s [Jo] definition where the integer 〈k〉 has a priori
nothing to do with the dimension m of the manifold N. If one admits ∂iN to
be a union of faces (cf. Laures [Laur]) one can enforce k = dim N.
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In order to compactify unparametrized moduli spaces we briefly have to
discuss the phenomenon of ‘breaking’ and ‘gluing’ of Morse trajectories.
Consider a smooth compact manifold M with Morse-Smale pair ( f , g) and
x, y, z ∈ Crit( f ) with Ind(x) > Ind(y) > Ind(z). Figure 3.2 (a) displays a
sequence of trajectories (γn)n∈N from x to z which ‘break’ in the limit into
trajectories γxy from x to y and γyz from y to z. This phenomenon is called
‘breaking’. Unparametrized moduli space are compactified by adding ‘bro-
ken trajectories’ as boundary points and this compactification ofM(x, z)/R
via adding broken trajectories is denoted M̂(x, z) := M(x, z)/R. Since we
wish to give the compactified moduli spaces the structure of a manifold with
corners, we have to be a little bit careful in the choice of the metric. Thus we
introduce the following notation. Let f be a Morse function. Then a metric
g is f -euclidean if it is euclidean near the critical points of f . Moreover,
given x, y ∈ Crit( f ) with x , y, we write x > y ifM(x, y) , ∅.

x

ỹ

z

y

x

z

y

∂M

y′

(b)(a)

Figure 3.2. Breaking of trajectories: (a) in the interior, (b)
on the boundary.

Theorem 3.5 (Burghelea [Bu], Wehrheim [Weh], Qin [Qi1], [Qi2]). Let M
be compact and ( f , g) be Morse-Smale and assume g to be f -euclidean. Let
x, z ∈ Crit( f ) with x > z. Then there exists k ∈ N0 such that M̂(x, z) is an
(Ind(x)−Ind(z)−1)-dimensional 〈k〉-manifold with corners and its boundary
is given by

∂M̂(x, z) =
⋃

(Ind(x)−Ind(z)−1)≥l≥0
x>y1>···>yl>z

M̂(x, y1) × M̂(y1, y2) × . . . × M̂(yl−1, yl) × M̂(yl, z)

where y1, . . . , yl ∈ Crit( f ). There is a canonical smooth structure on M̂(x, z).

Given broken trajectories (γxy, γyz) in M̂(x, y)× M̂(y, z) we can ‘glue’ them
to a Morse trajectory from x to z. Later on, we will have to glue multiply
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broken trajectory (γ1, . . . , γl+1) ∈ M̂(x, y1)×. . .×M̂(yl, z) such that the ques-
tion of associativity of the gluing procedure arises. Qin [Qi3] and Wehrheim
[Weh] showed that gluing is indeed associative such that our constructions
in later sections are well-defined.

3. Morse moduli spaces on 〈k〉-manifolds.

In the previous section, we recalled Morse theory on manifolds without
boundary. This section now deals with Morse theory on manifolds with
corners. If the manifold has a smooth boundary (i.e. no corners), Akaho
[Ak] and Kronheimer & Mrowka [KrM] showed how the negative gradi-
ent approach works for Morse functions with gradient vector fields which
are tangent to the boundary. More generally, Ludwig [Lu] defined Morse
theory with tangential gradient vector field on stratified spaces, but her the-
ory does not cover higher dimensional moduli spaces in the way we need it
later.

On a smooth compact manifold M, consider a Morse-Smale pair ( f0, g0)
consisting of a Morse function f0 with f0-euclidean metric g0. Given dis-
tinct critical points x0, z0 ∈ Crit( f0), the space M̂(x0, z0, f0) is, according
to Theorem 3.5, a manifold (possibly) with corners (if it is not empty). Its
boundary is of the form

∂M̂(x0, z0, f0) =
⋃

(Ind(x0)−Ind(z0)−1)≥l≥0

x0>y1
0>···>yl

0>z0

M̂(x0, y1
0, f0) × . . . × M̂(yl

0, z0, f0)

with y1
0, . . . , yl

0 ∈ Crit( f0) which we can reformulate to

∂M̂(x0, z0, f0) =
⋃

y0∈Crit( f0)

M̂(x0, y0, f0) × M̂(y0, z0, f0).

Keep in mind that a moduli space may have several connected compo-
nents. Choosing an ordering for the components of depth one, we give
M̂(x0, z0, f0) the structure of a 〈k〉-manifold. The space M̂(x0, z0, f0) might
share strata with other moduli spaces M̂(x̃0, z̃0, f0) for x̃0, z̃0 ∈ Crit( f0).

Theorem 3.6 (Hohloch [Hoh5]). Let f be a Morse function on a compact
〈k〉-manifold whose negative gradient flow is tangential to the boundary
strata and flows from higher dimensional to lower dimensional strata, but
not from lower to higher ones. Assume the metric to be euclidean near the
critical points. Let x, z ∈ Crit( f ) with x > z. Then there exists k ∈ N0

such that M̂(x, z) is an (Ind(x) − Ind(z) − 1)-dimensional 〈k〉-manifold with
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corners and its boundary is given by

∂M̂(x, z) =
⋃

(Ind(x)−Ind(z)−1)≥l≥0
x>y1>···>yl>z

M̂(x, y1) × M̂(y1, y2) × . . . × M̂(yl−1, yl) × M̂(yl, z)

where y1, . . . , yl ∈ Crit( f ). There is a canonical smooth structure on M̂(x, z).

The condition ‘. . . flows from higher dimensional to lower dimensional
strata, but not from lower to higher ones’ is not just technical, but essential.
If we drop it, the breaking behaviour gets much wilder, see Figure 3.2 (b).
In particular, one may have to glue simultanously more than two trajectories
in order to obtain a connecting trajectory. This phenomenon is part of the
forthcoming work Hohloch & Ludwig [HohL].

4. The almost strict Morse n-category.

This section summarizes the construction of the almost strict Morse n-
category from Hohloch [Hoh5] to which we refer for details. Throughout
this section, we require the Morse functions to satisfy:

1) The gradient vector field is tangential to the boundary strata.
2) The Morse function is compatible with the cartesian product structure of

the boundary of a Morse moduli space.
3) The negative gradient flow passes from higher dimensional into lower

dimensional strata, but never from lower to higher dimensional strata, i.e.
flowing into the boundary and later back into the interior of the manifold
like in Figure 3.2 (b) does not happen.

Consider a compact n-dimensional 〈k〉-manifold M with a Morse function
f0 and an f0-euclidean metric g0. Let us define those sets which turn out to
be an n-globular set. First set

X(0) := {x0 | x0 ∈ Crit( f0)}.

For x0, y0 ∈ Crit( f0) choose on the space M̂(x0, y0, f0) a Morse function
f1

[ x0
y0

] with f1
[ x0

y0

]-euclidean metric g1
[ x0

y0

]. This leads to the definition of

X(1) := {(x1, M̂(x0, y0, f0)) | x0, y0 ∈ Crit( f0), x1 ∈ Crit( f1
[ x0

y0

])}.
Let us briefly explain the notation. The first entry in the lower index of the
Morse function f1

[ x0
y0

] or metric g1
[ x0

y0

] is the number of the ‘iteration level’
on which the function or metric lives. Then comes, in brackets, the (history
of) critical points which gave rise to the moduli space. In the brackets, the
upper row lists the source points and the lower row the target points. For
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our construction, we need to keep in mind the ‘history’ of a moduli space.
Iterating leads to

X(l) :=


(
xl, M̂(xl−1, yl−1, fl−1

[ xl−2,...,x0
yl−2,...,y0

]))
∣∣∣∣∣∣∣∣∣∣∣
0 ≤ j ≤ l − 1,
x j, y j ∈ Crit( f

j
[ x j−1,...,x0

y j−1,...,y0

]),
xl ∈ Crit( fl

[ xl−1,...,x0
yl−1,...,y0

])


for 2 ≤ l ≤ n. Source and target functions are given by

s : X(l)→ X(l − 1) and t : X(l)→ X(l − 1)

for 2 ≤ l ≤ n via

s
(
xl, M̂(xl−1, yl−1, fl−1

[ xl−2,...,x0
yl−2,...,y0

])) :=
(
xl−1, M̂(xl−2, yl−2, fl−2

[ xl−3,...,x0
yl−3,...,y0

])) ,
t
(
xl, M̂(xl−1, yl−1, fl−1

[ xl−2,...,x0
yl−2,...,y0

])) :=
(
yl−1, M̂(xl−2, yl−2, fl−2

[ xl−3,...,x0
yl−3,...,y0

]))
and we set for s, t : X(1)→ X(0)

s
(
a1, M̂(x0, y0, f0)

)
:= x0 and t

(
a1, M̂(x0, y0, f0)

)
:= y0.

Lemma 3.7 (Hohloch [Hoh5]). X := {X(l) | 0 ≤ l ≤ n} is an n-globular set.

Remember that the matching condition for the composition of l-cells along
p-cells was given by

X(l) ×p X(l) := {(Cl, Al) ∈ X(l) × X(l) | sl−p(Cl) = tl−p(Al)}.

There is actually a nice way to write a tupel (Cl, Al) ∈ X(l)×p X(l) such that
one can see exactly where a and C match:

Al =

(
al, M̂(al−1, bl−1, f

l−1
[ al−2,...,ap+1,xp,αp−1,...,α0

bl−2,...,bp+1,yp,βp−1,...,β0

])
)
,

Cl =

(
cl, M̂(cl−1, dl−1, f

l−1
[ cl−2,...,cp+1,yp,αp−1,...,α0

dl−2,...,dp+1,zp,βp−1,...,β0

])
)
.

In words, this means that both l-cells arise, up to level (p − 1), from the

same critical points
[
αp−1,...,α0
βp−1,...,β0

]
. At level p, they match via

[ xp
yp

]
[ yp

zp

] . There are no

additional conditions on the critical points on the higher levels

[ al−2,...,ap+1
bl−2,...,bp+1

]
[ cl−2,...,cp+1

dl−2,...,dp+1

]
apart from the ones required in the definition of X(l). The whole expression[ al−2,...,ap+1,xp,αp−1,...,α0

bl−2,...,bp+1,yp,βp−1,...,β0

]
is called the history of Al up to level (l − 2). If j = 1 in

the two expressions above then there are no a’s and b’s resp. c’s and d’s in
the index of the function.
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The identity functions
1 : X(l)→ X(l + 1)

are motivated now. Consider x0 ∈ X(0) and identify x0 with the moduli
space M̂(x0, x0, f0). Then in turn identify M̂(x0, x0, f0) with the only critical
point x1 ∈ Crit( f1

[ x0
x0

]) on M̂(x0, x0, f0). Thus we have x1 ' M̂(x0, x0, f0) '
x0 which motivates

1x0 := 1(x0) := (x0, M̂(x0, x0, f0)).

If l > 0, we set for Al =

(
al, M̂(al−1, bl−1, f

l−1
[ al−2,...,a0

bl−2,...,b0

])
)
∈ X(l)

1Al := 1
(
al, M̂(al−1, bl−1, f

l−1
[ al−2,...,a0

bl−2,...,b0

])
)

:=
(
al, M̂(al, al, f

l
[ al−1,...,a0

bl−1,...,b0

])
)

:=
(
al+1, M̂(al, al, f

l
[ al−1,...,a0

bl−1,...,b0

])
)

where we again identified al+1 ' al. For 0 ≤ l ≤ n − 1, this yields functions

1 : X(l)→ X(l + 1)

which will be the identity functions in Theorem 3.8. We now introduce the
composite ◦p for l > p ≥ 0.

Case l ∈ N and p = 0: There are no α’s and β’s such that the ‘history
index’ starts with x0, y0, z0. We set(

cl, M̂(cl−1, dl−1, f
l−1

[ cl−2,...,c1,y0
dl−2,...,d1,z0

])
)
◦0

(
al, M̂(al−1, bl−1, f

l−1
[ al−2,...,a1,x0

bl−2,...,b1,y0

])
)

:=
(
(al, cl), M̂

(
(al−1, cl−1), (bl−1, dl−1), f

l−1
[

(al−2,cl−2),...,(a1,c1),x0
(bl−2,dl−2),...,(b1,d1),z0

])) .
Case l ∈ N and l − 2 ≥ p ≥ 1: We set(

cl, M̂(cl−1, dl−1, f
l−1

[ cl−2,...,cp+1,yp,αp−1,...,α0
dl−2,...,dp+1,zp,βp−1,...,β0

])
)

◦p

(
al, M̂(al−1, bl−1, f

l−1
[ al−2,...,ap+1,xp,αp−1,...,α0

bl−2,...,bp+1,yp,βp−1,...,β0

])
)

:=

(al, cl), M̂
(
(al−1, cl−1), (bl−1, dl−1), f

l−1
[

(al−2,cl−2),...,(ap+1,cp+1),xp,αp−1,...,α0
(bl−2,dl−2),...,(bp+1,dp+1),zp,βp−1,...,β0

]) .
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Case l ∈ N and p = l − 1: There are no a’s, b’s, c’s and d’s in the
‘history index’ which ends with xl−1, yl−1, zl−1. We set(

cl, M̂(yl−1, zl−1, f
l−1

[
αl−2,...,α0
βl−2,...,β0

])
)
◦l−1

(
al, M̂(xl−1, yl−1, f

l−1
[
αl−2,...,α0
βl−2,...,β0

])
)

:=
(
(al, cl), M̂(xl−1, zl−1, f

l−1
[
αl−2,...,α0
βl−2,...,β0

])
)
.

The whole construction depends on the choice of a family of Morse func-
tions F := { f0, f1

[ x0
y0

], . . . } and metrics G := {g0, g1
[ x0

y0

], . . . }. We intend to
address the question how the constructions with different Morse datas are
related in a future work.

Theorem 3.8 (Hohloch [Hoh5]). The above defined n-globular set X =

{X(l) | 0 ≤ l ≤ n} together with the above defined identity functions 1
and composites ◦p is an almost strict n-category X := X(F,G), called the
almost strict Morse n-category.

5. Functors to the almost strict n-categoriesV andW

In this section, we intend to gain a better understanding of the almost strict
Morse n-category. Assume the setting from the previous section, i.e. M is
a smooth compact manifold and X = X(F,G) depends on the Morse data

F =

(
f0,[ . . .], . . .

)
and G =

(
g0,[ . . .], . . .

)
.

We will now define two new almost strict n-categories V and W and n-
functors F : X → V and F : X → W. Both new categories are con-
siderably easier to access than the Morse n-category. Thus we hope to gain
knowledge of X by studying its image under F and G. This is motivated by
representation theory of groups where homomorphisms from a given group
into a usually well known one are studied.

5.1. The almost strict n-categories V andW. Now let us define the
elements of the n-globular set V = {V(`) | 0 ≤ ` ≤ n}. We begin with

V(0) := {Ri0 | i0 ∈ N0}

followed by

V(1) :=
{

(Ri1 ,Hom(Ri0 ,R j0))

∣∣∣∣∣∣ 0 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0

}
and

V(2) :=

(Ri2 ,Hom(Ri1 ,R j1),Hom(Ri0 ,R j0)
) ∣∣∣∣∣∣∣∣∣

0 ≤ i2 < i1 − j1,

0 ≤ j1 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0


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and we set in general for n ≥ ` ≥ 1

V(`) :=


(
Ri` ,Hom(Ri`−1 ,R j`−1), . . . ,Hom(Ri0 ,R j0)

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ i` < i`−1 − j`−1

0 ≤ j`−1 ≤ i`−1 < i`−2 − j`−2

...

0 ≤ j1 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0


.

Before we define the source and target functions, let us introduce the ele-
ments of the second n-globular set W = {W(`) | 0 ≤ ` ≤ n}. For k ∈ N0,
abbreviate Nk

0 := (N0)k and define

W(0) := N0

and

W(1) :=
{(

i1,

[ i0

j0

])
∈ N0 × N

2
0

∣∣∣∣∣∣ 0 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0

}
and

W(2) :=


(
i2,

[ i1, i0

j1, j0

])
∈ N0 × (N2

0)2

∣∣∣∣∣∣∣∣∣
0 ≤ i2 < i1 − j1,

0 ≤ j1 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0


and generally for n ≥ ` ≥ 1

W(`) :=


(
i`,

[ i`−1, . . . , i0

j`−1, . . . , j0

])
∈ N0 × (N2

0)`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ i` < i`−1 − j`−1

0 ≤ j`−1 ≤ i`−1 < i`−2 − j`−2

...

0 ≤ j1 ≤ i1 < i0 − j0,

0 ≤ j0 ≤ i0


.

The reason why we briefly interrupt the construction of V and W is the
following simplifying observation.

Remark 3.9 (Hohloch [Hoh6]). Although V and W are clearly different
sets, we can abbreviate elements in V(`) by means of elements in W(`) via
identifying(

Ri` ,Hom(Ri`−1 ,R j`−1), . . . ,Hom(Ri0 ,R j0)
)

=̂

(
i`,

[ i`−1, . . . , i0

j`−1, . . . , j0

])
which simplifies the notation considerably. Since the dimensions of the vec-
tor spaces in V satisfy the same constraints as the integers in W we can
even use this short notation in proofs, keeping in mind the different canoni-
cal isomorphims of V and W.
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Using this simplifying notion, the source and target functions

s : V(`)→ V(` − 1) and t : V(`)→ V(` − 1)

and
s : W(`)→ W(` − 1) and t : W(`)→ W(` − 1)

are given by

s
(
i`,

[ i`−1, . . . , i0

j`−1, . . . , j0

])
:=

(
i`−1,

[ i`−2, . . . , i0

j`−2, . . . , j0

])
,

t
(
i`,

[ i`−1, . . . , i0

j`−1, . . . , j0

])
:=

(
j`−1,

[ i`−2, . . . , i0

j`−2, . . . , j0

])
for ` > 1 and

s
(
i1,

[ i0

j0

])
:= i0, t

(
i1,

[ i0

j0

])
:= j0

for ` = 1.

Lemma 3.10 (Hohloch [Hoh6]). With the above defined s and t as source
and target functions, V and W are n-globular sets.

The remaining construction of the n-categoriesV andW will be done only
forW since it carries over toV immediately by Remark 3.9. We define the
identity functions 1 : W(l)→ W(l + 1) by setting on W(0)

1(i0) :=
(
0,

[ i0

i0

])
and on W(l) with l > 0

1
(
il,

[ il−1, . . . , i0

jl−1, . . . , j0

])
:=

(
0,

[ il, il−1 . . . , i0

il, jl−1, . . . , j0

])
.

Now we get to the composite. A tuple (Rl,Ql) ∈ W(l)×p W(l) is of the form

Ql =

(
il,

[ il−1, . . . , ip+1, up, ρp−1, . . . , ρ0

jl−1, . . . , jp+1, vp, σp−1, . . . , σ0

])
,

Rl =

(
µl,

[
µl−1, . . . , µp+1, vp, ρp−1, . . . , ρ0

νl−1, . . . , νp+1,wp, σp−1, . . . , σ0

])
and we define

Rl ◦p Ql

=

(
µl,

[
µl−1, . . . , µp+1, vp, ρp−1, . . . , ρ0

νl−1, . . . , νp+1,wp, σp−1, . . . , σ0

])
◦p

(
il,

[ il−1, . . . , ip+1, up, ρp−1, . . . , ρ0

jl−1, . . . , jp+1, vp, σp−1, . . . , σ0

])
:=

(
(il + µl),

[ (il−1 + µl−1), . . . , (ip+1 + µp+1), up, ρp−1, . . . , ρ0

( jl−1 + νl−1), . . . , ( jp+1 + νp+1),wp, σp−1, . . . , σ0

])
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Theorem 3.11 (Hohloch [Hoh6]). The n-globular sets V = {V(l) | 0 ≤ l ≤
n} and W = {W(l) | 0 ≤ l ≤ n} together with the above defined identity
functions 1 and the composites ◦p yield two almost strict n-categoryV and
W.

5.2. The functors F : X → V and G : X → W. We assume the
setting of the previous section when we now define the n-functors F : X →
V and G : X →W. Recall that Ind(x) is the Morse index of a critical point.
Let us begin with

G : X(0) = Crit( f0)→ W(0) = N0, x0 7→ Ind(x0)

and

G : X(1) = {(x1, M̂(x0, y0, f0)) | . . . } → W(1)

(x1, M̂(x0, y0, f0)) 7→

(
Ind(x1),

[ Ind(x0)
Ind(y0)

])
and generally for 1 ≤ ` ≤ n

G : X(`)→ W(`)(
a`, M̂

(
a`−1, b`−1, f

`−1
[ a`−2,...,a0

b`−2,...,b0

])) 7→ (
Ind(a`),

[
Ind(a`−1),...,Ind(a0)
Ind(b`−1),...,Ind(b0)

])
.

The other n-functor is given by

F : X(0) = Crit( f0)→ V(0) = {Ri0 | i0 ∈ N0}, x0 7→ R
Ind(x0)

and

F : X(1) = {(x1, M̂(x0, y0, f0)) | . . . } → V(1) = {(Ri1 ,Hom(Ri0 ,R j0)) | . . . }

(x1, M̂(x0, y0, f0)) 7→ (RInd(x1),Hom(RInd(x0),RInd(y0)))

and generally for 1 ≤ ` ≤ n using short notation

F : X(`)→ V(`)(
a`, M̂

(
a`−1, b`−1, f

`−1
[ a`−2,...,a0

b`−2,...,b0

])) 7→ (
Ind(a`),

[
Ind(a`−1),...,Ind(a0)
Ind(b`−1),...,Ind(b0)

])
.

Theorem 3.12. F is an almost strict n-functor from X to V and G is an
almost strict n-functor from X toW.

6. Examples

In Hohloch [Hoh5], we computed X for a choice of Morse data on the
standard sphere and the deformed sphere. In Hohloch [Hoh6], we did it for
the 2-torus (with Morse-Smale data) and we also calculated its image under
F and G. The calculation of X is in all cases lengthy, even for the pretty
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trivial case of the 2-sphere, such that we refer the interested reader to the
articles Hohloch [Hoh5, Hoh6].

But we give an impression how G simplifies things by recalling the image
of G for the 2-torus T2 = R2/Z2 with the flat metric and the Morse function
f0(x, y) = cos(2πx)+cos(2πy) whose critical points are {( k

2 ,
l
2 ) | k, l ∈ Z}. We

work on the fundamental domain [0, 1]×[0, 1] which has four critical points
w := w0 = (0, 0) = (1, 0) = (0, 1) = (1, 1) and x := x0 = ( 1

2 , 0) = ( 1
2 , 1) and

y := y0 = (0, 1
2 ) = (1, 1

2 ) and z := z0 = (1
2 ,

1
2 ) as in Figure 3.3. We suppress

the level indices in w0, x0, y0, z0 since it would complicate the notation.

z y

w

w wx

x

y

w

Figure 3.3. Morse trajectories on T2.

For X(0) = {w, x, y, z}, we obtain

G(w) = 2, G(x) = 1, G(y) = 1, G(z) = 0.

which are the indices of the critical points. Next we get

G(X(1)) =

{(
0
[
2
1

])
,

(
0
[
2
1

])
,

(
0
[
1
0

])
,

(
0
[
1
0

])
,

(
0
[
2
0

])
,

(
1
[
2
0

])}
and

G(X(2)) =

{
=

(
0
[
0 2
0 1

])
,=

(
0
[
0 1
0 0

])
,=

(
0
[
1 2
0 0

])}
.

Thus, G displays the history of the indices of the critical points resp. the
dimension of the involved moduli spaces.

7. Future projects

For the construction of the almost strict n-category in Theorem 3.8, we used
Morse functions whose negative gradient flow always flows from higher to
lower dimensional strata, but never back.



7. FUTURE PROJECTS 41

If we do allow flowing back into higher dimensional strata, we obtain break-
ing phenomena different from usual Morse theory: For example (cf. Figure
3.2), given critical points x and z in the interior of the manifold with Morse
index Ind(x) = Ind(z)+2, the connecting Morse trajectories may break twice
with intermediate critical points y1, y2 on the boundary whereas under the
previous assumptions there would only be one intermediate critical point
possible. Moreover, we cannot glue the trajectories from x to y1 with the
trajctories from y1 to y2 if we do not simultanously also glue with the tra-
jectories from y2 to z since there is no trajectory from x to y2, cf. Figure 3.2.
This phenomenon prevents us from obtaining an n-category — instead we
get a so-called opetope (cf. for instance Kock & Joyal & Batanin & Mascari
[KoJBM]) which allows the ‘simultanous’ composition of several ‘arrows’.

‘Theorem’ 3.13 (Hohloch & Ludwig [HohL]). Under the above assump-
tions on the Morse function, the space of higher dimensional Morse moduli
spaces carries the structure of opetopes.





CHAPTER 4

Optimal transport and integer partitions

In this chapter, we outline a link between optimal transport and integer par-
titions. Both are classical topics which have already been of interest since
the 18th century. Up to our knowledge, these topics have not been linked
before.

1. Optimal transport

The motivation for optimal transport is very old: in 1781, Monge [Mo]
raised the following question sketched in Figure 4.1: Consider two heaps
of sand µ− and µ+ with same volume vol(µ−) = vol(µ+). Is there a map
ϕ : µ− → µ+ mapping (‘transporting’) µ− to µ+ which minimizes the sum of
the transport distances of the sand grains? And what happens if we consider
the sand as ‘continuous’ matter instead of grains? What if we study not just
a distance, but a more general ‘cost function’?

ϕ

µ+
µ−

Figure 4.1. Transporting µ− into µ+.

In modern language, Monge proposes to study the following optimization
problem. Consider a finite dimensional manifold M and its Borel σ-algebra
S(M) and denote by M(M) the space of finite, positive Borel measures on
M. For a measurable map ψ : M → M and µ ∈ M(M), the image or push
forward measure ψ(µ) is given by ψ(µ(B)) := µ(ψ−1(B)) for all measurable
B ⊂ M.

Problem 4.1 (Monge).
Given: µ−, µ+ ∈ M(M) with µ−(M) = µ+(M) and a measur-

able ‘cost function’ c : M × M → R≥0.

43
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Wanted: A measurable ‘optimal map’ ϕ : M → M which
realizes the minimum of

C(µ−, µ+) := inf


∫
M

c(x, ϕ(x))dµ−(x)

∣∣∣∣∣∣∣∣ϕ Borel, ϕ(µ−) = µ+

 .
For point measures µ− =

∑l
i=1 δxi and µ+ =

∑l
i=1 δyi , the integral turns into

the sum
∑l

i=1 c(xi, ϕ(xi)) which looks nice and easy to solve, but we have to
be cautious: There may not exist an optimal map if µ− is a point measure.

Example 4.2. Let be x, y1 and y2 be distinct points on M. Then for µ− = δx

and µ+ = 1
2δy1 + 1

2δy2 there is no map ϕ with ϕ(µ−) = µ+ since ϕ would have
to satisfy ϕ(x) = y1 and ϕ(x) = y2.

Monge’s problem is hard to attack since it is for instance neither linear nor
convex. In 1979, Sudakov [Su] published a proof on Rm with the euclidean
distance as a cost function, but unfortunately his work contained a gap (cf.
Ambrosio [Am1, p. 137], [Am2, chapt. 6]) which can only be fixed under
stronger assumptions.

In the middle of the 20th century, another approach to Monge’s problem was
found by Kantorovich [Ka1, Ka2] which is much more accessible. Consider
the projections p− : M × M → M, p−(x, y) = x and p+ : M × M → M,
p+(x, y) = y and let µ−, µ+ ∈ M(M) with µ−(M) = µ+(M). Now introduce
the space

M(µ−, µ+) := {µ ∈ M(M × M) | p−(µ) = µ− and p+(µ) = µ+}

on which we study the following problem.

Problem 4.3 (Kantorovich).

Given: µ−, µ+ ∈ M(M) and a ‘cost function’
c : M × M → R≥0.

Wanted: An ‘optimal measure’ µ ∈ M(µ−, µ+) which realizes
the minimum of

K(µ−, µ+) := inf


∫

M×M

c(x, y)dµ(x, y)

∣∣∣∣∣∣∣∣ µ ∈ M(µ−, µ+)

 .
Kantorovich’s problem is much easier to handle since it is linear in µ and
the space M(µ−, µ+) is convex. Thus, under reasonable assumptions on µ−,
µ+ and c, there exists always an optimal measure on M which follows from
a standard compactness argument using the calculus of variations.
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Convex problems can be dualized, i.e. Kantorovich’s problem can be refor-
mulated as

min
µ∈M(m−,µ+)

∫
M×M

c(x, y)dµ(x, y) = sup


∫
M

h−(x)dµ−(x) +

∫
M

h+(y)dµ+(y)


where the supremum is taken over all (h−, h+) ∈ L1(µ−)×L1(µ+) with h−(x)+
h+(y) ≤ c(x, y).

Are Monge’s and Kantorovich’s problems related? The answer is clearly
yes. How are they linked? In case there is a measurable map ϕ : M → M
with ϕ(µ−) = µ+, then set

Id×ϕ : M → M × M, x 7→ (x, ϕ(x)).

and note that (Id×ϕ)(µ−) ∈ M(µ−, µ+) and that its support lies in the graph
of ϕ. Now a calculation yields

inf
ϕ with ϕ(µ−)=µ+

∫
M

c(x, ϕ(x))dµ−(x) = inf
ϕ with ϕ(µ−)=µ+

∫
M×M

c(x, y)d(Id×ϕ)(µ−)(x, y)

≥ min
µ∈M(µ−,µ+)

∫
M×M

c(x, y)dµ(x, y),

i.e. Kantorovich’s problem is a lower bound for Monge’s problem.

Gangbo & McCann [GaM] studied and solved Kantorivich’s and Monge’s
problem for convex and concave cost functions. Under some natural as-
sumptions, they find a (unique) optimal µ ∈ M(µ−, µ+) for Kantorovich’s
problem which is in fact of the form (Id×ϕ)(µ−) such that they also ob-
tain an optimal map for Monge’s problem. This optimal map is even given
by an explicit formula. In case of strictly concave cost functions, the cost
function induces a metric such that a minimal measure does not ‘move’ the
intersection set of the support of µ− and µ+.

By now there exist several overviews on mass transportation problems like
the books by Villani [Vi] or Rachev & Rüschendorf [RR] where more de-
tails and additional references can be found.

2. Integer partitions

An 1-dimensional (integer) partition π of n ∈ N is an (ordered) tuple
π = (n1, . . . , nk(π)) with n ≥ n1 ≥ · · · ≥ nk(π) ≥ 1 and

∑k(π)
i=1 ni = n. We call

P(n) := P1(n) the set of 1-dimensional partitions of n and p(n) := p1(n)
its cardinality. 1-dimensional partitions are usually just called partitions.
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For example, the number 3 can be written as

3 = 2 + 1 = 1 + 1 + 1

and thus has 3 partitions, namely

P(3) = {(3), (2, 1), (1, 1, 1)}.

There are also several ways to draw partitions. Usually Young tableaux and
Ferrer graphs are used as sketched in Figure 4.2 where a given partition π =

(n1, . . . , nk(π)) is displayed by k(π) columns of height ni resp. by dots over
the positive real axis. This suggests the name ‘one dimensional’ partitions.

(a) (b)

Figure 4.2. (a) Young tableau and (b) Ferrer graph of
(2, 1, 1, 1) ∈P(5).

Consequently, two dimensional partitions of an integer n are characterized
by Ferrer graphs or Young tableaux over the two dimensional plane R2.
More precisely, let n ∈ N. A two dimensional or plane partition of n is
an array consisting of ni j ∈ N where 1 ≤ i ≤ k and 1 ≤ j ≤ l for some
integers 1 ≤ k, l ≤ n such that n1 j ≥ · · · ≥ nk j for all j and ni1 ≥ · · · ≥ nil

for all i and
∑k

i=1
∑l

j=1 ni j = n. P2(n) denotes the set of two dimensional
partitions and p2(n) := |P2(n)| denotes its cardinality.
Figure 4.3 (a) shows the Young tableau of

[ 1
2 1

]
∈P2(4) and Figure 4.3 (b)

shows the Young tableau of
[ 1

1
]
∈P2(2).

This formulation is easily generalized to m dimensions: the set of m-
dimensional partitions is called Pm(n) with n ∈ N and defined as follows.

We abbreviate multi-indices like
( 1≤i1≤k1

...
1≤im≤km

)
by 1 ≤ i1, . . . , im ≤ k1, . . . , km. Let

n ∈ N. An m-dimensional partition of n is an array consisting of ni1...im ∈ N
where 1 ≤ i1, . . . , im ≤ k1, . . . , km for some integers 1 ≤ k1, . . . , km ≤ n
such that for each index i j = 1, . . . , k j with 1 ≤ j ≤ m the integers
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(a) (b)

Figure 4.3. (a) and (b) display Young tableaux of 2-
dimensional partitions.

ni1...im are a monotone decreasing sequence with n ≥ maxi j∈{1,...,k j} ni1,...,im and
mini j∈{1,...,k j} ni1,...,im ≥ 1 and

∑k1
i1=1 · · ·

∑km
im=1 ni1...im = n. Pm(n) denotes the set

of m-dimensional partitions and pm(n) := |Pm(n)| denotes its cardinality.

One classical method for the study of integer partitions are generating func-
tions. Euler used them to great success. For example, he proved that the
elements of the sequence (p(n))n∈N are the coefficients of the expansion∏

i≥1

1
1 − xi =

∑
n≥0

p(n)xn

which is called the generating function of p(n). Moreover, let P(n | A) ⊆
P(n) be the subset of partitions with property A and p(n | A) its cardinality.
Euler also showed that

(4.4) p(n | all ni odd) = p(n | all ni mutually distinct).

For two-dimensional partitions (also called ‘plane partitions’), the associ-
ated generating function is∏

k≥1

1
(1 − xk)k =

∑
n≥0

p2(n)xn

which was found by MacMahon.

For m-dimensional partitions with m ≥ 3, no generating function is known
which complicates their study considerably. Research on 1-dimensional
partitions has been very popular during the last two centuries such that the
literature is vast. Good overviews are the books Andrews [An] and An-
drews & Eriksson [AnE]. 2-dimensional partitions have been less studied.
Notably there is not much on higher dimensional partitions to be found. In
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the following section, we outline a new approach to integer partitions which
may make higher dimensional partitions more accessible.

3. Optimal transport and integer partitions

The link between optimal transport and integer partitions is motivated by
interpreting m-dimensional partitions as measures in Rm+1: Let us demon-
strate this for 1-dimensional partitions. The idea is astonishingly simple:
just consider (a translation of) the Ferrer graph of a partition as a sum of
point measures associated to the given partition. More precisely, we iden-
tify π = (n1, . . . , nk(π)) ∈P(n) with the measure

δπ :=
k∑

i=1

ni∑
α=1

δ(i,α)

where δ(i,α) denotes the point measure at (i, α) ∈ R2 with mass one. If con-
tinuous measures are preferred we can as well work with the Lebesgue mea-
sure restricted to the boxes of the according Young tableau.

Now comes another important observation: Given two partitions π−, π+ ∈

P(n), we certainly have

(4.5) δπ−(R2) = n = δπ+(R2)

since their supports consist of exactly n distinct points. This means that
µ− := δπ− and µ+ := δπ+ fulfill the setting of Monge’s problem. Thus
we may look for a map ϕ ‘transforming’ π− into π+ in an optimal way
w.r.t. a given cost function c, i.e. we look for ϕ with ϕ(δπ−) = δπ+ and∫

spt(δπ− )
c((x, y), ϕ(x, y))dδπ−(x, y) minimal. Since the support of the involved

measures is finite there is always a map realizing the minimum.

This works analogously for higher dimensional partitions. Just identify the
higher dimensional Ferrer graph or young tableau with a measure. Equation
(4.5) holds as well such that Monge’s setting applies. For more details see
Hohloch [Hoh8].

Up to our knowledge, we are the first to consider partitions from this point
of view.

4. The main results

There are some types of partitions which invite the application of optimal
transport in particular. For instance, denote by T : R2 → R2, (x, y) 7→ (y, x)
the reflection on the diagonal x = y. Given π ∈ P1(n) with Ferrer graph
Γ(π), the symmetric partition sym(π) ∈ P1(n) of π is the partition with
Ferrer graph Γ(sym(π)) = T (Γ(π)) as sketched in Figure 4.4. Partitions with
sym(π) = π are called self-symmetric.
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x x

(a) (b)

y y

Figure 4.4. (a) π ∈P(9) and (b) its symmetric partition sym(π).

We call a cost function c metric-like if c has the properties of a metric.

Theorem 4.6 (Hohloch [Hoh8]). 1) Let π ∈ P1(n) and let c be the eu-
clidean distance. Then f given by f = Id on spt(δπ) ∩ spt(δsym(π)) and
f = T elsewhere attains the minimum for C(δπ, δsym(π)).

2) π ∈ P1(n) is self-symmetric if and only if C(δπ, δsym(π)) = 0 for metric-
like cost functions.

We can also characterize nicely Euler’s identity described in (4.4). For this
we associate a new measure δ̂π to a partition π by centering the dot columns
of its Ferrer graph on the x-axis as sketched in Figure 4.5.

(a) (b)

Figure 4.5. (a) The support of δ̂π for π = (5, 5, 3, 1). (b) The
support of δ̂π for π = (5, 4, 3, 1).
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Proposition 4.7 (Hohloch [Hoh8]). Let S : R2 → R2, (x, y) 7→ (x,−y) be
the reflection on the x-axis and let c be a metric-like cost function. Then

π ∈P1(n | all ni odd) ⇐⇒ S (δ̂π) = δ̂π ⇐⇒ C(δ̂π, S (δ̂π)) = 0.

In order to approach the other half of Euler’s identity, we introduce another
measure. Let Perm(k) be the permutation group of the set {1, . . . , k}. For
π = (n1, . . . , nk) ∈P1(n) and σ ∈ Perm(k), we set

δσπ :=
k∑

i=1

ni∑
α=1

δ(σ(i),α).

For σ = Id, we have δId
π = δπ.

Proposition 4.8 (Hohloch [Hoh8]). Let c be a metric-like cost function.
Then
(1) π ∈P1(n | not all ni distinct).
⇔ There is σ ∈ Perm(k(π)) \ {Id} with δπ = δσπ .
⇔ There is σ ∈ Perm(k(π))) \ {Id} with C(δπ, δσπ ) = 0.

(2) π ∈P1(n | all ni distinct).
For all σ ∈ Perm(k(π)) \ {Id} holds δπ , δσπ .
For all σ ∈ Perm(k(π)) \ {Id} holds C(δπ, δσπ ) , 0.

Andrews & Eriksson [AnE] prove Euler’s identity by means of an explicit
algorithm which turns a partition with distinct ni into a partition with only
odd ni. One can find a cost function for which this algorithm is optimal.
More precisely, one can reformulate the algorithm as a bijection ϕ between
P1(n | all ni distinct) =: D and the slightly generalized space P perm

1 (n |
all ni odd) =: O for whose exact definition we refer to Hohloch [Hoh8].

Theorem 4.9 (Hohloch [Hoh8]). Denote by F (D,O) the space of maps
from D to O. Then there is a cost function C : D × O → R+ such that
C (π, ϕ(π)) = min{C(π, ψ(π)) | ψ ∈ F (D,O)}.

5. Future projects

We believe that the importance of the approach to partitions via optimal
transportation lies in its independence of the dimension in contrast to the
generating function method which only works for two and three dimen-
sional partitions.

Recall that a partition π ∈ P`(n) is a measure δπ on R`+1 given by δπ =∑k1
i1=1 · · ·

∑k+`
i`

∑ni1 ...i`
α=1 δ(i1,...,i`,α) where the ni1...i` are monotone decreasing in

each coordinate as explained in detail in Hohloch [Hoh8]. We can study
optimal transport for two partitions π−, π+ ∈P`(n) by setting

µ− := δπ− and µ+ := δπ+
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and look for a map ϕ with ϕ(δπ−) = δπ+ sending π− to π+ in an optimal way,
i.e. minimizing

∫
spt(δπ− )

c(z, ϕ(z))dδπ−(z).

An immediate application should be the study of ‘generalized’ symmetric
partitions: Let σ ∈ Perm(k + 1) and Tσ : Rk+1 → Rk+1 be linear with matrix
Tσ = (eσ(1), . . . , eσ(k+1)) w.r.t. the standard basis e1, . . . , ek+1 of Rk+1. The
σ-symmetric partition of π ∈ Pk(n) is the partition symσ(π) with Ferrer
graph Γ(symσ(π)) = Tσ(Γ(π)). We call π ∈ Pk(n) with π = symσ(π) σ-
selfsymmetric.

Conjecture 4.10. The map Tσ induces an optimal transport map for π
and symσ(π) with the euclidean distance as a cost function. Moreover,
π ∈ Pk(n) is σ-selfsymmetric if and only if C(δπ, δsymσ(π)) = 0 where c
is a metric-like cost function.

But there should be many more results to discover about non σ-symmetric
partitions.
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