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ABSTRACT. We point out an interesting relation between transport in Hamil-
tonian dynamics and Floer homology. We generalize homoclinic Floer homol-
ogy from R? and closed surfaces to two-dimensional cylinders. The relative
symplectic action of two homoclinic points is identified with the flux through
a turnstile (as defined in MacKay & Meiss & Percival [
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{p € M | lim, 400 f"(p) = x} and unstable manifold W*(f,z) := {p € M |
lim, o f™(p) = z} are injectively immersed submanifolds. The set of intersec-
tion points H(f,z) := W*(f,x) N W¥(f,z) is called the set of homoclinic points.
Note that if f is a symplectomorphism then the stable and unstable manifolds are
Lagrangian submanifolds.

Homoclinic points and Floer theory. Homoclinic points were discovered by Poincaré

[
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Homoclinic Floer theory. Omitting assumptions and details, the basic idea of ho-
moclinic Floer homology is outlined in the following paragraph. The details and
exact definitions are given in Section
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In general, by varying the generator set and the definition of the boundary opera-
tor, one can define several versions of homoclinic Floer homology — for an overview
see Hohloch |

FIGURE 1. Flux and turnstile: (a) of a closed curve ¢ in the plane,
(b) of a homoclinic point p
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MacKay & Meiss & Percival |

Proposition 1.1. Let ¢ € Symp(R?) or ¢ € Ham®(Z) be xz-simple. Let q €
We(p,z) N W"(p,x) be primary and {p} = lq,0(q)[s N Jg,0(q)[u and w.lo.g.
w((p)) = p({q)) + 1. Then (p) and {(q) give rise to two distinct (families of) turn-
stiles, more precisely p is the pivot of a turnstile with frame q and ©(q) and q is the
pivot of a turnstile with frame ¢~ (p) and p. The first turnstile enters the boundary
operator via

opy =) — )+ > m.@@= > mp) (@)
(@) #(@) €Hpr (0)#(q) € pr
r({@)=n(p))—1 r(@)=n((p))—1
If M(p,§) = 0 for all {q) # () € Hpr the turnstile with pivot p lies in the kernel of
the boundary operator, i.e. the pivot is a cycle.

As mentioned above, classical Floer theory can be seen as some kind of Morse
theory with the symplectic action functional o/ as Morse function. Whereas the
definition of the symplectic action functional A associated to homoclinic points on
the cylinder involves some notation, it is easy to define it for homoclinic points in
(R%,w). Given a homoclinic point p of some f € Symp(R?) we define its symplectic
action A(p) as the (signed) symplectic area enclosed by the loop [p, z],, U [p, x]s. For
two homoclinic points p and ¢, we define the relative action A(p,q) = A(p) — A(q).
The action is compatible with the Z-action on the set of homoclinic points, thus we

can set A({p)) = A(p).
MacKay & Meiss & Percival |
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of variations with a certain action functional W. He denoted the difference in
action between an action maximizing orbit and its associated minimax orbit by
AW. MacKay & Meiss & Percival |

Theorem 1.2. Let f € Ham(Z) be x-simple and, in addition, a monotone twist
map. Consider a true turnstile with frame p, f(p) € Hpr and pivot ¢ € Hy, and
assume w.l.o.g. p((p)) = u({(q)) + 1. Then v € M(p,q) # 0 and

Ap)) — A(g)) = A((p), (9)) = /w = Fluzs((p)) = AWp,q.

For x-simple f € Symp(R?) we have under analogous assumptions

A((p)) — A(g)) = A((p), (@) = /w=flw&f(<p>)-

v

An important feature in symplectic geometry and classical Floer theory is the
action spectrum which consists of the action values of the critical points of the
action functional i.e. the action values of the generators of the Floer complex. The
boundary operator in classical Floer theory counts the cardinality of moduli spaces
of so-called ‘pseudo-holomorphic curves’ between critical points. These ‘pseudo-
holomorphic curves’ can be seen as (negative) gradient flow lines of the symplectic
action functional. Thus the action value decreases along the boundary operator,
i.e. if p is a critical point and d the boundary operator, then the action of a critical
point showing up in the expression dp is smaller than the action of p. Thus one can
consider a filtered Floer complex, which is generated by critical points with action
less than a certain value, without interfering with the definition of the boundary
operator. This idea eventually leads to filtered Floer homology where the action
of the generators lies in an interval. For applications of the action spectrum and
filtered Floer homology see e.g. Schwarz [
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the same holds for the grading u(p) = w(f(p)) =: u({p)). The invariance of the
action and grading allows us to work on the quotient #,,/Z, i.e. we ‘divided’
the system ‘by the chaos’ and discovered its ‘order’. But if we actually want to
investigate dynamical properties this turns out to be a big hindrance.

At this point, one should remark that, in classical Floer theory, the action and
grading (more precisely the so-called Maslov indezx) are not invariant under itera-
tion. Roughly, if v is a 1-periodic Hamiltonian solution and if v* denotes its kth
iteration then the classical action functional 27 and the so-called mean Maslov index
m transform (cf. Ginzburg & Giirel |

Theorem 1.3. Let f € Symp(R?) resp. f € Ham®(Z). Let b € Spec(f,z) and
0<e< %gap(f, x). Assume that there are k primary classes with action b. Then
we obtain for the homoclinic Floer homology on R? resp. Z

gt g o)y~ 78 and HPTEMT (4 2) ~ (ZF)",
ALy TR and AN (p 1) ~ (2R
Thus the rank grows linearly with the number of iterations.

Note that for the non-filtered homoclinic Floer groups a priori only
tk H.(f,z) <tk H.(f",z) and rkJ&(f,z) <tk (", x)
holds (cf. Hohloch [
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about the growth behaviour of the flux and the rank of the Floer groups are proven.
Section

(a) the symplectic form on the fibers is mapped to the standard form

wo on R?" ~ C™,

(b) ® is constant on {0} x [0,1] and on {1} x [0, 1],

(c) B(T,W*) = i®(T,W*) and &(T,W*) = i®(T,IW™).
Denote by 9]0, 1]? the boundary of [0,1]? and define the loop A, : 9[0,1]?> — L(n)
starting in (0, 0) and running through (1,0), (1,1) and (0, 1) back to (0, 0) piecewise
via

(67 0) = (P(TU(E,O)Wu)v (57 1) — (I)(Tv(ﬁ,l)Ws)y

i im(n—=1)

(1,n) = e 2 ®(T,WY), (0,7) = e 2 ®(T,W?).
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Under the above conventions, we define the relative Maslov index for p, ¢ € H via
w(p, q) = p(Ay). If mo(M) = 0, then ci|r,(ar) = 0 (Where ¢; denotes the first Chern
class of M) and the construction is independent from the chosen path v and the
trivialization ®.

We plan to work mainly on R? and on closed oriented surfaces with genus g > 1,
where the second homotopy class always vanishes. Thus the well-definedness of the
Maslov index will not be an issue. Moreover, in the two-dimensional situation, the
Maslov index can be seen as twice the winding number of the unit tangent vector
along the boundary of the range of v.

From now on, (M,w) is either the symplectic plane (R? w) or a closed, two-

dimensional manifold with genus ¢ > 1. Let ¢ € {s,u} and fix a parametrizing
immersion 7; : R — W?*. This immersion induces an ordering <; resp. <; on W*
via

Yi(t) <ivi(t) & t<t resp. (t) <iv(t) & t<{

By abuse of notation, we say that p, ¢ € W* induce an ordering on W via setting
p <i qresp. p <; q. Fori € {0,1} consider p, ¢ € W' and set t! = ~; '(p),
t?:=~7Y(q), t; = min{t? t?} and ¢] := max{t? t?}. We call

1771 1771

va q]u = 'Yu([t;7t1—r]) resp. [pv q]s = ’Vs([t;7t;~_])

the segmentsin W* resp. W* between p and gq. The segments are independent of the
chosen immersion and a priori just sets of points, thus [p, ¢]; = [g, p];. Analogously,
we define the open and half-open segments |p, ¢[; and [p, ¢[;.

Now we assign to each p € H a homotopy class in 7wo(P(W*™*, W*#)) ~ 71 (M, z):
Denote by ¢, : [0,1] = W*UW? a curve with ¢,(0) = = ¢, (1) which runs through
[z, pl. to p and through [p, x| back to x. Set [p] := [¢,] € m1 (M, x) and [—p] for the
path with the inverse parametrization. Then H,) := {p € H | [p] = [z]} is the set
of contractible homoclinic points. H[,] is invariant under the Z-action Z x H — H,

(n,p) = ¢"(p)-
Remark 2.1. For contractible p, p, ¢ € H, we observe:

L p(g,p) = —p(p, q) and p(p, q) + p(q, ) = p(p, p)-

2. u(p,q) = (@™ (p), 9" (q)) for n € Z, i.e. the (relative) Maslov index of p and
q is invariant under the Z-action of ¢ on H.

3. u(p,¢"(p)) =0 for all n € Z.

4. pu(p,q) = p(p, ¢™(q)) for n € Z.

The (relative) Maslov index yields a grading pu : Hz) — Z via pu(p) := pu(p, ) such
that for contractible p and ¢ holds u(p, q) = u(p,x) + u(x,q) = p(p,x) — p(g,z) =
1(p) — n(q)-

Immersions, di-gons and hearts. A di-gon is the polygon D C R? with two convex
vertices at (—1,0) and (1,0) sketched in Figure
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FIGURE 2. Di-gon and heart

We require the immersions below to be immersions also on the boundaries and
vertices. Thus the image of a small neighbourhood of a convex resp. concave vertex
of a polygon is a wedge-shaped region with angle smaller resp. larger than 7.

Let D be the di-gon and p, ¢ € H with u(p,q) = 1. We define M(p, q) to be
the space of smooth, immersed di-gons v : D — M which are orientation preserving
and satisty v(B,) C W% v(Bs) C W*, v(—1,0) = p and v(1,0) = ¢q. Denote by
G(D) the group of orientation preserving diffeomorphisms of D which preserve the
vertices and call M (p,q) := M(p,q)/G(D) the space of unparametrized immersed
di-gons.

Since there is exactly one segment [p, ql;, i € {s,u}, joining p, ¢ € H and since
ma(M) = 0 we deduce #M(p,q) € {0,1} for p and g with u(p,q) = 1.

Now consider the hearts Dy, and D. and p, r € H with p(p,r) = 2. We define
Ny(p,7) resp. N.(p,r) to be the space of smooth immersed hearts w : D, — M
resp. w : D, — M which are orientation preserving and satisfy w(B,) C W,
w(Bs) € W5, w(—1,0) = p and w(1,0) = r. We set N(p,r) := Ny(p,r) U Ne(p, 7).
Denote by G(Dy) resp. G(D..) the group of orientation preserving diffeomorphisms
of Dy resp. D, which preserve the vertices and let N (p, ) := Ny (p,r)/G(Ds) resp.
No(p,r) == Nu(p,7)/G(D.) and N(p,r) := Ny(p,7) U Nu(p,r) be the spaces of

unparametrized immersed hearts.

If we work with the spaces M(p, ¢) and N (p,r) we always implicitly assume p,
g, v € H with [p] = [q], [p] =[], u(p,q) =1 and p(p,r) = 2.

Primary points, gluing and cutting. Especially in pictures, we will abbreviate p™ :=
©"(p) for p € H and n € Z. Keep in mind that in this notation p = p°. We call the
two connected components of W#\{x} resp. W*\{x} the branches of the (un)stable
manifolds. Let A and A~! be the pair of eigenvalues of Dp(x). If A > 0 then ¢
is orientation preserving on the stable and unstable manifolds. If A < 0 then it is
orientation reversing on both. In the first case, we call ¢ W -orientation preserving
and in the latter case W -orientation reversing.

p € H\{z} is called semi-primary if |z, p[, N ]z, pls = 0. p € Hiy\{2} is primary
if |z, ply N ]z, pls N Hz) = 0. Nonprimary points are called secondary.
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On manifolds with vanishing first homotopy class, the notions of semi-primary
and primary coincide. Clearly, iterates of a (semi-)primary point are again (semi-)
primary. If W% N W?* # () then semi-primary points always exist.

We require [p] = [z] in the definition of primary points, since this condition was
already necessary for the invariance of the Maslov index and the homotopy classes
under the Z-action of . The condition ‘...N H[;)" is necessary for invariance
properties of the Floer homology.

We summarize the most important properties of primary points in the following
statement.

Lemma 2.2 (| (i) Let ¢ be W -orientation preserving, p € H (semi)primary
and denote the branches containing p by W' and W;. Then for every (semi)
primary q € (W3 N W\{p" | n € Z} there is a unique n € Z such that
q" € Ip,¢(p)[w N Ip, ¢(p)[s-

(ii) For a primary point p holds u(p) := p(p,x) € {£1, £2, £3}.

(iii) Let all primary points p € W™ N W?* be transverse. Then there are modulo

Z-action only finitely many primary points.

Now we consider the so-called ‘gluing and cutting’” procedure on which the well-
definedness of Floer homology is based, more precisely the proof of o0 = 0. For the
following, compare Figure

Theorem 2.3 (‘Gluing’, | Let p, q, 1 € H with [p] = [q] = [r] and u(p,q) =
1= plq,r). Let v e M(p,q) and 0 € M(q,r). Then the gluing procedure # for v
and ¥ yields an immersed heart w := 0#v € N (p, 7).

The four possible geometric positions of the three involved points are described
in Figure

p

FIGURE 3. Immersions with p(p) = u(q) + 1 = pu(r) +2

Theorem 2.4 (‘Cutting for primary points’, | Let all primary points be trans-
verse and p, 1 € Hpyy with p(p,r) = 2 and w € N(p,r). Then there are unique
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points q, and qs such that either both q; are primary admitting v; € M(p,q;) and
0; € M(qi,r) with 0;#v; = w for i € {s,u} or none of them is primary.
Being ‘primary’ is a strong geometric condition — we can split u(p,r) = u(p) —

w(r) and sketch and draw all possible situations which match u(p, ) = p(p)—pu(r) =
2 where p(p), p(r) € {£1,£2, £3} according to Remark

Lemma 2.5 (] Let p and r be primary with uw(p,r) =2 and w € ./C/'(p, r). For

i € {s,u} assume the existence of q; with u(p,q;) =1 = u(q;,r) and v; € ./\//Y(p, qi)
and 0; € M(q;,r) such that 0;#v; = w. Then
m(p» Qu) ) m(qu7 T) = _m(pv QS) : m(QSa T)~

This follows from Figure
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Case |x,pl, Nz, r[y # 0 = x,pls N ]z, 7]

(i) Jopla C o, vl

(u(p.2)oplxr)) = (3,-1) =D = (-1,3)
Neither ¢, nor ¢s; primary!

= (17 1)
Neither ¢, nor ¢s primary!

Case |z, pl, Nz, r[y =0 # |z, pls N ]z, 7]

=(L1)
Neither ¢, nor ¢, primary!

=(1,1) = (~1,3)
Neither ¢, nor ¢s; primary!

FIGURE 4. Cutting for primary points
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ZnEZ m(p,q™) and define
Cm = Chnl(p,x;Z) := @ Z(p),

(p)EHpr

w({p))=m

Om 1 Cp = Crper, O(p) = Yo mp) (@)

(q)EHpr
n({g))=p((p))—1
on a generator (p) and extend @ by linearity. We have rkz(Cy,) = #{(p) € 7—~lpr |
p({p)) = m} < co. And due to Remark

Theorem 2.6 (| 000 =0, i.e. (Cx,04) is a chain complex and

ker 0,
Hp, = Hp(p, 7, Z) := ﬁ

is called primary Floer homology of ¢ in z.

Since already the C}, have finite rank over Z so has H,,, and all homology groups
H,, with m # +1,4+2, +3 vanish.

The proof of the well-definedness of 0 and the proof of 900 = 0 are based on the
cutting and gluing construction (and on the skewsymmetry of the signs) which rely
on the classification of M(p,q) and N (p,r). Both classifications use the fact that
the loops [p, z]s U [p, z]u, [¢,x]s U g, z]s and [r, z], U[r, x]s are contractible. Certain
parts of the proofs are of combinatorial nature whereas other parts make use of the
iteration behaviour of the (un)stable manifolds and use classical dynamical results
like Palis’ A\-Lemma |

Theorem 2.7 (Invariance [ Let (M,w) be a closed symplectic two-dimensional
manifold with genus g > 1. Let ¢, ¥ € Diff,,(M) with hyperbolic fized points
x € Fix(p) and y € Fix(¢p). Let (o, x) and (,y) be csi and let all primary points
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of v and 1 be transverse. Assume there is a csi isotopy ® from (¢, x) to (V,y).
Then

H.(p,x) ~ Hu(¢),y).

The proof of Theorem

(i) We can set up primary Floer homology on the cylinder in the very same way as
primary Floer homology was defined in Section

(ii) If we want to include non-contractible homoclinic points on the cylinder we
might identify the cylinder with an annulus in R? and ‘forget’ about the hole
of the annulus. In this way, we avoid the nontrivial first homotopy group of
the cylinder and we can use large parts of the homology construction from
Section

Remark 3.1. Let f € Symp,(Z) with hyperbolic fixed point . Without further
assumptions, f can be W-orientation preserving or reversing. But if we require that
(at least) one pair of intersecting branches gives rise to non-contractible semiprimary
points as in Figure

Proof. Let p for instance be as in Figure
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Lemma 3.2. Let f € Sympy(Z2) and = € Fix(f). Then x is contractible and
[p] = [f™(p)] for allp € H and n € Z.

Proof. Polterovich (]
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The ball B := Bg_(0) C R? is untouched by F and can therefore be considered
invariant under iteration. Excluding invariant sets from the range of immersions is
‘compatible’ with the cutting and gluing procedure, more precisely, we need a result
similar to Lemma

Lemma 3.3. Let p and v be primary with u(p,t) = 2 and w € /V(pm). For
i € {s,u} assume the existence of q; with u(p,q;) =1 = p(q;,r) and v; € M(p,q;)
and 0; € M(q;,t) such that 0;#v; = w. Then

V(pa Clu) . V(qu7t) = _V(p7 qs) : V(q87t)'

Proof. Consider Figure

FI1GURE 5. Gluing and cutting while ‘excluding’ B

Cylinder Floer homology. The chain groups are defined analogously to Section

Theorem 3.4. We have 9 0 9 = 0 and H.(f,x,h) = =22 s called cylinder

Im 9,41

Floer homology on Z.

Proof. Using Lemma

Corollary 3.5. €.(f,x,h) and . (f,xz, h) split into a direct sum w.r.t. the homo-
topy classes in m(Z,x):
Cg*(fvm7h) = (g*(fa‘rvhv H = 1) 69(g*(faxa h7 H = 0) EB%*(f?xa hv H = )7
%k(fvxah) = %k(fvxaha [] = 1) @%(fax7h7 H = O) @%k(fwraha [] = _1)
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Dependency on h. Now let us have a look how the chain complex and the homology
depend on h. Concatenating h with an orientation preserving diffeomorphism of
Z or Q does not change anything. The same goes for the concatenation with
some orientation preserving diffeomorphism to another annulus h Q(R_,Ry) —
Q(R,, R+)

If we concatenate h with an orientation reversing diffeomorphism, the homology
changes since the Maslov indices of the generators change. Therefore we always have
to keep in mind the orientation of the underlying map h. We denote for orientation
preserving resp. reversing h the Floer complex and homology by %.(f,z,+) and
Ho(f,x,+) resp. Gu(f,x,—) and H4(f, z,—). We summarize

Theorem 3.6. Up to the choice of an orientation, there are well-defined Floer
homologies F.(f,z, %) on the cylinder. They are usually not isomorphic.

Invariance. Assume f € Symp,(Z) to have compact support. Then F = ho foh™!
has compact support in @ and therefore can be considered to have compact support
in R2.

In this case, Theorem



TRANSPORT, FLUX AND GROWTH OF HOMOCLINIC FLOER HOMOLOGY 19

which is the (signed) symplectic area of the resonance domain of p. Back to M = R?
or M = Z, the relative action of p, ¢ € H is given by

Alp,q) :== (S =U)(p) = (S = U)(q) = Alp) — Alg).
Since immersions in M (p, q) are orientation preserving, Stokes’ theorem yields

Lemma 4.1. Let p, ¢ € H (with [p] = [q] € m1(Z,2) if M = Z). Assume u(p,q) =
1 and v € M(p,q) #0. Then

A(p,q) = / w>0, implying A(p) > Aq).

In particular, A(p,q) is the symplectic area enclosed by [p, q|s and [p,qly.

In Section

Lemma 4.2 (] f € Ham®(Z2) if and only if f*a —a = dH for a
smooth function H : Z — R.

‘We conclude

Corollary 4.3. Let f € Symp(R?) resp. f € Ham®(Z). Then A(p) = A(f"(p))
and A(p,q) = A(f"(p), f*(q)) for alln € Z.

Proof. In case f € Symp(R?), the invariance follows from the fact that f is volume
preserving and that the simply closed curve ¢, associated to a homoclinic point p
bounds the compact ‘disc’ G(z, p).

Now consider the case f € Ham®(Z). By Poincaré duality, the singular ho-
mology of Z is isomorphic to the cohomology with compact support. Therefore a
1-cohomology class is exact if and only if it vanishes on all 1-homology classes. By
Lemma
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The action filtration. In classical Floer theory, the symplectic action has been used
with success to define and interprete symplectic invariants — one method is the
so-called filtration by the action (see e.g. Schwarz |

Remark 4.4. Let a < min{A(p) | (p) € Hpr} and b > max{A(p) | (p) € H,r} and
set apmin = min{A(p) | (p) € Hpr}. Then )7 = 0 and ") = 0 such that
the homology is concentrated in the interval i — €, Gmin + width(f, z)] for € > 0.

For certain homology classes, we exactly know their critical levels in the action
filtration:

Remark 4.5. Set [ := {n € {£1,+£2,43} | ¢,—1 = 0} and for k € I consider

¢ € 6, with ¢ = Y, ¢;(p1). Then c represents a homology class and lives in j‘f*]a’b]
for a < min; A({p;)) and max; A((p;)) < b. In particular 1, —3 € I.

5. Flux and transport. Let us recall the following definition from MacKay &
Meiss & Percival |

Definition 5.1. Let ¢ be a simply closed curve in (R? w) and let » € Symp(R?)
be W-orientation preserving. Denote by Int(c) the interior of ¢ and by Ext(c) its
exterior. We define

Fluz,(c) = vol,(¢(Int(c)) N Ext(c)) = vol, (Int(¢(c)) N Ext(c))

to be the absolute flux of p through c. If ¢ is W-orientation reversing then ¢? is
W -orientation preserving and we set Fluz, := Fluz,:.
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Fluz,(c) is the (symplectic) area of the set of all points mapped by ¢ from
the interior of ¢ to the exterior of ¢. Since ¢ is area preserving the absolute flux
coincides with the area of the set of all points mapped from the exterior of ¢ to its
interior, i.e. Fluz,(c) = vol,(¢(Ext(c)) NInt(c)). In the following, we usually call
the absolute flux briefly flux.

MacKay & Meiss & Percival |

Definition 5.2. Let ¢ be a curve on (Z,Q) with [c] € {0,£1} without self-
intersections and let ¢ € Ham®(Z). If ¢ is not contractible define the absolute
flux through c as

Fluz,(c) := voly,(Z40)\ Ze).

If ¢ is contractible, define Fluz,(c) as in Definition

Remark 5.3. a) The definition of Fluz,(c) in Definition

b) MacKay & Meiss & Percival |
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manifolds to be invariant under iteration. Therefore replace in the following ¢ by
@? if ¢ is W-orientation reversing.

Let p be a homoclinic point and consider the (un)stable segments [z, p], and
[z,p]s. For the segments [z, p(p)], and [z,(p)]s holds [z, ¢(p)]s C [z,p|s and
[z, o(p)]u D [x,plu. Denote by ¢, a curve which runs from « via [z, p|, to p and via
[z, p]s back to . Then the ranges of the curves ¢, and ¢, coincide except in the

segments [p, o(p)], and [p, p(p)]s.
Definition 5.4. Given a primary orbit (p) on the cylinder resp. R?, we set
Fluz ,((p)) = Fluz,(cp).

Apart from homoclinic orbits, MacKay & Meiss & Percival |

Definition 5.5. ¢ is called x-simple if each pair of intersecting branches contains
exactly two primary orbits (an example is sketched in Figure

FIGURE 6. Turnstiles: (a) on the cylinder and (b) on R?

Definition 5.6. Let ¢ be z-simple and (p) and (g) the primary points in a chosen
pair of intersecting branches. Assume {q} = |p, ©(p)[s N |p, ©(p)[». The resulting
picture is called a true turnstile with pivot q and frame p and ¢(p). The regions
enclosed by [p, ¢(p)]s U [p, v(p)]u are called the wings of the turnstile.

The basic idea of turnstiles goes back to MacKay & Meiss & Percival |
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sketched in Figure

Remark 5.7. There is no ‘turnstile-like’ picture between primary points of different
branches.

The following statement explains the absolute flux of a primary point in terms
of the related turnstile.

Lemma 5.8. Let ¢ € Symp(R?) or let ¢ € Ham®(Z) and assume @ to be x-simple.
Let p be a primary point and pivot of a true turnstile with frame q and ¢(q). Denote
by cpq a curve which runs from p through [p, gl to ¢ and then through [p,q|s back
to p. The wing enclosed by c, 4 is called G(p,q). Then we have

Fluz,((q ‘ / ‘ /G(pq ? ‘ ‘ /G(p,w(q)) ’ /

Czw(q)
and in particular

Fluz,({p)) = Fluz,((q))-

Thus the fluz through (p) resp. (q) equals the symplectic volume of one wing of the
associated turnstile.

Proof. As in the proof of Corollary O

Definition 5.9. 1. Let ¢ be z-simple with primary orbits (p) and (g), but as-
sume #(p, (p)[s N |p, (p)[«) = 3. The resulting picture is called an over-
twisted turnstile with frame p and ¢(p) and pivot g. An example is sketched
in Figure

2. Now assume that a pair of intersecting branches has k primary orbits given by
(p1);---, (pr) and that they satisfy |p1, o(p1)[s N Ip1, ¢(P1)[u = {P2;- -, Pk}
We call this picture a k-generalized turnstile with frame p; and ¢(p;) and
pivots pa,...,pr. Note that the wings between p; and p;;1 not always have
the same symplectic volume for 1 < i < k with pr11 := ¢(p1). An example is
sketched in Figure

Remark 5.10. 1. Overtwisted turnstiles with frame p and ¢(p) and pivot ¢
always look schematically like the one in Figure

2. Overtwisted turnstiles correspond to so-called ‘mixed moves with primary-
secondary flips” in Hohloch |
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FIGURE 7. (a) Overtwisted turnstile with frame p and ¢(p) and
pivot ¢; (b) True turnstile with frame ¢~1(¢) and ¢ and pivot p

FIGURE 8. Different relative actions

Lemma 5.11. For a k-generalized turnstile with frame p1 and ¢(p1) and pivots
P2, ...,pr holds

Fluzy((pr) = i: | A({p2i-1), (p2i)) |= Z | A((p2i), (p2i41)) | -

For overtwisted turnstiles with frame p and p(p) and pivot q holds
| Alp), (@) | > Fluzy((p)).

There are also combinations of generalized and overtwisted turnstiles, but we
are mainly interested in a special case of generalized turnstiles. Let ¢ € Symp(IR?)
or ¢ € Ham°(Z) be z-simple having a true turnstile with frame p and ¢(p) and
pivot g. Now consider the iterate ¢™ for n € N. We have W3 (¢, z) = W*(p", x)
and W*(p,z) = W*(¢", ) as sets. But the two primary orbits (p) and (g) split

into 2n classes (p%), ..., (p"~1) and (¢°), ..., {¢"1). In particular, we have a 2n-
generalized turnstile with frame p® and p” and pivots ¢°, p', ..., ¢" ! as sketched
in Figure

Corollary 5.12. Under the above assumptions holds for 0 <i<n—1

Flurge () = 3 [ AW, @) |= 3 | A, 61) |
=0 =0

and in particular ,
Fluz o ((p')) = n Fluz(p)).
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We conclude for the growth behaviour

Remark 5.13. A homoclinic orbits forms a partial barrier for the transport of ¢
where the only in- and outlet is the associated turnstile. For true and generalized
turnstiles, the relative action and the flux coincide, but not for overtwisted ones.
Moreover, the flux grows linearly in n if n is the number of iterations of .

Variational principle and discrete action functional. In order to describe the flux
analytically, MacKay & Meiss & Percival |
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With this in mind, the difference in action is defined as
AW, .= Jymar _ Wminimaa:
m,mn -7 m,n m,n .
For irrational » € R\Q, Mather sets AW, as the limit AW, :=limm _,. AWy, .

Flux and difference in action. Whereas Mather [

Theorem 5.14 ([ Let f be a Hamiltonian diffeomorphism on the cylinder which
is in addition also a monotone twist map. Then holds for the periodic, quasiperiodic
and heteroclinic orbits of f: The difference in action AW between a mazximizing
orbit and the associated minimaz orbit coincides with the area of one wing of the
turnstile, i.e. the flux through the associated curve.

Peierl’s energy barrier. Let ¢ € Symp(R?) or ¢ € Ham®(Z) be x-simple and let
W and Wi be a pair of intersecting branches with primary orbits (p) and (g),
both inducing true turnstiles. By Lemma
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action spectrum. But there are many important dynamical systems (like e.g. the
Standard map in Section

Proposition 6.1. Let p € Symp(R?) or ¢ € Ham®(Z) be x-simple. Let W and
W be a pair of intersecting branches with primary classes (p) and {(q). Assume
w.l.o.g. p((p)) = p((@))+1 andp € |q,¢(q)[s N ]g, p(q)[u- Then (p) and (q) give rise
to two distinct (families of ) turnstiles, more precisely p is the pivot of a turnstile
with frame q and ©(q) and q is the pivot of a turnstile with frame ¢~ *(p) and p.
The first turnstile enters the boundary operator via

op) = —(+ > mlp) @)D= Yo mlp (@)@

(2) (@) €Fpr (a)#(@) EFpr
n(@)=p(p))—1 n((@)=p(p))—1
Proof. The existence of the two (families of) turnstiles follows from the very def-
inition. But it depends on the relative Maslov index of (p) and {(g) which of the
turnstiles will appear in the boundary operator: If (w.lo.g.) p({(p)) > u({q)) we
have automatically u((p)) = u({(g)) + 1. Then M(p?,¢’) # 0 # M(p?,¢'*7) for
J € Z and the ranges of the immersions form the wings of the turnstiles with pivots
p’ and frames ¢/ and ¢/ 1. Since M(¢7,p’ 1) = 0 = M(¢’, p?) the second (family
of) turnstiles is ignored by the boundary operator. The situation is reversed if we
assume ((q)) = p((p)) + 1. B

‘We conclude

Corollary 6.2. In case of x-simple symplectomorphisms, turnstiles are annihilated
by the boundary operator. If M(p,q) =0 for all (q) # (§) € Hpr the turnstile with
pivot p lies in the kernel of the boundary operator, i.e. the pivot is a cycle.

If we consider a non z-simple symplectomorphism with classes (p1),..., (pk)
for (even) k > 4 and a generalized turnstile with frame p; and (p;) and piv-
ots p2,...,pk, then at least one of moduli spaces M(p;, p1) and M(p;, p(p1)) is
empty for all 2 < i < k. Thus there is no analog for Proposition

Theorem 6.3. Let ¢ € Ham(Z) be x-simple and a monotone twist map. Let W,
and Wi be a pair of intersecting branches having a true turnstile with frame p and
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©(p) and pivot q and assume w.l.o.g. pu({p)) = u({q)) +1. Then v € M(p,q) # 0
and

Alp) — Al(g)) = A((p), (9)) = /w = Fluzy((p)) = LWhp,q-

Proof. In Lemma

Corollary 6.4. Let p € Symp(R?) be z-simple. Let W and W be a pair of
intersecting branches having a true turnstile with frame p and ©(p) and pivot q and
assume w.l.o.g. p((p)) = u({(q)) + 1. Then v e M(p,q) # 0 and

A((p)) — AUa)) = A((p). a)) = / w = Fluzo((p)).

v

Therefore the flux and AW are meaningful quantities for the action spectrum of
the Floer homology. Theorem
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In classical Floer theory, the situation is different: Let v be a 1-periodic Hamil-
tonian orbit and denote by ~* the orbit given by iterating v k times. In classical
Floer theory, the symplectic action & and mean index m of a 1-periodic Hamiltonian
orbit v grow linearly with the number of iterations, more precisely

d(V)=ke/(y) and  m(y¥) =km(v).

This phenomenon was exploited for example by Ginzburg [

Theorem 6.5. Let ¢ € Symp(R?) resp. ¢ € Ham®(Z). Let b € Spec(p, ) and
0<e< %gap(cp,a:). Denote by (p1) ... {(px) € Hpr the primary orbits with action
b. Then we obtain in case ¢ € Symp(R?)

HY == (o, 2) = Spany {(p1), ..., (o)} ~ ZF,

HE™ (o @) = Spang {(pR), - (0] 1) R (o)) = (2
and in case ¢ € Ham(Z)

AL (g, 2) = Spang {(p1), ..., (p)} ~ ZF,

AL (o w) = Spang {(p), - (07 R )Y = ()

Proof. Consider the case of primary Floer homology first. By assumption, all
points (p1),...,{(px) have the same action. The action strictly decreases along
the boundary operator. Thus we have 9(p1) = --- = I(pr) = 0. Thus we have
Hlbig’bﬁ](go,w) = Clbis’bﬁ]((p,x) = Spang{(p1),...,{pk)}. The argument for
HP# e (4n 2) is the same. For cylinder Floer homology proceed analogously. [
Therefore the ranks of the filtered homology groups grow linearly:

Corollary 6.6. The filtered homology distinguishes between ¢ and its iterate ©™.
Under the assumptions of Theorem
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7. An example: Chirikov’s Standard map. In this section, we compute the
filtered Floer homology for the homoclinic tangle given by Chirikov’s Standard map

fe :R? - R? (s,t) — (s +t+esins, t+esins)

with € > 0. The dynamics of the Standard map have been studied by many math-
ematicians and physicists, but the estimates in Melnikov’s method are to coarse to
predict intersection points for the (un)stable manifolds. Eventually Lazutkin [

(a) (b)
FIGURE 9. Phase portrait of the pendulum (a) and Standard map (b)

found in Gelfreich [
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etsin(s) + e cos(s) — % sin?(s). Thus the Standard map is Hamiltonian. Moreover

fe is a monotone twist map. Therefore it has a generating function and an action
principle in the sense of Mather (for details see |

FIGURE 10. Identification of the cylinder and the annulus in R?

there are eight primary equivalence classes (p), (q), (p), (), (v), (s), (¥) and <~i

with p((p)) = =3, p((@)) = p((s)) = p((8)) = =2, p((r)) = u((®)

)=
and u({q)) = 2. The corresponding classes on the cylinder are (p), (g), ( p), (G, (1),
(s), (7) and (3) with

p((p) = =3, p((@) = p((s)) = p((8)) = =2, p((r)) = u((7) = -1,

p((p) =1, p((q) =2
Their homoptoy classes in 71 (S* x R, z) are
[((p)] =[a)] =1€Z,
[((p)] = @) = -1€Z,
(] =) =N =[5 =[z]=0€Z

We obtain as chain groups
G (fe,x,[]=1) =Z{g) and G (fe,x,[] =1) =Z(p)
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FiGURE 11. Cylinder Floer homology of the Standard map

with 0(0) = ) = (") = 0 0 0p) = 0 o ths A o] = ) = (5 .11 =
1) with
I (fe,x,[]=1) =7 and IA(f,x,[]=1) ~Z.

Moreover, we compute

C-1(fe,x,[[]=0)=Z{r) @ Z({F) and C_o(fe,x,[] =1) = Z(s) D Z(S)
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with 9(r) = (s) — (s7!) = 0 and 9(F) = —(3) + (§') = 0 and 9(s) = 0 and I(5) =
Thus we have 4 (fe,z,[-] = 0) ~ €.(fe, z,[-] = 0) and therefore

A (fe,x,[]=0)~Z&Z and A y(fe,a,[]=0)~Z& L.
It remains to calculate
“o(ferx, [ =-1)=2(¢) and C_s(fe,x,[] =-1) =Z(p)
with 9(q) = (p') — (p) and d(p) = 0. Thus we obtain J(f.,z,[] = —1) ~
C.(fe,x,[] = —1) with

Zo(feyx,[[]=1)~Z and A s(fe,x,[]=1) = Z.

Due to symmetry, we have A((p)) = A((p)) and A({(q)) = A({(G)) and A({r))
A((r)) and A((s)) = A({5)). There is an asymptotic formula in Gelfreich |
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