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Abstract. We point out an interesting relation between transport in Hamil-

tonian dynamics and Floer homology. We generalize homoclinic Floer homol-

ogy from R2 and closed surfaces to two-dimensional cylinders. The relative
symplectic action of two homoclinic points is identified with the flux through

a turnstile (as defined in MacKay & Meiss & Percival []) and Mather’s []

difference in action 4W . The Floer boundary operator is shown to annihi-
late turnstiles and we prove that the rank of certain filtered homology groups

and the flux grow linearly with the number of iterations of the underlying

symplectomorphism.

1. Introduction. Before we approach the actual topic of this article, let us fix
some notation.

Symplectic dynamics. A smooth manifold M is symplectic if there exists a non-
degenerate, closed 2-form. Such a 2-form is called a symplectic form and we will
usually denote it by ω or Ω. Note that symplectic manifolds are always even di-
mensional. On a symplectic manifold (M,ω), f ∈ Diff(M) is called symplectic or
a symplectomorphism if it preserves ω, i.e. f∗ω = ω. The group of symplectomor-
phisms of (M,ω) is denoted by Symp(M,ω) which we often shorten to Symp(M).
A submanifold L ⊂ M is Lagrangian if dimL = 1

2 dimM and ω|L = 0. Given

a smooth function H : M × S1 → R, we set Ht := H(·, t) and define its (non-
autonomous) Hamiltonian vector field XH

t via ω(XH
t , ·) = −dHt(·). The (non-

autonomous) Hamiltonian equation is given by ż(t) = XH
t (z(t)) and the associated

flow is called the Hamiltonian flow. A Hamiltonian diffeomorphism is a symplecto-
morphism which can be written as the time-1 map ϕ1 of a Hamiltonian flow ϕt. We
denote by Hamc(M,ω) the group of compactly supported Hamiltonian diffeomor-
phisms and shorten it to Hamc(M) if convenient. A Hamiltonian diffeomorphism
is non-degenerate if its graph intersects the diagonal in M ×M transversely.

The fixed point set of a diffeomorphism f is denoted by Fix(f) := {x ∈ M |
f(x) = x}. A periodic point of f with period k is a fixed point of fk. A fixed
point x ∈ Fix(f) is hyperbolic if the modulus of all eigenvalues of Df |x is dif-
ferent from 1. Given a hyperbolic fixed point x, its stable manifold W s(f, x) :=
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{p ∈ M | limn→+∞ fn(p) = x} and unstable manifold Wu(f, x) := {p ∈ M |
limn→−∞ fn(p) = x} are injectively immersed submanifolds. The set of intersec-
tion points H(f, x) := W s(f, x) ∩Wu(f, x) is called the set of homoclinic points.
Note that if f is a symplectomorphism then the stable and unstable manifolds are
Lagrangian submanifolds.

Homoclinic points and Floer theory. Homoclinic points were discovered by Poincaré
[], [] around 1889 when he studied the n-body problem. But it took quite
some time until first properties of homoclinic points and their impact on dynamical
systems were sucessfully investigated: In 1935, Birkhoff [] proved the existence of
periodic points with high periods near homoclinic ones. And in 1963, Smale [], []
described the dynamics of homoclinic points by his horseshoe formalism. Since then,
homoclinic points have been studied under different view points like approximation
methods via integrable systems, genericity questions, calculus of variations etc. But
many questions about homoclinic points are still open.

In the 1960s, V.I. Arnold conjectured that, on a closed symplectic manifold
(M,ω), the number of fixed points of a non-degenerate Hamiltonian diffeomorphism
is greater or equal to the sum over the Betti numbers of M .

For the 2n-torus, the conjecture was proven in 1983 by Conley & Zehnder [],
but their methods do not generalize. In the late 1980’s, Floer [], [], [] devised a
different approach. Roughly, Floer did the following: He identified the fixed points
of the Hamiltonian diffeomorphism with the intersection points of its graph with the
diagonal in the symplectic manifold (M×M,ω⊕(−ω)). The graph and the diagonal
are Lagrangian submanifolds. Thus Floer turned the fixed point problem into a so-
called ‘Lagrangian intersection problem’. Then he identified the intersection points
with the critical points of the symplectic action functional A . He considered the
action functional A as a ‘Morse function’ and constructed for it some kind of ‘infinite
dimensional’ Morse theory (the involved Fredholm analysis needs the intersecting
submanifolds to be Lagrangian). The resulting ‘Morse homology’ is nowadays called
Floer homology. Its ‘generators’ are the intersection points. Then Floer showed that
this new homology can be identified with the actual Morse homology of M , which
enabled him to prove the Arnold conjecture (under certain conditions on M). A
good, short introduction to Floer theory is Salamon [].

Apart from leading to a proof of the Arnold conjecture, Floer’s ideas and methods
found many other applications in symplectic geometry and dynamical systems such
that Floer theory is vividly studied nowadays.

The present paper links homoclinic points and Floer theory. The construction of
‘homoclinic Floer homology’ was motivated by the fact that the (un)stable manifolds
of a hyperbolic fixed point of a symplectomorphism are Lagrangian submanifolds.
Thus homoclinic points are associated to a ‘Lagrangian intersection problem’ and
one may hope to adapt the techniques used in Floer theory to the intersection prob-
lem of stable and unstable manifolds. In the earlier work Hohloch [], the existence
of ‘homoclinic Floer homology’ was established on R2 and on closed surfaces. In this
paper, we will generalize homoclinic Floer homology to (infinite) two-dimensional
cylinders. But the main part of this paper is dedicated to dynamical interpretations
and applications of ‘homoclinic Floer theory’.
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Homoclinic Floer theory. Omitting assumptions and details, the basic idea of ho-
moclinic Floer homology is outlined in the following paragraph. The details and
exact definitions are given in Section and in the earlier work Hohloch [].

For simplicity, consider a symplectomorphism f in the symplectic plane (R2, ω)
with hyperbolic fixed point x. Then W s := W s(f, x) and Wu := Wu(f, x) are
one-dimensional submanifolds. Assume that the associated set of homoclinic points
H := W s ∩Wu is not empty. Given p, q ∈ H, we denote by ]p, q[u ⊂ Wu resp.
]p, q[s ⊂ W s the unoriented, (un)stable segments between p and q. Moreover, Z
acts on H via Z×H → H, (n, p) 7→ fn(p) and we denote the equivalence class of p
by 〈p〉. Based on the ‘winding number’ of the ‘loop’ ]p, q[u ∪ ]p, q[s, one can define
a ‘grading’ of H, i.e. a function µ : H → Z with certain properties, which descends
to the quotient H/Z.

To obtain a homology, we need a chain complex. Classical Floer theory suggests
the set of intersection points H as generator set of the chain groups. However, H
turned out to be ‘too large’ to yield a well-defined homology theory. But certain
subsets of H can serve as generator sets for the chain groups. For simplicity, let us
focus here on the subset of primary points Hpr which are the points in p ∈ H\{x}
which satisfy ]p, x[s ∩ ]p, x[u= ∅. Denote by H̃pr := Hpr/Z the set of equivalence
classes of primary points. It turns out to be a finite set. The kth chain group is
defined via

Ck(f, x) := SpanZ{〈p〉 | 〈p〉 ∈ H̃pr, µ(〈p〉) = k}.

The boundary operator ∂ : C∗(f, x) → C∗−1(f, x) is defined in the following way:
Given two primary points p and q with µ(q) = µ(p)− 1, consider the moduli space
M(p, q) consisting of certain immersed 2-gons joining p to q whose boundaries lie
in the stable resp. unstable manifold (the precise definition can be found after
Figure). Denote by m(p, q) the cardinality of M(p, q) up to orientation and
vertex preserving diffeomorphisms and set m(〈p〉, 〈q〉) :=

∑
n∈Zm(p, fn(q)). Then

we define

∂〈p〉 :=
∑
〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉

and prove ∂◦∂ = 0. The associated homology of (C∗(f, x), ∂) is given by H∗(f, x) :=
ker ∂∗/ Im ∂∗+1 and is called primary Floer homology.

Primary Floer homology is defined on R2 and on closed, oriented surfaces with
genus g ≥ 1 as lined out in Hohloch [] where also topological properties, like
invariance under certain perturbations of the underlying symplectomorphism, are
studied. But even on surfaces with genus, primary Floer homology always uses
contractible homoclinic points as generators, i.e. homoclinic points p where the
loop ]p, x[s ∪ ]p, x[u is contractible. But many physically important systems like
the pendulum on the cylinder have noncontractible homoclinic points. For that
reason, we will construct in this paper a version of homoclinic Floer homology
on (infinite) 2-dimensional cylinders which is called Cylinder Floer homology and
denoted by H∗(f, x). It admits noncontractible homoclinic points as generators and
thus applies e.g. to the pendulum. The construction of H∗(f, x) is deduced from
the construction of primary Floer homology, mainly by adjusting the proofs to the
new generators. Cylinder Floer homology will be of interest in particular for the
dynamical meaning of homoclinic Floer homology.
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In general, by varying the generator set and the definition of the boundary opera-
tor, one can define several versions of homoclinic Floer homology — for an overview
see Hohloch [].

Dynamical properties of homoclinic Floer homology. In this paper, we focus on the
dynamical properties of homoclinic Floer homology, i.e. its relation to other known
dynamical invariants and the behaviour of H∗(f, x) in comparison to H∗(f

n, x) for
n ∈ N. First steps to investigate this behavour had already been taken in Hohloch
[].

MacKay & Meiss & Percival [] study ‘transport’ in Hamiltonian systems which,
in their terminology, is the motion of points under (many) iterations of the sym-
plectomorphism. They investigate how and, in particular, where points are mapped
from one region to another. A central notion in their paper is the absolute flux
(briefly flux) of a symplectomorphism f w.r.t. a simply closed curve c. In (R2, ω),
the flux is defined via F luxf (c) = volω(f(Int(c)) ∩ Ext(c)), i.e. the volume of the
set of points which are swept out of the interior of the curve. For instance, an f -
invariant curve γ satisfies F luxf (γ) = 0 and thus forms a ‘complete barrier’ for the
transport of points under f , i.e. no points leave the interior of the curve. Partially
invariant curves admit non-zero transport and are ‘partial barriers’ with a unique
transport scheme as we will see in a moment. Note that the definition of the flux
here is different from the flux homomorphism in symplectic geometry (cf. McDuff
& Salamon [], Polterovich []) which, roughly speaking, considers the difference
between f(Int(c)) ∩ Ext(c) and f(Ext(c)) ∩ Int(c).

Partially invariant curves were of particular interest to MacKay & Meiss &
Percival [] as they noticed a unique behaviour concerning the flux. Let f ∈
Symp(R2, ω) and let c be a simply closed curve in (R2, ω) which is ‘partially in-
variant’ under f : For simplicity, assume the picture in Figure (a) where the
range of the curve c and the range of f ◦ c coincide for a large part. Since f is
volume preserving, the interiors of c and f ◦ c have the same volume. Thus we
obtain a ‘turnstile-like’ shape for the ranges of c and f ◦ c, i.e. (at least) one lobe
‘sweeps points out’ and (at least) one lobe ‘sweeps points in’. The simplest scenario
is sketched in Figure (a) where the ‘turnstile’ consists of the ‘pivot’ q and the
‘frame’ p and p̃. The flux arises from the shaded region.

(b)(a)

p

c

f ◦ c
p̃

q

Wu

x

W s

f(p)

f ◦ cp

q

cp
p

Figure 1. Flux and turnstile: (a) of a closed curve c in the plane,
(b) of a homoclinic point p
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MacKay & Meiss & Percival [] also define the flux through periodic points,
homoclinic points and cantori. For instance, given f ∈ Symp(R2, ω) with hyperbolic
fixed point x and homoclinic point p ∈ W s(f, x) ∩Wu(f, x), the flux F luxf (p) of
f through p is defined as the flux through a curve cp which parametrizes the loop
]p, x[s ∪ ]p, x[u. The associated curve cp is partially invariant under f and the
noninvariant part forms a ‘turnstile’ as displayed in Figure (b). The shaded
region yields F luxf (p).

Whereas MacKay & Meiss & Percival [] only consider turnstiles with one pivot,
we are interested in more general turnstiles for homoclinic points. Depending on
the intersection behaviour of the stable and unstable manifold between the ‘frame’ p
and f(p), we will distinguish later turnstiles in ‘true’, ‘overtwisted’ and ‘generalized’
turnstiles. The distinction in ‘true’, ‘overtwisted’ and ‘generalized’ turnstiles also
corresponds to the different Reidemeister moves in the invariance proof of primary
Floer homology in Hohloch []. If the stable and unstable manifold only intersect
once between a primary point and its iterate we call the symplectomorphism x-
simple (see Definition).

Denote the infinite symplectic cylinder by (Z,Ω). By being related to the flux,
turnstiles are linked to the dynamics of a symplectomorphism. But they also have
an ‘algebraic’ meaning, more precisely, turnstiles show up in the boundary operator
∂ of primary Floer homology and cylinder Floer homology. In case of x-simple
symplectomorphisms, turnstiles are annihilated by the boundary operator:

Proposition 1.1. Let ϕ ∈ Symp(R2) or ϕ ∈ Hamc(Z) be x-simple. Let q ∈
W s(ϕ, x) ∩ Wu(ϕ, x) be primary and {p} = ]q, ϕ(q)[s ∩ ]q, ϕ(q)[u and w.l.o.g.
µ(〈p〉) = µ(〈q〉) + 1. Then 〈p〉 and 〈q〉 give rise to two distinct (families of) turn-
stiles, more precisely p is the pivot of a turnstile with frame q and ϕ(q) and q is the
pivot of a turnstile with frame ϕ−1(p) and p. The first turnstile enters the boundary
operator via

∂〈p〉 = 〈q〉 − 〈q〉+
∑

〈q〉6=〈q̃〉∈H̃pr
µ(〈q̃〉)=µ(〈p〉)−1

m(〈p〉, 〈q̃〉)〈q̃〉 =
∑

〈q〉6=〈q̃〉∈H̃pr
µ(〈q̃〉)=µ(〈p〉)−1

m(〈p〉, 〈q̃〉)〈q̃〉.

If M(p, q̃) = ∅ for all 〈q〉 6= 〈q̃〉 ∈ H̃pr the turnstile with pivot p lies in the kernel of
the boundary operator, i.e. the pivot is a cycle.

As mentioned above, classical Floer theory can be seen as some kind of Morse
theory with the symplectic action functional A as Morse function. Whereas the
definition of the symplectic action functional A associated to homoclinic points on
the cylinder involves some notation, it is easy to define it for homoclinic points in
(R2, ω). Given a homoclinic point p of some f ∈ Symp(R2) we define its symplectic
action A(p) as the (signed) symplectic area enclosed by the loop [p, x]u ∪ [p, x]s. For
two homoclinic points p and q, we define the relative action A(p, q) = A(p)−A(q).
The action is compatible with the Z-action on the set of homoclinic points, thus we
can set A(〈p〉) = A(p).

MacKay & Meiss & Percival [] established a relation between the flux and
another action functional W under the following conditions: A monotone twist map
on a cylinder or annulus with coordinates (s, t) ∈ R × S1 is a volume preserving

map f with f(s, t) = (s̃, t̃) satisfying ∂t̃
∂s > 0 for all s and t. Mather [] studied

the (non)existence of invariant circles for monotone twist maps using the calculus
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of variations with a certain action functional W . He denoted the difference in
action between an action maximizing orbit and its associated minimax orbit by
4W . MacKay & Meiss & Percival [] proved the flux to coincide with Mather’s
difference in action 4W . In our homoclinic situation, we can additionally identify
the flux with the relative action:

Theorem 1.2. Let f ∈ Hamc(Z) be x-simple and, in addition, a monotone twist
map. Consider a true turnstile with frame p, f(p) ∈ Hpr and pivot q ∈ Hpr and
assume w.l.o.g. µ(〈p〉) = µ(〈q〉) + 1. Then v ∈M(p, q) 6= ∅ and

A(〈p〉)−A(〈q〉) = A(〈p〉, 〈q〉) =

∫
v

ω = F lux f (〈p〉) = 4Wp,q.

For x-simple f ∈ Symp(R2) we have under analogous assumptions

A(〈p〉)−A(〈q〉) = A(〈p〉, 〈q〉) =

∫
v

ω = F lux f (〈p〉).

An important feature in symplectic geometry and classical Floer theory is the
action spectrum which consists of the action values of the critical points of the
action functional i.e. the action values of the generators of the Floer complex. The
boundary operator in classical Floer theory counts the cardinality of moduli spaces
of so-called ‘pseudo-holomorphic curves’ between critical points. These ‘pseudo-
holomorphic curves’ can be seen as (negative) gradient flow lines of the symplectic
action functional. Thus the action value decreases along the boundary operator,
i.e. if p is a critical point and ∂ the boundary operator, then the action of a critical
point showing up in the expression ∂p is smaller than the action of p. Thus one can
consider a filtered Floer complex, which is generated by critical points with action
less than a certain value, without interfering with the definition of the boundary
operator. This idea eventually leads to filtered Floer homology where the action
of the generators lies in an interval. For applications of the action spectrum and
filtered Floer homology see e.g. Schwarz [].

This line of thoughts also goes through in our homoclinic situation, i.e. there is
a (homoclinic) action spectrum Spec(f, x) := {A(〈p〉) | 〈p〉 ∈ H̃pr} and we set

gap(f, x) := min{|A(〈p〉)−A(〈q〉)| : 〈p〉 6= 〈q〉 ∈ H̃pr}.
For a chosen interval ]a, b] of action values, filtered primary Floer homology is de-

noted by H
]a,b]
∗ (f, x) and filtered cylinder Floer homology by H

]a,b]
∗ (f, x). Accord-

ing to Theorem, the flux and 4W are meaningful quantities for Spec(f, x) :=

{A(〈p〉) | 〈p〉 ∈ H̃pr}. Therefore everything which is formulated in terms of the sym-
plectic action spectrum can be interpreted in terms of the flux and4W . This means
that the algebraic notion of homology has a physical interpretation and measures
dynamical quantities.

So far, we were considering relations of algebraic or topological nature between
the flux, turnstiles, the action functional and homoclinic Floer homology. But actu-
ally the flux and the action filtration turn out to be crucial objects when studying
homoclinic Floer homology under the viewpoint of dynamics. With ‘dynamics’, we
mean the behaviour of the action, the flux, homoclinic Floer homology etc. under
iteration of the underlying symplectomorphism, i.e. for instance the difference (if
any) between H∗(f, x) and H∗(f

n, x).
The symplectic action of a homoclinic point is invariant under the underlying

symplectomorphism. Thus we were able to define A(p) = A(f(p)) =: A(〈p〉). And
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the same holds for the grading µ(p) = µ(f(p)) =: µ(〈p〉). The invariance of the
action and grading allows us to work on the quotient Hpr/Z, i.e. we ‘divided’
the system ‘by the chaos’ and discovered its ‘order’. But if we actually want to
investigate dynamical properties this turns out to be a big hindrance.

At this point, one should remark that, in classical Floer theory, the action and
grading (more precisely the so-called Maslov index) are not invariant under itera-
tion. Roughly, if γ is a 1-periodic Hamiltonian solution and if γk denotes its kth
iteration then the classical action functional A and the so-called mean Maslov index
m transform (cf. Ginzburg & Gürel [])

A (γk) = kA (γ) and m(γk) = km(γ),

i.e. the classical action and mean Maslov index grow linearly. This phenomenon was
sucessfully exploited by several authors. For example, Ginzburg [] (and others)
used the growth behaviour of A and m to prove (versions of) the so-called Con-
ley conjecture (‘There are periodic Hamiltonian orbits of arbitrary large period’).
Polterovich [] also used growth properties of a certain action difference in order to
establish growth results for symplectomorphisms. In a subsequent work, Polterovich
[] used his former results to formulate (and prove) a Hamiltonian version of the
Zimmer program.

Since the (linear) growth of the action and index in classical Floer theory turned
out to be an important tool, we are looking for an object which can replace the
invariant action A and grading µ. And this place is taken by the flux: Given a
symplectomorphism f with homoclinic point p, the flux transforms

F lux fn(〈p〉) = nF lux f (〈p〉).
Thus the flux shows the same linear growth as the action and mean index of a
1-periodic Hamiltonian orbit in classical Floer theory. Growth can also be observed
for the rank of filtered homoclinic Floer homology groups.

Theorem 1.3. Let f ∈ Symp(R2) resp. f ∈ Hamc(Z). Let b ∈ Spec(f, x) and
0 < ε ≤ 1

2 gap(f, x). Assume that there are k primary classes with action b. Then

we obtain for the homoclinic Floer homology on R2 resp. Z

H
]b−ε,b+ε]
∗ (f, x) ' Zk and H

]b−ε,b+ε]
∗ (fn, x) ' (Zk)n,

H
]b−ε,b+ε]
∗ (f, x) ' Zk and H

]b−ε,b+ε]
∗ (fn, x) ' (Zk)n.

Thus the rank grows linearly with the number of iterations.

Note that for the non-filtered homoclinic Floer groups a priori only

rkH∗(f, x) ≤ rkH∗(f
n, x) and rk H∗(f, x) ≤ rk H∗(f

n, x)

holds (cf. Hohloch []) and, in many examples, we obtains equality of rank. Nev-
ertheless, there are versions of homoclinic Floer homologies (cf. Hohloch [], [])
which easily show growth of rank for non-filtered Floer groups.

Organization of the paper. Section recalls the concept of primary Floer homology
from Hohloch []. Section defines cylinder Floer homology, a version of primary
Floer homology on the cylinder. Section introduces the action functional and
filterd Floer homology. Section recalls certain facts and definitions from MacKay
& Meiss & Percival [] and Mather [], [] which are adjusted, interpreted and
generalized to fit our setting. In Section, everything is put together and results
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about the growth behaviour of the flux and the rank of the Floer groups are proven.
Section calculates (filtered) cylinder Floer homology for the homoclinic tangle of
Chirikov’s Standard map.

2. Primary Floer homology. In this section, we briefly recall the construction of
primary Floer homology from Hohloch []: We will introduce the Maslov index and
homotopy classes for homoclinic points. Then we define certain di-gons, also known
as 2-gons, lunes or half-moons (Chekanov [], de Silva [], Gautschi & Robbin &
Salamon [], Robbin []). They will be crucial for the definition of the boundary
operator of the Floer chain complex. Then we will cover the main properties of
primary points which will be the generators of the Floer complex. We will quote
the main results of the ‘cutting and gluing’ procedure on which the well-definedness
of the boundary operator is based. Signs will be introduced which are needed for
the definition of the boundary operator and we will sketch their compatibility with
the so-called ‘cutting and gluing’ procedure. Finally after these preparations, we
proceed to the definition of primary Floer homology and its invariance properties.

Maslov index and homotopy class. Let us consider R2n with the local coordinates
x1, . . . , xn, y1, . . . , yn and symplectic form ω0 :=

∑n
i=1 dxi ∧ dyi. The symplectic

complement of a subspace V ⊂ R2n w.r.t. ω0 is given by V ω0 := {ζ ∈ V | ω0(ζ, ζ̃) =

0 ∀ ζ̃ ∈ V }. A subspace V ⊂ R2n is called Lagrangian if V = V ω0 . Denote
by L(n) := {V ⊂ R2n | V Lagrangian} the space of Lagrangian subspaces w.r.t.
ω0. One can associate to L ∈ L(n) certain matrices U := X + iY ∈ U(n) and
define ρ : L(n) → S1, ρ(L) := det(U ◦ U) (cf. McDuff & Salamon []). For a
loop of Lagrangian subspaces Λ : R/Z→ L(n), define the Maslov index of loops of
Lagrangian subspaces by µ(Λ) := deg(ρ ◦Λ) where deg denotes the mapping degree
of ρ ◦Λ : R/Z→ S1. If α : R→ R is a lift of ρ ◦Λ, i.e. det(X(t) + iY (t)) = eiπα(t),
we obtain µ(Λ) = α(1)− α(0).

Now let (M,ω) be a 2n-dimensional symplectic manifold and ϕ a symplecto-
morphism with hyperbolic fixed point x. Recall that, for symplectomorphisms,
the (un)stable manifolds Wu := Wu(ϕ, x) and W s := W s(ϕ, x) are Lagrangian
submanifolds, i.e. their tangent spaces are Lagrangian subspaces.

Consider the path space P(Wu,W s) := {β : [0, 1] → M | β(0) ∈ Wu, β(1) ∈
W s}. Given a homoclinic point p ∈ H := Wu ∩W s, one can identify it with a con-
stant path in P(Wu,W s). For homoclinic points p, q in the same connected com-
ponent of P(Wu,W s), we consider a path v : [0, 1]→ P(Wu,W s) in the path space
with v(0) ≡ p and v(1) ≡ q and see it as a map v : [0, 1]2 →M via v(s, t) := v(s)(t).
The square [0, 1]2 is contractible and we can find (cf. Floer []) a trivialization
Φ := Φv : v∗TM → [0, 1]2 × R2n such that

(a) the symplectic form on the fibers is mapped to the standard form
ω0 on R2n ' Cn,
(b) Φ is constant on {0} × [0, 1] and on {1} × [0, 1],
(c) Φ(TpW

s) = iΦ(TpW
u) and Φ(TqW

s) = iΦ(TqW
u).

Denote by ∂[0, 1]2 the boundary of [0, 1]2 and define the loop Λv : ∂[0, 1]2 → L(n)
starting in (0, 0) and running through (1, 0), (1, 1) and (0, 1) back to (0, 0) piecewise
via

(ξ, 0) 7→ Φ(Tv(ξ,0)W
u), (ξ, 1) 7→ Φ(Tv(ξ,1)W

s),

(1, η) 7→ e
iπη
2 Φ(TqW

u), (0, η) 7→ e
iπ(η−1)

2 Φ(TpW
s).
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Under the above conventions, we define the relative Maslov index for p, q ∈ H via
µ(p, q) := µ(Λv). If π2(M) = 0, then c1|π2(M) = 0 (where c1 denotes the first Chern
class of M) and the construction is independent from the chosen path v and the
trivialization Φ.

We plan to work mainly on R2 and on closed oriented surfaces with genus g ≥ 1,
where the second homotopy class always vanishes. Thus the well-definedness of the
Maslov index will not be an issue. Moreover, in the two-dimensional situation, the
Maslov index can be seen as twice the winding number of the unit tangent vector
along the boundary of the range of v.

From now on, (M,ω) is either the symplectic plane (R2, ω) or a closed, two-
dimensional manifold with genus g ≥ 1. Let i ∈ {s, u} and fix a parametrizing
immersion γi : R → W i. This immersion induces an ordering <i resp. ≤i on W i

via

γi(t) <i γi(t̃) ⇔ t < t̃ resp. γi(t) ≤i γi(t̃) ⇔ t ≤ t̃.

By abuse of notation, we say that p, q ∈ W i induce an ordering on W i via setting
p <i q resp. p ≤i q. For i ∈ {0, 1} consider p, q ∈ W i and set tpi = γ−1

i (p),

tqi := γ−1
i (q), t−i := min{tpi , t

q
i } and t+i := max{tpi , t

q
i }. We call

[p, q]u := γu([t−u , t
+
u ]) resp. [p, q]s := γs([t

−
s , t

+
s ])

the segments in Wu resp. W s between p and q. The segments are independent of the
chosen immersion and a priori just sets of points, thus [p, q]i = [q, p]i. Analogously,
we define the open and half-open segments ]p, q[i and [p, q[i.

Now we assign to each p ∈ H a homotopy class in π0(P(Wu,W s)) ' π1(M,x):
Denote by cp : [0, 1]→Wu∪W s a curve with cp(0) = x = cp(1) which runs through
[x, p]u to p and through [p, x]s back to x. Set [p] := [cp] ∈ π1(M,x) and [−p] for the
path with the inverse parametrization. Then H[x] := {p ∈ H | [p] = [x]} is the set
of contractible homoclinic points. H[x] is invariant under the Z-action Z×H → H,
(n, p) 7→ ϕn(p).

Remark 2.1. For contractible p, p̃, q ∈ H, we observe:

1. µ(q, p) = −µ(p, q) and µ(p, q) + µ(q, p̃) = µ(p, p̃).
2. µ(p, q) = µ(ϕn(p), ϕn(q)) for n ∈ Z, i.e. the (relative) Maslov index of p and
q is invariant under the Z-action of ϕ on H.

3. µ(p, ϕn(p)) = 0 for all n ∈ Z.
4. µ(p, q) = µ(p, ϕn(q)) for n ∈ Z.

The (relative) Maslov index yields a grading µ : H[x] → Z via µ(p) := µ(p, x) such
that for contractible p and q holds µ(p, q) = µ(p, x) + µ(x, q) = µ(p, x)− µ(q, x) =
µ(p)− µ(q).

Immersions, di-gons and hearts. A di-gon is the polygon D ⊂ R2 with two convex
vertices at (−1, 0) and (1, 0) sketched in Figure (a). Denote its upper boundary
by Bs and its lower boundary by Bu.

A heart is either the polygon Db of Figure (b) or the polygon Dc of Figure (c).
A heart is characterised by two vertices at (−1, 0) and (1, 0) where one is convex
and one concave. Denote their upper boundaries by Bs and their lower boundaries
by Bu.
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Bs

-1 1

Bu

BuBu

Bs Bs
D

(b) (c)

Db

(a)

Dc

-1 1 -1 1

Figure 2. Di-gon and heart

We require the immersions below to be immersions also on the boundaries and
vertices. Thus the image of a small neighbourhood of a convex resp. concave vertex
of a polygon is a wedge-shaped region with angle smaller resp. larger than π.

Let D be the di-gon and p, q ∈ H with µ(p, q) = 1. We define M(p, q) to be
the space of smooth, immersed di-gons v : D →M which are orientation preserving
and satisfy v(Bu) ⊂ Wu, v(Bs) ⊂ W s, v(−1, 0) = p and v(1, 0) = q. Denote by
G(D) the group of orientation preserving diffeomorphisms of D which preserve the

vertices and call M̂(p, q) :=M(p, q)/G(D) the space of unparametrized immersed
di-gons.

Since there is exactly one segment [p, q]i, i ∈ {s, u}, joining p, q ∈ H and since

π2(M) = 0 we deduce #M̂(p, q) ∈ {0, 1} for p and q with µ(p, q) = 1.

Now consider the hearts Db and Dc and p, r ∈ H with µ(p, r) = 2. We define
Nb(p, r) resp. Nc(p, r) to be the space of smooth immersed hearts w : Db → M
resp. w : Dc → M which are orientation preserving and satisfy w(Bu) ⊂ Wu,
w(Bs) ⊂ W s, w(−1, 0) = p and w(1, 0) = r. We set N (p, r) := Nb(p, r) ∪̇ Nc(p, r).
Denote by G(Db) resp. G(Dc) the group of orientation preserving diffeomorphisms

of Db resp. Dc which preserve the vertices and let N̂b(p, r) := Nb(p, r)/G(Db) resp.

N̂c(p, r) := Nc(p, r)/G(Dc) and N̂ (p, r) := N̂b(p, r) ∪̇ N̂c(p, r) be the spaces of
unparametrized immersed hearts.

If we work with the spaces M(p, q) and N (p, r) we always implicitly assume p,
q, r ∈ H with [p] = [q], [p] = [r], µ(p, q) = 1 and µ(p, r) = 2.

Primary points, gluing and cutting. Especially in pictures, we will abbreviate pn :=
ϕn(p) for p ∈ H and n ∈ Z. Keep in mind that in this notation p = p0. We call the
two connected components of W s\{x} resp. Wu\{x} the branches of the (un)stable
manifolds. Let λ and λ−1 be the pair of eigenvalues of Dϕ(x). If λ > 0 then ϕ
is orientation preserving on the stable and unstable manifolds. If λ < 0 then it is
orientation reversing on both. In the first case, we call ϕ W -orientation preserving
and in the latter case W -orientation reversing.

p ∈ H\{x} is called semi-primary if ]x, p[u ∩ ]x, p[s = ∅. p ∈ H[x]\{x} is primary
if ]x, p[u ∩ ]x, p[s ∩ H[x] = ∅. Nonprimary points are called secondary.
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On manifolds with vanishing first homotopy class, the notions of semi-primary
and primary coincide. Clearly, iterates of a (semi-)primary point are again (semi-)
primary. If Wu ∩W s 6= ∅ then semi-primary points always exist.

We require [p] = [x] in the definition of primary points, since this condition was
already necessary for the invariance of the Maslov index and the homotopy classes
under the Z-action of ϕ. The condition ‘. . .∩ H[x]’ is necessary for invariance
properties of the Floer homology.

We summarize the most important properties of primary points in the following
statement.

Lemma 2.2 ([]) . (i) Let ϕ be W -orientation preserving, p ∈ H (semi)primary
and denote the branches containing p by Wu

p and W s
p . Then for every (semi)

primary q ∈ (Wu
p ∩ W s

p )\{pn | n ∈ Z} there is a unique n ∈ Z such that
qn ∈ ]p, ϕ(p)[u ∩ ]p, ϕ(p)[s.

(ii) For a primary point p holds µ(p) := µ(p, x) ∈ {±1,±2,±3}.
(iii) Let all primary points p ∈ Wu ∩W s be transverse. Then there are modulo

Z-action only finitely many primary points.

Now we consider the so-called ‘gluing and cutting’ procedure on which the well-
definedness of Floer homology is based, more precisely the proof of ∂◦∂ = 0. For the

following, compare Figure. Briefly, gluing of two immersed di-gons v ∈ M̂(p, q)

and v̂ ∈ M̂(q, r) with µ(p, q) = 1 = µ(q, r) (and therefore µ(p, r) = 2) is the

construction which recognizes the tupel (v, v̂) as an element of N̂ (p, r). Cutting is

the ‘inverse’ construction which starts with w ∈ N̂ (p, r) and finds two significant

points qu, qs ∈ Hpr such that w can be seen either as tupel (v, v̂) ∈ M̂(p, qu) ×
M̂(qu, r) or as tupel (v′, v̂′) ∈ M̂(p, qs)× M̂(qs, r).

Theorem 2.3 (‘Gluing’, []) . Let p, q, r ∈ H with [p] = [q] = [r] and µ(p, q) =

1 = µ(q, r). Let v ∈ M̂(p, q) and v̂ ∈ M̂(q, r). Then the gluing procedure # for v

and v̂ yields an immersed heart w := v̂#v ∈ N̂ (p, r).

The four possible geometric positions of the three involved points are described
in Figure. The q which lies on that part of the unstable manifold, which crossed
the interior of the immersed heart after passing the concave vertex, is called qu.
The other ‘cutting point’ qs is named analogously. The gluing construction # glues
v ∈M(p, qu) and v̂ ∈M(qu, r) along the common boundary segment [p, qu]u.

r p

Wu

W s

W s

qu

qs
qu

qs

Wu

r
p

Figure 3. Immersions with µ(p) = µ(q) + 1 = µ(r) + 2

Theorem 2.4 (‘Cutting for primary points’, []) . Let all primary points be trans-
verse and p, r ∈ Hpr with µ(p, r) = 2 and w ∈ N (p, r). Then there are unique
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points qu and qs such that either both qi are primary admitting vi ∈ M(p, qi) and
v̂i ∈M(qi, r) with v̂i#vi = w for i ∈ {s, u} or none of them is primary.

Being ‘primary’ is a strong geometric condition — we can split µ(p, r) = µ(p)−
µ(r) and sketch and draw all possible situations which match µ(p, r) = µ(p)−µ(r) =
2 where µ(p), µ(r) ∈ {±1,±2,±3} according to Remark. The possible cutting
situations are sketched in Figure.

With (slight) assumptions on the intersection behaviour of the branches, the
above theorem is also true for p, r ∈ H yielding qs, qu ∈ H.

Signs and coherent orientations. For i ∈ {s, u}, denote the two branches of W i

by W i
+ and W i

−. Associate to each branch its ‘jump direction’ as orientation sand

denote it by o(W i
+) resp. o(W i

−). Let p, q be primary with µ(p, q) = 1 and v ∈
M(p, q). Associate to v(Bi) = [p, q]i the orientation induced by the parametrization
from p to q and call it opq. In Hohloch [], it is shown that x /∈ ]p, q[u ∩ ]p, q[s.
Thus, there is a branch Wpq ∈ {Wu

+,W
u
−,W

s
+,W

s
−} containing both p and q. We

set

m(p, q) :=


1 if µ(p, q) = 1, M(p, q) 6= ∅, o(Wpq) = opq,

−1 if µ(p, q) = 1, M(p, q) 6= ∅, o(Wpq) 6= opq,

0 otherwise.

If there are two branches Wu
pq and W s

pq containing p and q then p and q are adjacent
and o(Wu

pq) = opq = o(W s
pq) as shown in Hohloch []. Thus m(p, q) is well-defined.

We do not need to distinguish the cases W -orientation preserving and reversing
since m(p, q) = m(pl, ql) for all l ∈ Z. This definition does not generalize to arbi-
trary homoclinic points. However, there is also a way to define signs for arbitrary
homoclinic points, see Hohloch [].

Lemma 2.5 ([]) . Let p and r be primary with µ(p, r) = 2 and w ∈ N̂ (p, r). For

i ∈ {s, u} assume the existence of qi with µ(p, qi) = 1 = µ(qi, r) and vi ∈ M̂(p, qi)

and v̂i ∈ M̂(qi, r) such that v̂i#vi = w. Then

m(p, qu) ·m(qu, r) = −m(p, qs) ·m(qs, r).

This follows from Figure: just check the eight possible w = v̂i#vi ∈ N̂ (p, r)
sketched in the left and right column. This skew symmetry w.r.t. the cutting and
gluing procedure is called ‘coherent orientations’ in classical Floer theory.

Primary Floer homology. Now we are ready to define the Floer chain complex. We
assume for the rest of the section (if not stated otherwise) all homoclinic points to
be primary and transverse.

We define an equivalence relation on Hpr := {p ∈ H | p primary} via p ∼ q ⇔
∃ n ∈ Z with qn = p. We set H̃pr := Hpr/∼ and denote by 〈p〉 the equivalence class

or orbit of p. Note that #H̃pr <∞ according to Remark. Due to Remark,
we can establish a well-defined homotopy class and a Maslov index via [〈p〉] := [p],

µ(〈p〉, 〈q〉) := µ(p, q) and µ(〈p〉) := µ(p, x). For 〈p〉, 〈q〉 ∈ H̃pr set m(〈p〉, 〈q〉) :=
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= (−1, 3)

x

= (−1, 3)

x
p

p
p r

(µ(p, x), µ(x, r)) = (3,−1)
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r
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r

= (−1, 3)

p
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x x

x x r

p
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Case ]x, p[u ∩ ]x, r[u 6= ∅ = ]x, p[s ∩ ]x, r[s

(i) ]x, p[u ⊂ ]x, r[u

W s

qu

Wu
x = qu

qs
qs

W s

Wu

Neither qu nor qs primary!

(ii) ]x, r[u ⊂ ]x, p[u

qs

W s

qs
qu

Neither qu nor qs primary!

W s

x = quqs

qu

W s

qs

Case ]x, p[u ∩ ]x, r[u = ∅ 6= ]x, p[s ∩ ]x, r[s

(i) ]x, p[s ⊂ ]x, r[s

qs
qu

W s

qu
Wu

x = qs

Neither qu nor qs primary!

W s

Wu

(ii) ]x, r[s ⊂ ]x, p[s

W s

Wu

quqs

qs
qu

Neither qu nor qs primary!

x = qs
qu

W s

Wu
qs

W s

W s

Wu
Wu

W s

Wu

Wu

Wu

qu
Wu
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Figure 4. Cutting for primary points
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n∈Zm(p, qn) and define

Cm := Cm(ϕ, x;Z) :=
⊕
〈p〉∈H̃pr
µ(〈p〉)=m

Z〈p〉,

∂m : Cm → Cm−1, ∂〈p〉 :=
∑
〈q〉∈H̃pr

µ(〈q〉)=µ(〈p〉)−1

m(〈p〉, 〈q〉)〈q〉

on a generator 〈p〉 and extend ∂ by linearity. We have rkZ(Cm) = #{〈p〉 ∈ H̃pr |
µ(〈p〉) = m} <∞. And due to Remark, at most C±1, C±2 and C±3 are nonzero.

Theorem 2.6 ([]) . ∂ ◦ ∂ = 0, i.e. (C∗, ∂∗) is a chain complex and

Hm := Hm(ϕ, x;Z) :=
ker ∂m

Im ∂m+1

is called primary Floer homology of ϕ in x.

Since already the Cm have finite rank over Z so has Hm and all homology groups
Hm with m 6= ±1,±2,±3 vanish.

The proof of the well-definedness of ∂ and the proof of ∂ ◦∂ = 0 are based on the
cutting and gluing construction (and on the skewsymmetry of the signs) which rely
on the classification of M(p, q) and N (p, r). Both classifications use the fact that
the loops [p, x]s ∪ [p, x]u, [q, x]s ∪ [q, x]s and [r, x]u ∪ [r, x]s are contractible. Certain
parts of the proofs are of combinatorial nature whereas other parts make use of the
iteration behaviour of the (un)stable manifolds and use classical dynamical results
like Palis’ λ-Lemma [].

Since H̃pr and the sum in the definition of ∂ are finite, primary Floer homology
is in fact completely determined by compact segments of the (un)stable manifolds
centered around the fixed point.

Invariance. Consider ϕ ∈ Diffk(M) with k ≥ 1 with x ∈ Fix(ϕ) hyperbolic. Let

ψ ∈ Diffk(M) be sufficiently Ck-near to ϕ. Then it is wellknown that ψ has a
hyperbolic fixed point y near x. W i(ψ, y) is Ck-near W i(ϕ, x) for i ∈ {u, s}, at
least on compact neighbourhoods of y and x in W i(ψ, y) and W i(ϕ, x). y is called
the continuation of x and the signs of the corresponding eigenvalues coincide.

Wu and W s are called strongly intersecting (w.r.t. x) if each branch of Wu

intersects each branch of W s, i.e. W i
+ ∩W

j
+ 6= ∅ 6= W i

− ∩W
j
+ for i, j ∈ {0, 1} and

i 6= j.

Let ϕ, ψ ∈ Symp(M) and assume x ∈ Fix(ϕ) and y ∈ Fix(ψ) to be hyperbolic.
An isotopy between (ϕ, x) and (ψ, y) is a smooth path Φ : [0, 1] → Symp(M),
τ 7→ Φ(τ) =: Φτ with Φ0 = ϕ, Φ1 = ψ, x0 = x and x1 = y and xτ ∈ Fix(Φτ ) as
continuation between x and y for all τ ∈ [0, 1]. Attaching τ to a symbol associates
it to (Φτ , xτ ), i.e. Hτpr denotes the set of primary points of (Φτ , xτ ) etc. (ϕ, x) is
called contractibly strongly intersecting (csi) if Wu and W s are strongly intersecting
and if each pair of branches has contractible homoclinic points. An isotopy Φ is csi
if (Φτ , xτ ) is csi for all τ ∈ [0, 1].

Theorem 2.7 (Invariance []) . Let (M,ω) be a closed symplectic two-dimensional
manifold with genus g ≥ 1. Let ϕ, ψ ∈ Diffω(M) with hyperbolic fixed points
x ∈ Fix(ϕ) and y ∈ Fix(ψ). Let (ϕ, x) and (ψ, y) be csi and let all primary points
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of ϕ and ψ be transverse. Assume there is a csi isotopy Φ from (ϕ, x) to (ψ, y).
Then

H∗(ϕ, x) ' H∗(ψ, y).

The proof of Theorem carries over to symplectomorphisms on R2 with com-
pact support.

3. Cylinder Floer homology. One can define (at least) two different types of
primary Floer homology on cylinders:

(i) We can set up primary Floer homology on the cylinder in the very same way as
primary Floer homology was defined in Section on R2 and on closed surfaces.
But, by definition, this type of Floer homology is based on contractible ho-
moclinic points. Therefore important examples like the perturbed pendulum
or Chirikov’s Standard map on the cylinder are excluded resp. have trivial
homology since there are no contractible homoclinic points.

(ii) If we want to include non-contractible homoclinic points on the cylinder we
might identify the cylinder with an annulus in R2 and ‘forget’ about the hole
of the annulus. In this way, we avoid the nontrivial first homotopy group of
the cylinder and we can use large parts of the homology construction from
Section. Moreover, we can adjust said construction to ‘keep in mind’ the
original homotopy class of a homoclinic point such that we get meaningful
homologies e.g. for the perturbed pendulum and Chirikov’s Standard map.
We will call this type of Floer homology cylinder Floer homology.

We will not pursue the first approach any further, but focus entirely on the second
one. The rest of the section will be spent on the construction of cylinder Floer
homology.

Symplectomorphisms on the cylinder. Whenever we work on the (infinite) symplec-
tic cylinder (Z,Ω), we assume the symplectomorphisms to be compactly supported
if not stated otherwise. We denote by Symp0(Z) := Symp0(Z,Ω) the group of
symplectomorphisms isotopic to the identity.

Analogously to Section, we define the homotopy class of a homoclinic point p
on the cylinder as [p] := [cp] ∈ π1(Z, x).

Remark 3.1. Let f ∈ Symp0(Z) with hyperbolic fixed point x. Without further
assumptions, f can be W -orientation preserving or reversing. But if we require that
(at least) one pair of intersecting branches gives rise to non-contractible semiprimary
points as in Figure then f must be W -orientation preserving w.r.t. x.

Proof. Let p for instance be as in Figure. Then [ p] 6= [f(p)] in contradiction to
Lemma.

A main pillar in the construction of primary Floer homology was the use of con-
tractible homoclinic points. The contractibility ensures that the homotopy classes
and the Maslov index are invariant under iteration of the symplectomorphism. But
we now want to admit non-contractible semi-primary points on the cylinder. Thus
we need to investigate if the homotopy classes and Maslov index still may be in-
variant under iteration of the symplectomorphism. Given f ∈ Symp0(Z), we call
x ∈ Fix(f) contractible if there is a path [0, 1] → Symp0(Z), t 7→ ft with f0 = Id
and f1 = f such that t 7→ ft(x) is contractible in Z.
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Lemma 3.2. Let f ∈ Symp0(Z) and x ∈ Fix(f). Then x is contractible and
[p] = [fn(p)] for all p ∈ H and n ∈ Z.

Proof. Polterovich ([], Example 1.3.B) proved that, on the standard symplec-
tic 2n-dimensional torus (T2n, dp ∧ dq), every fixed point x ∈ Fix(f) of any f ∈
Symp0(T2n, dp ∧ dq) is contractible. His proof is also valid in our situation.

Let ft be a symplectic path with f0 = Id and f1 = f such that x is contractible.
Set ξ(τ) := fτ (x) and compute [p] = [ξ]−1 ∗ [f(p)] ∗ [ξ] ∈ π1(Z, x). Thus [p] = [f(p)]
since ξ is contractible.

There is another way to prove the claim: Since π1(Z, x) ' Z is abelian we directly
deduce [p] = [ξ]−1 ∗ [f(p)] ∗ [ξ] ∈ π1(Z, x).

Let 0 < R− < R+ < ∞ and denote by Q := Q(R−, R+) the open annulus
in (R2, ω) centered at the origin with radii R− and R+. Let h : Z → Q be an
orientation preserving diffeomorphism which identifies the cylinder with the an-
nulus. Given f ∈ Symp0(Z), we denote by F := Fh := h ◦ f ◦ h−1 ∈ Diff(Q)
its conjugate. If x ∈ Fix(f) is hyperbolic so is x := h(x) ∈ Fix(F ). Denote by
H(f, x) := W s(f, x)∩Wu(f, x) the set of homoclinic points of f w.r.t. x and analo-
gously define H(F, x) := W s(F, x)∩Wu(F, x) seen as points in R2, i.e. all of them are
considered contractible. Denote by Hpr(F, x) ⊂ H(F, x) the set of primary points
of F w.r.t. x and define Hpr(f, x) := h−1(Hpr(F, x)). Images under h of homoclinic
points p ∈ H(f, x) are abbreviated in Gothic print as p := h(p) etc.

The construction of primary Floer homology is purely combinatorial although
the invariance and certain applications only make sense for symplectomorphisms.
In the following, we will define Floer homology on the cylinder by using the image of
the homoclinic tangle on the annulus in the plane. Later on, we will add symplectic
information obtained directly from the system on the cylinder.

Signs, gluing and cutting. By Lemma, f ∈ Symp0(Z, ds ∧ dt) preserves [p] =

[fn(p)]. Thus we can define [〈p〉] := [p]. We denote by H̃pr(f, x) resp. H̃pr(F, x)
the equivalence classes of primary points. Therefore we might consider h(p) ∈ R2

to be contractible in R2 and define the Maslov index of p ∈ H(f, x) to be µ(p) :=
µh(p) := µ(h(p), x). Then we obtain the analogous properties as in Remark.

The moment we consider h(p) as point in R2 we are about to loose the information
about its homotopy class on the cylinder. We keep track of the original homotopy
class [p] ∈ π1(Z, x) via the boundary operator. In contrast to the boundary operator

of primary Floer homology, we consider the following: Let 〈p〉, 〈q〉 ∈ H̃pr(f, x) and
recall the signs m(p, q) for primary points in R2 from Section. We define new
signs

νh(p, q) := ν(p, q) :=

{
m(p, q) if ∅ 6=M(p, q) 3 v, 0 6= Im(v),

0 otherwise

and set νh(〈p〉, 〈q〉) :=
∑
n∈Z νh(p, qn). Recall that BR−(0) ⊂ R2 corresponds to

the hole of the annulus resp. the S1-direction of the cylinder. The new signs
ensure that only immersions between primary points p, q ∈ Hpr(F, x) with [p] =
[q] ∈ π1(Z, x) are counted. Thus we stay with the boundary operator in the same
cylinder-homotopy class, i.e. the new Floer complex will split w.r.t. cylinder-
homotopy classes and thus preserve the information about the original homotopy
classes on the cylinder, see Corollary.
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The ball B := BR−(0) ⊂ R2 is untouched by F and can therefore be considered
invariant under iteration. Excluding invariant sets from the range of immersions is
‘compatible’ with the cutting and gluing procedure, more precisely, we need a result
similar to Lemma for the new signs νh.

Lemma 3.3. Let p and r be primary with µ(p, r) = 2 and w ∈ N̂ (p, r). For

i ∈ {s, u} assume the existence of qi with µ(p, qi) = 1 = µ(qi, r) and vi ∈ M̂(p, qi)

and v̂i ∈ M̂(qi, r) such that v̂i#vi = w. Then

ν(p, qu) · ν(qu, r) = −ν(p, qs) · ν(qs, r).

Proof. Consider Figure which sketches a standard ‘gluing and cutting’ situation
as described in the hypothesis. Assume B lies in the range of vs, but not in the
range of v̂s as sketched in Figure. Then

ν(p, qu) · ν(qu, r) = ν(p, qu) · 0 = 0 = −0 · ν(qs, r) = −ν(p, qs) · ν(qs, r).

The proofs for all other possible placements of B proceed similarly.

r

pWu

W s

qu

qs

B

Figure 5. Gluing and cutting while ‘excluding’ B

Cylinder Floer homology. The chain groups are defined analogously to Section via

Ck := Ck(f, x, h) :=
⊕

〈p〉∈H̃pr(f,x)
µ(〈p〉)=k

Z〈p〉.

For the boundary operator, we apply the new signs and set

D : C∗ → C∗−1, D〈p〉 :=
∑

〈q〉∈H̃pr(f,x)
µ(〈q〉)=µ(〈p〉)−1

νh(〈p〉, 〈q〉)〈q〉

on the generators and extend D by linearity.

Theorem 3.4. We have D ◦ D = 0 and H∗(f, x, h) := ker D∗
Im D∗+1

is called cylinder

Floer homology on Z.

Proof. Using Lemma instead of Lemma, the proof of ∂ ◦ ∂ = 0 (Theorem2.6) carries over.

Since the boundary operator only connects points within the same homotopy
class on the cylinder we obtain

Corollary 3.5. C∗(f, x, h) and H∗(f, x, h) split into a direct sum w.r.t. the homo-
topy classes in π1(Z, x):

C∗(f, x, h) = C∗(f, x, h, [·] = 1)⊕ C∗(f, x, h, [·] = 0)⊕ C∗(f, x, h, [·] = −1),

H∗(f, x, h) = H∗(f, x, h, [·] = 1)⊕H∗(f, x, h, [·] = 0)⊕H∗(f, x, h, [·] = −1).
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Dependency on h. Now let us have a look how the chain complex and the homology
depend on h. Concatenating h with an orientation preserving diffeomorphism of
Z or Q does not change anything. The same goes for the concatenation with

some orientation preserving diffeomorphism to another annulus ĥ : Q(R−, R+) →
Q(R̂−, R̂+).

If we concatenate h with an orientation reversing diffeomorphism, the homology
changes since the Maslov indices of the generators change. Therefore we always have
to keep in mind the orientation of the underlying map h. We denote for orientation
preserving resp. reversing h the Floer complex and homology by C∗(f, x,+) and
H∗(f, x,+) resp. C∗(f, x,−) and H∗(f, x,−). We summarize

Theorem 3.6. Up to the choice of an orientation, there are well-defined Floer
homologies H∗(f, x,±) on the cylinder. They are usually not isomorphic.

Invariance. Assume f ∈ Symp0(Z) to have compact support. Then F = h◦f ◦h−1

has compact support in Q and therefore can be considered to have compact support
in R2.

In this case, Theorem holds true for F : Since the hole of the annulus can be
considered as invariant set the invariance properties continue to hold true for the
modified boundary operator D . And since the homology of (f, x) is defined as the
one of (F, x) we obtain invariance in the sense of Theorem for the homoclinic
tangle of (f, x).

4. Action filtration. The definitions of primary Floer homology and of cylinder
Floer homology are up to now purely combinatorial and do not take any symplectic
features of the underlying manifold or symplectomorphism into account. In this
section, we will introduce a notion which allows to measure symplectic properties.
Since the technique requires an exact symplectic manifold (i.e. ω = dα for some
1-form α) we will consider primary Floer homology only on R2 and not on closed
surfaces. In the following, let (M,ω = dα) stand for the exact manifolds (R2, ω)
resp. (Z,Ω) if not stated otherwise. We assume f ∈ Symp(R2) and, on the cylinder,
f ∈ Hamc(Z) with x ∈ Fix(f) hyperbolic.

The symplectic action. For p ∈ H and i ∈ {s, u}, fix a smooth parametrization
γip : [0, 1] → [x, p]i with γip(0) = x and γip(1) = p. We introduce two functions
S : W s → R and U : Wu → R via

S(p) :=

∫
γsp

α and U(p) :=

∫
γup

α

which satisfy dS = α|W s and dU = α|Wu . S and U are often called generating
functions. Using the generating functions, we define the symplectic action of p ∈ H
via

A(p) := (S − U)(p) =

∫
γ̄up#γsp

α

with γ̄up (τ) := γup (1 − τ) and where # stands for the concatenation of paths. If

M = R2, denote by G(x, p) the region enclosed by γ̄up#γsp and call it the resonance
domain of p. Provide G(x, p) with the orientation whose restriction to the boundary
coincides with the one of γ̄up#γsp. In that case, we obtain furthermore

A(p) =

∫
γ̄up#γsp

α =

∫
G(x,p)

ω
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which is the (signed) symplectic area of the resonance domain of p. Back to M = R2

or M = Z, the relative action of p, q ∈ H is given by

A(p, q) := (S − U)(p)− (S − U)(q) = A(p)−A(q).

Since immersions in M(p, q) are orientation preserving, Stokes’ theorem yields

Lemma 4.1. Let p, q ∈ H (with [p] = [q] ∈ π1(Z, x) if M = Z). Assume µ(p, q) =
1 and v ∈M(p, q) 6= ∅. Then

A(p, q) =

∫
v

ω > 0, implying A(p) > A(q).

In particular, A(p, q) is the symplectic area enclosed by [p, q]s and [p, q]u.

In Section and Section, we worked purely with the existence of those orien-
tation preserving immersions v ∈M(p, q), but we did not use the interpretation of∫
v
ω as symplectic area. Now recall

Lemma 4.2 ([], Prop. 9.19) . f ∈ Hamc(Z) if and only if f∗α − α = dH̃ for a

smooth function H̃ : Z → R.

We conclude

Corollary 4.3. Let f ∈ Symp(R2) resp. f ∈ Hamc(Z). Then A(p) = A(fn(p))
and A(p, q) = A(fn(p), fn(q)) for all n ∈ Z.

Proof. In case f ∈ Symp(R2), the invariance follows from the fact that f is volume
preserving and that the simply closed curve cp associated to a homoclinic point p
bounds the compact ‘disc’ G(x, p).

Now consider the case f ∈ Hamc(Z). By Poincaré duality, the singular ho-
mology of Z is isomorphic to the cohomology with compact support. Therefore a
1-cohomology class is exact if and only if it vanishes on all 1-homology classes. By
Lemma, f∗α−α is exact. Evaluating on the curve cp associated to a homoclinic
point p we get

0 =

∫
cp

(f∗α− α) =

∫
cf(p)

α−
∫
c

α = A(f(p))−A(p).

Thus the action is invariant under f and descends to H̃pr. We define A(〈p〉) :=
A(p) and A(〈p〉, 〈q〉) := A(p, q). Analogously to classical Floer homology (cf.
Schwarz [], Polterovich []), we define the action spectrum as Spec(f, x) :=

{A(〈p〉) | 〈p〉 ∈ H̃pr}. The width of the action spectrum is defined as

width(f, x) := max
〈p〉,〈q〉∈H̃pr

|A(〈p〉)−A(〈q〉)|.

Let W s
br ⊂ W s and Wu

br ⊂ Wu be a branch of the (un)stable manifold and assume
W s
br∩Wu

br 6= ∅. The minimal gap in the action spectrum w.r.t. W s
br∩Wu

br is denoted
by

gap(f, x,W s
br,W

u
br) := min

〈p〉,〈q〉∈H̃pr
〈p〉,〈q〉∈W s

br∩W
u
br

|A(〈p〉)−A(〈q〉)|

and the minimal gap is defined as

gap(f, x) := min
〈p〉,〈q〉∈H̃pr

|A(〈p〉)−A(〈q〉)|.

Clearly, we have gap(f, x) ≤ gap(f, x,W s
br,W

u
br) ≤ width(f, x).
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The action filtration. In classical Floer theory, the symplectic action has been used
with success to define and interprete symplectic invariants — one method is the
so-called filtration by the action (see e.g. Schwarz []) which we will apply to
our setting. It will make H∗(f, x) resp. H∗(f, x,±) sensitive for symplectic fea-
tures. The main observation, on which the construction of the action filtration
relies, is Lemma: It holds A(p) ≥ A(q) if p, q ∈ Hpr(f, x) with µ(p, q) = 1

and M̂(p, q) 6= ∅. We demonstrate the construction with (positive) cylinder Floer
homology H∗(f, x,+). The constructions for H∗(f, x) and H∗(f, x,−) are similar.

Let a ∈ R and define the filtered Floer complex via

C a
k := C a

k (f, x,+) :=
⊕

〈p〉 ∈ H̃pr(f, x)
µ(〈p〉) = k
A(〈p〉) ≤ a

Z〈p〉.

Since A(p) > A(q) for p, q ∈ Hpr(f, x) with µ(p, q) = 1 and M̂(p, q) 6= ∅ according
to Lemma, the boundary operator D restricts to C a

k . Thus (C a
∗ ,D) is a sub-

complex of (C∗(f, x,+),D). For a < b, we define C
]a,b]
∗ := C b

∗ /C
a
∗ and there is a

short exact sequence of chain complexes

0→ C a
∗

i−→ C b
∗

j−→ C
]a,b]
∗ → 0 for −∞ ≤ a < b ≤ ∞.

We identify C∞∗ = C∗(f, x,+) and C
]−∞,a]
∗ = C a

∗ and define H
]a,b]
∗ := H

]a,b]
∗ (f, x,+)

as the homology of C
]a,b]
∗ . For −∞ ≤ a < b < c ≤ ∞ we obtain the long exact

sequence

· · · →H
]b,c]
k+1 →H

]a,b]
k

i∗−→H
]a,c]
k

j∗−→H
]b,c]
k →H

]a,b]
k−1 → . . .

of filtered Floer homology.

Remark 4.4. Let a < min{A(p) | 〈p〉 ∈ H̃pr} and b > max{A(p) | 〈p〉 ∈ H̃pr} and

set amin := min{A(p) | 〈p〉 ∈ H̃pr}. Then H
]−∞,a]
∗ = 0 and H

]b,∞]
∗ = 0 such that

the homology is concentrated in the interval ]amin−ε, amin+width(f, x)] for ε > 0.

For certain homology classes, we exactly know their critical levels in the action
filtration:

Remark 4.5. Set I := {n ∈ {±1,±2,±3} | Cn−1 = 0} and for k ∈ I consider

c ∈ Ck with c =
∑
l cl〈pl〉. Then c represents a homology class and lives in H

]a,b]
∗

for a < minlA(〈pl〉) and maxlA(〈pl〉) ≤ b. In particular 1, −3 ∈ I.

5. Flux and transport. Let us recall the following definition from MacKay &
Meiss & Percival [].

Definition 5.1. Let c be a simply closed curve in (R2, ω) and let ϕ ∈ Symp(R2)
be W -orientation preserving. Denote by Int(c) the interior of c and by Ext(c) its
exterior. We define

F luxϕ(c) := volω(ϕ(Int(c)) ∩ Ext(c)) = volω(Int(ϕ(c)) ∩ Ext(c))

to be the absolute flux of ϕ through c. If ϕ is W -orientation reversing then ϕ2 is
W -orientation preserving and we set F luxϕ := F luxϕ2 .
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F luxϕ(c) is the (symplectic) area of the set of all points mapped by ϕ from
the interior of c to the exterior of c. Since ϕ is area preserving the absolute flux
coincides with the area of the set of all points mapped from the exterior of c to its
interior, i.e. F luxϕ(c) = volω(ϕ(Ext(c)) ∩ Int(c)). In the following, we usually call
the absolute flux briefly flux.

MacKay & Meiss & Percival [] used the flux in order to study the long-term
behaviour of symplectomorphisms w.r.t. iteration. More precisely, they were inter-
ested in the question how, when and, in particular, where points were mapped from
one region to another by the symplectomorphism. They called the whole procedure
of motion of points under iteration transport. For instance, consider the following
phenomenon. F luxϕ(c) measures how much of a ‘barrier’ the curve c is for the
transport: For example, if c is invariant under ϕ, the flux through c is zero. In that
case, c is a ‘complete barrier’ for the transport of points by ϕ. Later on, we will
investigate certain curves which form a ‘partial barrier’ and where the ‘outlet’ only
happens along a small part of c.

Now consider the (infinite) cylinder (Z,Ω) and let ϕ ∈ Hamc(Z). Let c be a
curve with [c] ∈ {±1} ⊂ π1(Z) ' Z without self-intersections. Since ϕ is isotopic to
the identity it holds [c] = [ϕ(c)]. The range of c cuts the cylinder into two connected
components. Denote one of them by Zc (in explicit examples Z is the component
towards −∞). On the cylinder, the flux is defined via

Definition 5.2. Let c be a curve on (Z,Ω) with [c] ∈ {0,±1} without self-
intersections and let ϕ ∈ Hamc(Z). If c is not contractible define the absolute
flux through c as

F luxϕ(c) := volω(Zϕ(c)\Zc).
If c is contractible, define F luxϕ(c) as in Definition.

Again, we usually call the absolute flux briefly flux. F luxϕ(c) is well-defined
since one deduces volω(Zϕ(c)\Zc) = volω(Zc\Zϕ(c)) from Lemma analogously
to the proof of Corollary. Note that ‘flux’ is used for different objects in the
literature:

Remark 5.3. a) The definition of F luxϕ(c) in Definition and Definition
differs from the flux homomorphisms flux and Flux used in symplectic geometry
as e.g. in McDuff & Salamon [] and Polterovich []: F luxϕ(c) only measures
how much is mapped out of Int(c) whereas the flux in [] and [] also takes
into account how much is mapped into Int(c). In [] and [], Hamiltonian
diffeomorphisms therefore are characterized by vanishing flux.

b) MacKay & Meiss & Percival [] consider area preserving maps in the plane and
on the infinite cylinder. They define the absolute flux, but call it just flux. We
renamed it ‘absolute flux’ in order to avoid confusion with Polterovich [] and
McDuff & Salamon []. Moreover, MacKay & Meiss & Percival [] set

Calϕ(c) := volω(Zϕ(c)\Zc)− volω(Zc\Zϕ(c))

and call it the net flux or Calabi invariant. It corresponds to the flux in [] and
[]. For applications, they require the area preserving maps to have zero net
flux, i.e. in our notation, to be Hamiltonian diffeomorphisms.

Turnstiles. Let ϕ ∈ Symp(R2) or ϕ ∈ Hamc(Z) with hyperbolic fixed point x. We
need ϕ to be W -orientation preserving since we want the branches of the (un)stable
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manifolds to be invariant under iteration. Therefore replace in the following ϕ by
ϕ2 if ϕ is W -orientation reversing.

Let p be a homoclinic point and consider the (un)stable segments [x, p]u and
[x, p]s. For the segments [x, ϕ(p)]u and [x, ϕ(p)]s holds [x, ϕ(p)]s ⊂ [x, p]s and
[x, ϕ(p)]u ⊃ [x, p]u. Denote by cp a curve which runs from x via [x, p]u to p and via
[x, p]s back to x. Then the ranges of the curves cp and cϕ(p) coincide except in the
segments [p, ϕ(p)]u and [p, ϕ(p)]s.

Definition 5.4. Given a primary orbit 〈p〉 on the cylinder resp. R2, we set

F luxϕ(〈p〉) := F luxϕ(cp).

Apart from homoclinic orbits, MacKay & Meiss & Percival [] also consider
(quasi)periodic and heteroclinic orbits and define the flux through those orbits as
the flux through suitable curves joining the points in the orbit. But MacKay &
Meiss & Percival [] are actually mainly interested in the flux through cantori.
For that, they close the gaps of the cantorus with a suitable curve and define the
flux through the cantorus as the flux through the associated curve. Which kind of
curves minimizes the flux through cantori is treated in Polterovich [].

Recall from Remark how and where primary points appear in the tangle.

Definition 5.5. ϕ is called x-simple if each pair of intersecting branches contains
exactly two primary orbits (an example is sketched in Figure).

ϕ(p)
q

p

x

(a) (b)

x

q2

q1 p

q

p−1

p−2

q−2 q−1

p1

p2

Figure 6. Turnstiles: (a) on the cylinder and (b) on R2

Definition 5.6. Let ϕ be x-simple and 〈p〉 and 〈q〉 the primary points in a chosen
pair of intersecting branches. Assume {q} = ]p, ϕ(p)[s ∩ ]p, ϕ(p)[u. The resulting
picture is called a true turnstile with pivot q and frame p and ϕ(p). The regions
enclosed by [p, ϕ(p)]s ∪ [p, ϕ(p)]u are called the wings of the turnstile.

The basic idea of turnstiles goes back to MacKay & Meiss & Percival [], but
we are refining the notion. An example of a true turnstile (with shaded wings) is
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sketched in Figure (a). We observe that the shaded region between ϕ(p) and q is
swept from Zcp to Z\Zcϕ(p)

whereas at the same time the shaded region between p

and q is swept from Z\Zcp to Zcϕ(p)
. All points which are mapped by ϕ from Zcp

to Z\Zcp lie in the region enclosed by [p, q]u ∪ [p, q]s. And analogously, all points
moving from Z\Zcp to Zcp lie in the region enclosed by [q, ϕ(p)]u ∪ [q, ϕ(p)]s. A

similar observation clearly holds for turnstiles in R2.

Remark 5.7. There is no ‘turnstile-like’ picture between primary points of different
branches.

The following statement explains the absolute flux of a primary point in terms
of the related turnstile.

Lemma 5.8. Let ϕ ∈ Symp(R2) or let ϕ ∈ Hamc(Z) and assume ϕ to be x-simple.
Let p be a primary point and pivot of a true turnstile with frame q and ϕ(q). Denote
by cpq a curve which runs from p through [p, q]u to q and then through [p, q]s back
to p. The wing enclosed by cp,q is called G(p, q). Then we have

F luxϕ(〈q〉) =
∣∣∣ ∫

cpq

α
∣∣∣ =

∣∣∣ ∫
G(p,q)

ω
∣∣∣ =

∣∣∣ ∫
G(p,ϕ(q))

ω
∣∣∣ =

∣∣∣ ∫
cpϕ(q)

α
∣∣∣

and in particular

F luxϕ(〈p〉) = F luxϕ(〈q〉).
Thus the flux through 〈p〉 resp. 〈q〉 equals the symplectic volume of one wing of the
associated turnstile.

Proof. As in the proof of Corollary, this follows from Lemma.

MacKay & Meiss & Percival [] are not interested in a more general definition of
turnstiles since it is not relevant for their theory. But, for us, the case with several
pivots is also interesting. ‘Several pivots’ can mean nonprimary orbits ‘between’ the
primary ones or more than two primary orbits in a pair of intersecting branches:

Definition 5.9. 1. Let ϕ be x-simple with primary orbits 〈p〉 and 〈q〉, but as-
sume #(]p, ϕ(p)[s ∩ ]p, ϕ(p)[u) = 3. The resulting picture is called an over-
twisted turnstile with frame p and ϕ(p) and pivot q. An example is sketched
in Figure

2. Now assume that a pair of intersecting branches has k primary orbits given by
〈p1〉, . . . , 〈pk〉 and that they satisfy ]p1, ϕ(p1)[s ∩ ]p1, ϕ(p1)[u = {p2, . . . , pk}.
We call this picture a k-generalized turnstile with frame p1 and ϕ(p1) and
pivots p2, . . . , pk. Note that the wings between pi and pi+1 not always have
the same symplectic volume for 1 ≤ i ≤ k with pk+1 := ϕ(p1). An example is
sketched in Figure.

Remark 5.10. 1. Overtwisted turnstiles with frame p and ϕ(p) and pivot q
always look schematically like the one in Figure (a). The proof is similar to
the one of Remark. Moreover, there is always an associated true turnstile
with frame q and ϕ(q) and pivot ϕ(p) as in Figure (b).

2. Overtwisted turnstiles correspond to so-called ‘mixed moves with primary-
secondary flips’ in Hohloch [], k-generalized turnstiles correspond to so-
called ‘primary moves’ in Hohloch [].

Analogously to Lemma we obtain
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x
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s

(a)

p

q

ϕ(p)

x

r

s

q

(b)

p
p−1 q−1

p1

Figure 7. (a) Overtwisted turnstile with frame p and ϕ(p) and
pivot q; (b) True turnstile with frame ϕ−1(q) and q and pivot p

x p2

p4

p1

p3

p1
1

Figure 8. Different relative actions

Lemma 5.11. For a k-generalized turnstile with frame p1 and ϕ(p1) and pivots
p2, . . . , pk holds

F luxϕ(〈p1〉) =

k
2∑
i=1

∣∣ A(〈p2i−1〉, 〈p2i〉)
∣∣= k

2∑
i=1

∣∣ A(〈p2i〉, 〈p2i+1〉)
∣∣ .

For overtwisted turnstiles with frame p and ϕ(p) and pivot q holds∣∣ A(〈p〉, 〈q〉)
∣∣ > F luxϕ(〈p〉).

There are also combinations of generalized and overtwisted turnstiles, but we
are mainly interested in a special case of generalized turnstiles. Let ϕ ∈ Symp(R2)
or ϕ ∈ Hamc(Z) be x-simple having a true turnstile with frame p and ϕ(p) and
pivot q. Now consider the iterate ϕn for n ∈ N. We have W s(ϕ, x) = W s(ϕn, x)
and Wu(ϕ, x) = Wu(ϕn, x) as sets. But the two primary orbits 〈p〉 and 〈q〉 split
into 2n classes 〈p0〉, . . . , 〈pn−1〉 and 〈q0〉, . . . , 〈qn−1〉. In particular, we have a 2n-
generalized turnstile with frame p0 and pn and pivots q0, p1, . . . , qn−1 as sketched
in Figure (b). Lemma and Lemma imply

Corollary 5.12. Under the above assumptions holds for 0 ≤ i ≤ n− 1

F luxϕn(〈pi〉) =

n−1∑
l=0

∣∣ A(〈pl〉, 〈ql+1〉)
∣∣= n−1∑

l=0

∣∣ A(〈ql〉, 〈pl〉)
∣∣

and in particular

F luxϕn(〈pi〉) = nF luxϕ(〈p〉).
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We conclude for the growth behaviour

Remark 5.13. A homoclinic orbits forms a partial barrier for the transport of ϕ
where the only in- and outlet is the associated turnstile. For true and generalized
turnstiles, the relative action and the flux coincide, but not for overtwisted ones.
Moreover, the flux grows linearly in n if n is the number of iterations of ϕ.

Variational principle and discrete action functional. In order to describe the flux
analytically, MacKay & Meiss & Percival [] resort to a variational principle with
an action functional and refer to Mather [] for details. Mather uses a minimax
principle to proof a criterion for the existence of invariant circles of certain area-
preserving diffeomorphisms of the annulus or cylinder. Mather’s technique was
inspired by Birkhoff’s work on the billiard problem. In the following, we recall the
main idea.

MacKay & Meiss & Percival [] write the symplectic cylinder ( Z,Ω) as (R ×
S1, ds ∧ dt) with coordinates s ∈ R and t ∈ S1. The corresponding annulus also
has radial coordinate s and circle coordinate t. An area preserving map f with

f(s, t) =: (s̃, t̃) on the annulus is called a monotone twist map if ∂t̃
∂s > 0 for all s

and t. For a monotone twist map f , there exists a function F with

s = −∂F (t, t̃)

∂t
and s̃ =

∂F (t, t̃)

∂t̃

called generating function. It implies ∂2F
∂t∂t̃

< 0. F uniquely determines f , and f

determines F up to a constant. Set ∂1F := ∂F/∂t and ∂2F := ∂F/∂t̃. A bi-infinite
sequence τ = (τi)i∈Z is called an equilibrium sequence if

∂2F (τi−1, τi) + ∂1F (τi, τi+1) = 0

for all i ∈ Z. For σi := ∂1F (τi, τi+1), this can be reformulated to f(σi, τi) =
(σi+1, τi+1). Thus we obtain the following relation between equilibrium sequences
and orbits of the monotone twist map: (τi)i is an equilibrium sequence if and only
if (σi, τi)i is an orbit of f .

More generally, Mather introduces for sequences τ = (τi)i∈Z with τi+n = τi +m
the action functional

W (τ) =

n−1∑
i=0

F (τi, τi+1).

He shows that any such sequence, which maximizes W , is an equilibrium sequence.
The corresponding orbit is called Birkhoff max orbit of type (m,n). Given such
a maximizing sequence τ = (τi)i, there is another maximizing sequence called τ+

defined via τ+
i := τi+i0 + j0 where mi0 + nj0 is the minimal positive element of

{mi + nj | i, j ∈ Z}. Now consider such two maximizing sequences τ and τ+.
They satisfy W (τ) = W (τ+) =: Wmax

m,n . The minimax principle yields a saddle

between τ and τ+ and Mather associates to the saddle its minimax value Wminimax
τ,m,n .

Sequences τ ′ := (τ ′i)i∈Z with τ ′i+n = τ ′i + m and W (τ ′) = Wminimax
τ,m,n are shown to

be equilibrium sequences and the corresponding orbits are called Birkhoff minimax
orbits of type (m,n). Moreover, Mather shows that for two maximizing sequences
τ and τ̂ the minimax values coincide, i.e.

Wminimax
τ,m,n = Wminimax

τ̂,m,n =: Wminimax
m,n .
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With this in mind, the difference in action is defined as

4Wm,n := Wmax
m,n −Wminimax

m,n .

For irrational r ∈ R\Q, Mather sets 4Wr as the limit 4Wr := limm
n→r4Wm,n.

Flux and difference in action. Whereas Mather [] focuses on periodic orbits,
MacKay & Meiss & Percival [] introduce an analogous action and minimax
principle for (quasi)periodic, homoclinic and heteroclinic orbits on the cylinder
(R × S1, ds ∧ dt). They obtain an interesting relation between Mather’s difference
in action 4W and the flux. Their intuition is given by the following calculation.

Fix m, n ∈ N and let τ be an equilibrium sequence which gives rise to a Birkhoff
max orbit of type (m,n). Denote by τ ′ the associated minimax sequence. Choose
a curve c joining (σ0, τ0) to (σ1, τ1) and passing through (σ′0, τ

′
0). Concatenating c,

f ◦ c, . . . , fn−1 ◦ c yields a closed curve γ. Then the range of f ◦ γ coincides with
the range of γ except for the segment between (σ0, τ0) to (σ1, τ1). Denote by c̃ the
segment between (σ0, τ0) and (σ′0, τ

′
0). Then the flux through γ is given by

F lux f (γ) =

∫
f◦γ

sdt−
∫
γ

sdt =

∫
fn◦c̃

sdt−
∫
c̃

sdt

=

∫
∂2F (τn−1, t)dt+

∫
∂1F (t, τ1)dt

=

∫
∂2F (τn−1, t) + ∂1F (t, τ1) dt+

n−1∑
i=1

∫
∂2F (τi−1, t) + ∂1F (t, τi+1) dt

=

n−1∑
i=0

F (τi, τi+1)−
n−1∑
i=0

F (τ ′i , τ
′
i+1)

= 4Wm,n.

More generally, they obtain

Theorem 5.14 ([]) . Let f be a Hamiltonian diffeomorphism on the cylinder which
is in addition also a monotone twist map. Then holds for the periodic, quasiperiodic
and heteroclinic orbits of f : The difference in action 4W between a maximizing
orbit and the associated minimax orbit coincides with the area of one wing of the
turnstile, i.e. the flux through the associated curve.

Peierl’s energy barrier. Let ϕ ∈ Symp(R2) or ϕ ∈ Hamc(Z) be x-simple and let
W s
br and Wu

br be a pair of intersecting branches with primary orbits 〈p〉 and 〈q〉,
both inducing true turnstiles. By Lemma, we have

F luxϕ(〈p〉) = F luxϕ(〈q〉) = gap(ϕ, x,W s
br,W

u
br).

Lemma implies that the flux is an invariant of the pair of intersecting branches
and contains the same information as the (minimal) gap of the spectrum.

If ϕ is not x-simple, but has primary orbits 〈p1〉, . . . , 〈pk〉 in W s
br ∩Wu

br inducing
a k-generalized turnstile associated to 〈p1〉, the situation changes to

F luxϕ(〈p1〉) > gap(ϕ, x,W s
br,W

u
br).

If one wants to filter the homology by the action as described in Section, one is
interested in the difference of critical action levels. For not x-simple symplectomor-
phisms, the flux is therefore too coarse and cannot replace the information of the
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action spectrum. But there are many important dynamical systems (like e.g. the
Standard map in Section) which are x-simple with true turnstiles.

The (minimal) gap also appears in Mather’s setting []. He calls it the Peierls’
energy barrier and he shows it to be a lower bound of 4W . In [], he proves
a modulus of continuity of the Peierls energy barrier. The Peierl’s energy barrier
goes back to a physics paper by Aubry & Le Daeron & André []. For Lagrangian
systems, it has been studied by Fathi [], [].

6. Filtered Floer homology, turnstiles, flux and growth. In this section, we
point out the relation between action, turnstiles, 4W and flux. We study how the
rank of certain filtered homoclinic Floer groups depends on the number of iterations
of the symplectomorphism and deduce that it grows linearly.

Turnstiles, flux and 4W in Floer homology. First, we study x-simple symplecto-
morphisms and the effect of turnstiles on the boundary operator.

Proposition 6.1. Let ϕ ∈ Symp(R2) or ϕ ∈ Hamc(Z) be x-simple. Let W s
br and

Wu
br be a pair of intersecting branches with primary classes 〈p〉 and 〈q〉. Assume

w.l.o.g. µ(〈p〉) = µ(〈q〉)+1 and p ∈ ]q, ϕ(q)[s ∩ ]q, ϕ(q)[u. Then 〈p〉 and 〈q〉 give rise
to two distinct (families of) turnstiles, more precisely p is the pivot of a turnstile
with frame q and ϕ(q) and q is the pivot of a turnstile with frame ϕ−1(p) and p.
The first turnstile enters the boundary operator via

∂〈p〉 = 〈q〉 − 〈q〉+
∑

〈q〉6=〈q̃〉∈H̃pr
µ(〈q̃〉)=µ(〈p〉)−1

m(〈p〉, 〈q̃〉)〈q̃〉 =
∑

〈q〉6=〈q̃〉∈H̃pr
µ(〈q̃〉)=µ(〈p〉)−1

m(〈p〉, 〈q̃〉)〈q̃〉

Proof. The existence of the two (families of) turnstiles follows from the very def-
inition. But it depends on the relative Maslov index of 〈p〉 and 〈q〉 which of the
turnstiles will appear in the boundary operator: If (w.l.o.g.) µ(〈p〉) > µ(〈q〉) we
have automatically µ(〈p〉) = µ(〈q〉) + 1. Then M(pj , qj) 6= ∅ 6= M(pj , q1+j) for
j ∈ Z and the ranges of the immersions form the wings of the turnstiles with pivots
pj and frames qj and qj+1. Since M(qj , pj−1) = ∅ =M(qj , pj) the second (family
of) turnstiles is ignored by the boundary operator. The situation is reversed if we
assume µ(〈q〉) = µ(〈p〉) + 1.

We conclude

Corollary 6.2. In case of x-simple symplectomorphisms, turnstiles are annihilated
by the boundary operator. If M(p, q̃) = ∅ for all 〈q〉 6= 〈q̃〉 ∈ H̃pr the turnstile with
pivot p lies in the kernel of the boundary operator, i.e. the pivot is a cycle.

If we consider a non x-simple symplectomorphism with classes 〈p1〉, . . . , 〈pk〉
for (even) k ≥ 4 and a generalized turnstile with frame p1 and ϕ(p1) and piv-
ots p2, . . . , pk, then at least one of moduli spaces M(pi, p1) and M(pi, ϕ(p1)) is
empty for all 2 ≤ i ≤ k. Thus there is no analog for Proposition for generalized
turnstiles.

The following statement unites the notions of orientation preserving immer-
sions, (relative) symplectic action of homoclinic points, wings of turnstiles, flux
and Mather’s difference in action 4W .

Theorem 6.3. Let ϕ ∈ Hamc(Z) be x-simple and a monotone twist map. Let W s
br

and Wu
br be a pair of intersecting branches having a true turnstile with frame p and
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ϕ(p) and pivot q and assume w.l.o.g. µ(〈p〉) = µ(〈q〉) + 1. Then v ∈ M(p, q) 6= ∅
and

A(〈p〉)−A(〈q〉) = A(〈p〉, 〈q〉) =

∫
v

ω = F luxϕ(〈p〉) = 4Wp,q.

Proof. In Lemma, we showed that the integral over an orientation preserving
immersion v ∈ M(p, q) coincides with the relative action of p and q and with the
symplectic area of the region enclosed by [p, q]s ∪ [p, q]u. Lemma yields the
relation to the flux through 〈p〉. Eventually, Theorem states that the flux
through 〈p〉 equals Mather’s difference in action 4Wp,q.

Analogously we prove

Corollary 6.4. Let ϕ ∈ Symp(R2) be x-simple. Let W s
br and Wu

br be a pair of
intersecting branches having a true turnstile with frame p and ϕ(p) and pivot q and
assume w.l.o.g. µ(〈p〉) = µ(〈q〉) + 1. Then v ∈M(p, q) 6= ∅ and

A(〈p〉)−A(〈q〉) = A(〈p〉, 〈q〉) =

∫
v

ω = F luxϕ(〈p〉).

Therefore the flux and 4W are meaningful quantities for the action spectrum of
the Floer homology. Theorem and Corollary imply that everything which is
formulated in terms of the symplectic action spectrum can be interpreted in terms
of the flux and 4W . This means that the algebraic notion of homology has a
dynamical interpretation and measures dynamical quantities.

In particular, we observe the following. Let a := min{A(〈p〉) | 〈p〉 ∈ H̃pr} and

b := max{A(〈p〉) | 〈p〉 ∈ H̃pr} and consider the action interval ]a− ε, b] with ε > 0

small. Now let β(t) := (a−ε)t+ b(1− t) and observe H
]a−ε,β(t)]
∗ . At t = 0, we have

H
]a−ε,β(t)]
∗ = H∗. As soon as t > 0, the upper action level drops under the maximal

action value with the effect that we loose at least one generator. The minimal gap
resp. for x-simple symplectomorphisms the flux now indicate how much we have to
increase t at least to obtain the next change in homology.

Filtered Floer homology, dynamics and growth. A large part of the study of dynam-
ical systems deals either with telling a map ϕ apart from its iterates ϕn or studying
the sequence of systems associated to ϕn for n ∈ Z.

If one wants to study dynamical aspects of homoclinic Floer homology, then
the iteration of the underlying symplectomorphism ϕ resp. the Z-action of the
symplectomorphism on the set of homoclinic points is a natural candidate.

Nevertheless, if one compares H∗(ϕ, x) with H∗(ϕ
n, x), one notices two compet-

itive schemes. On the one hand, the number of generators multiplies by n since
〈p〉 splits up into the n classes 〈p〉, . . . , 〈ϕn−1(p)〉. On the other hand, a priori, we
have only rkH∗(ϕ, x) ≤ rkH∗(ϕ

n, x) (cf. Hohloch []) with equality for all known
examples.

One glance at the construction of homoclinic Floer homology tells us that we
actually divided by the Z-action and considered homoclinic equivalence classes 〈p〉 ∈
H̃ instead of homoclinic points p ∈ H. (One can of also define a homoclinic Floer
homology without dividing by the action and the construction is Z-equivariant,
cf. Hohloch [].) And during the construction of homoclinic Floer homology, we
used that the action and Maslov index are invariant under the action, i.e. A(p) =
A(ϕn(p)) and µ(p) = µ(ϕn(p)) for all n ∈ Z (cf. Corollary and Remark).
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In classical Floer theory, the situation is different: Let γ be a 1-periodic Hamil-
tonian orbit and denote by γk the orbit given by iterating γ k times. In classical
Floer theory, the symplectic action A and mean index m of a 1-periodic Hamiltonian
orbit γ grow linearly with the number of iterations, more precisely

A (γk) = kA (γ) and m(γk) = km(γ).

This phenomenon was exploited for example by Ginzburg [], Ginzburg & Gürel
[] and others on the way to a proof of (generalizations of) the so-called Conley
Conjecture (‘There are infinitely many periodic Hamiltonian orbits on certain sym-
plectic manifolds’). The growth behaviour of the classical action functional is also
an ingredient in Polterovich’s [] study of the growth of the uniform norm of the
differential of a symplectomorphism and of the word length (if the symplectomor-
phism lies in a finitely generated subgroup). In a subsequent paper, Polterovich []
uses growth results in order to outline and to prove a Hamiltonian version of the
Zimmer program.

As mentioned above, the action A and the Maslov index µ are invariant under
iteration of ϕ. But in Corollary, we showed linear growth for the absolute flux

F luxϕn(〈p〉) = nF luxϕ(〈p〉).
Thus the flux seems to take over the dynamical role which the action plays in the
classical Floer setting. Corollary suggests the absolute flux as a mean to study
the iteration behaviour in our setting and to distinguish a symplectomorphism from
its iterates. Since the flux corresponds by Theorem and Corollary to the
spectrum of an x-simple symplectomorphisms one should also be able to observe
growth for filtered Floer groups.

Theorem 6.5. Let ϕ ∈ Symp(R2) resp. ϕ ∈ Hamc(Z). Let b ∈ Spec(ϕ, x) and

0 < ε ≤ 1
2 gap(ϕ, x). Denote by 〈p1〉 . . . 〈pk〉 ∈ H̃pr the primary orbits with action

b. Then we obtain in case ϕ ∈ Symp(R2)

H
]b−ε,b+ε]
∗ (ϕ, x) = SpanZ{〈p1〉, . . . , 〈pk〉} ' Zk,

H
]b−ε,b+ε]
∗ (ϕn, x) = SpanZ{〈p0

1〉, . . . , 〈pn−1
1 〉, . . . , 〈p0

k〉, . . . , 〈pn−1
k 〉} ' (Zk)n

and in case ϕ ∈ Hamc(Z)

H
]b−ε,b+ε]
∗ (ϕ, x) = SpanZ{〈p1〉, . . . , 〈pk〉} ' Zk,

H
]b−ε,b+ε]
∗ (ϕn, x) = SpanZ{〈p0

1〉, . . . , 〈pn−1
1 〉, . . . , 〈p0

k〉, . . . , 〈pn−1
k 〉} ' (Zk)n.

Proof. Consider the case of primary Floer homology first. By assumption, all
points 〈p1〉, . . . , 〈pk〉 have the same action. The action strictly decreases along
the boundary operator. Thus we have ∂〈p1〉 = · · · = ∂〈pk〉 = 0. Thus we have

H
]b−ε,b+ε]
∗ (ϕ, x) = C

]b−ε,b+ε]
∗ (ϕ, x) = SpanZ{〈p1〉, . . . , 〈pk〉}. The argument for

H
]b−ε,b+ε]
∗ (ϕn, x) is the same. For cylinder Floer homology proceed analogously.

Therefore the ranks of the filtered homology groups grow linearly:

Corollary 6.6. The filtered homology distinguishes between ϕ and its iterate ϕn.
Under the assumptions of Theorem we obtain linear growth

rkH
]b−ε,b+ε]
∗ (ϕn, x) = n rkH

]b−ε,b+ε]
∗ (ϕ, x),

rk H
]b−ε,b+ε]
∗ (ϕn, x) = n rk H

]b−ε,b+ε]
∗ (ϕ, x).
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7. An example: Chirikov’s Standard map. In this section, we compute the
filtered Floer homology for the homoclinic tangle given by Chirikov’s Standard map

fε : R2 → R2, (s, t) 7→ (s+ t+ ε sin s, t+ ε sin s)

with ε > 0. The dynamics of the Standard map have been studied by many math-
ematicians and physicists, but the estimates in Melnikov’s method are to coarse to
predict intersection points for the (un)stable manifolds. Eventually Lazutkin []
came up with a symplectic invariant L which measures the area of the parallelo-
gram spanned by two (suitably normalized) tangent vectors taken at an intersection
point of the stable and unstable manifold. Lazutkin’s invariant can be used to study
the intersection behaviour of the (un)stable manifolds and to compute the relative
symplectic action between two primary points. Gelfreich [] made this approach
rigorous. The Standard map can be generalized to

fg,ε : R2 → R2, (s, t) 7→ (s+ t+ εg(s), t+ εg(s))

where g : R → R is a function. Gelfreich & Simo [] studied (mainly numer-
ically) the arising tangle if g is a polynomial, a trigonometrical polynomial or a
meromorphic or rational function.

Properties of the Standard map. The fε has several symmetries and thus can also
be seen as map on the cylinder, the torus or the square. We consider it as map on
the cylinder with coordinates (s, t) ∈ (R/2πZ)× R.

For ε = 0 the phase space consists of invariant circles with constant t-coordinate.
For ε > 0 those invariant lines break up and we obtain hyperbolic fixed points at
(2πk, 0) and elliptic fixed points at ((2k+1)π, 0) for k ∈ Z. The (un)stable manifolds
of the hyperbolic fixed points give rise to a homoclinic tangle on the cylinder as
sketched in Figure (b). The Standard map corresponds to the pendulum equation
u′′ = sinu whose phase portrait is sketched in Figure (a). Computer plots can be

(a) (b)

Figure 9. Phase portrait of the pendulum (a) and Standard map (b)

found in Gelfreich [], Gelfreich & Simó [] and MacKay & Meiss & Percival [].
The symmetry of the Standard map implies the existence of a primary homoclinic
point p at s = π. It turns out that fε is x-simple for all its hyperbolic fixed points
x.

On the cylinder Z := (R/2πZ) × R), we consider the exact symplectic form

ω := ds ∧ dt = d(−tds) =: dα. Then f∗εα − α = df̃ε with f̃ε(s, t) := − 1
2 t

2 −
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εt sin(s) + ε cos(s)− ε2

2 sin2(s). Thus the Standard map is Hamiltonian. Moreover
fε is a monotone twist map. Therefore it has a generating function and an action
principle in the sense of Mather (for details see []).

Cylinder Floer homology of the Standard map. Let 0 < R− < R+ < ∞ and let
r : R→ ]R−, R+[ be a smooth, strictly increasing function with lims→±∞ r(s) = R±.
We identify the cylinder with the annulus Q := Q(R−, R+) via

h : S1 × R→ Q, (s, t) 7→ (r(s) cos t, r(s) sin t).

We calculate detDh(s, t) = −r′(s)r(s) < 0, thus h is orientation reversing. For
sake of readability, we will drop the minus in C∗(fε, x,−) and H∗(fε, x,−) in the
following.

The homoclinic tangle is mapped from the cylinder to Q ⊂ R2 as displayed in
Figure. A larger part of the tangle is sketched in Figure. On the annulus,

h

x

−∞

+∞

x

p1p

q
R−

R+

p

q

p1

Figure 10. Identification of the cylinder and the annulus in R2

there are eight primary equivalence classes 〈p〉, 〈q〉, 〈p̃〉, 〈q̃〉, 〈r〉, 〈s〉, 〈r̃〉 and 〈s̃〉
with µ(〈p̃〉) = −3, µ(〈q̃〉) = µ(〈s〉) = µ(〈s̃〉) = −2, µ(〈r〉) = µ(〈r̃〉) = −1, µ(〈p〉) = 1
and µ(〈q〉) = 2. The corresponding classes on the cylinder are 〈p〉, 〈q〉, 〈p̃〉, 〈q̃〉, 〈r〉,
〈s〉, 〈r̃〉 and 〈s̃〉 with

µ(〈p̃〉) = −3, µ(〈q̃〉) = µ(〈s〉) = µ(〈s̃〉) = −2, µ(〈r〉) = µ(〈r̃〉) = −1,

µ(〈p〉) = 1, µ(〈q〉) = 2.

Their homoptoy classes in π1(S1 × R, x) are

[〈p〉] = [〈q〉] = 1 ∈ Z,
[〈p̃〉] = [〈q̃〉] = −1 ∈ Z,
[〈r〉] = [〈s〉] = [〈r̃〉] = [〈s̃〉] = [x] = 0 ∈ Z.

We obtain as chain groups

C2(fε, x, [·] = 1) = Z〈q〉 and C1(fε, x, [·] = 1) = Z〈p〉
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Figure 11. Cylinder Floer homology of the Standard map

with ∂〈q〉 = 〈p〉 − 〈p1〉 = 0 and ∂〈p〉 = 0 and thus H∗(fε, x, [·] = 1) ' C∗(fε, x, [·] =
1) with

H2(fε, x, [·] = 1) ' Z and H1(fε, x, [·] = 1) ' Z.
Moreover, we compute

C−1(fε, x, [·] = 0) = Z〈r〉 ⊕ Z〈r̃〉 and C−2(fε, x, [·] = 1) = Z〈s〉 ⊕ Z〈s̃〉
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with ∂〈r〉 = 〈s〉 − 〈s−1〉 = 0 and ∂〈r̃〉 = −〈s̃〉+ 〈s̃1〉 = 0 and ∂〈s〉 = 0 and ∂〈s̃〉 = 0.
Thus we have H∗(fε, x, [·] = 0) ' C∗(fε, x, [·] = 0) and therefore

H−1(fε, x, [·] = 0) ' Z⊕ Z and H−2(fε, x, [·] = 0) ' Z⊕ Z.

It remains to calculate

C−2(fε, x, [·] = −1) = Z〈q̃〉 and C−3(fε, x, [·] = −1) = Z〈p̃〉

with ∂〈q̃〉 = 〈p̃1〉 − 〈p̃〉 and ∂〈p̃〉 = 0. Thus we obtain H∗(fε, x, [·] = −1) '
C∗(fε, x, [·] = −1) with

H−2(fε, x, [·] = 1) ' Z and H−3(fε, x, [·] = 1) ' Z.

Due to symmetry, we have A(〈p〉) = A(〈p̃〉) and A(〈q〉) = A(〈q̃〉) and A(〈r〉) =
A(〈r̃〉) and A(〈s〉) = A(〈s̃〉). There is an asymptotic formula in Gelfreich [] for
the relative action given by

A(q, p)
as
=

2

π
e−

π2

h

( ∞∑
n=0

κ2nLn

)
where ε = 4 sinh2 κ

2 which can be computed numerically. By Theorem, it coin-
cides with F lux fε(〈p〉) = F lux fε(〈q〉)

Filtered Floer homology. We demonstrate the effect of the action filtration on the

homology H∗(fε, x, [·] = 1). If [A(〈p〉),A(〈q〉)] ⊂ ]a, b] then H
]a,b]
∗ (fε, x, [·] =

1) ' Z ⊕ Z. For A(〈p〉) < b < A(〈q〉) we obtain H
]a,b]
∗ (fε, x, [·] = 1) ' Z since

C
]a,b]
∗ (fε, x, [·] = 1) ' Z〈p〉. And if b < A(〈p〉) then H

]a,b]
∗ (fε, x, [·] = 1) = 0.
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