Pleading for a functorial approach of Delzant correspondence

Christophe Wacheux, IBS-CGP

CSF Ascona - Integrable systems 2018

April 10, 2018

イロト 不得 トイヨト イヨト 二日

Preliminary comments

- This is a *work in progress* with Damien Lejay : it is possible that despite our research in the literature, our resultsare already known, or that the question get a disappointing answer. One goal for this talk is to check that with the audience.
- Category theory / functorial approach is essentially a language: "Its merit is that it exists". It can help identify the core of a given problem, not make it disappear !
- Classification of almost-toric systems "à la Delzant" is the definition and the study of its moduli space. The only definition of a moduli space comes from algebraic geometry, and is written in the language of category. Defining what is "the" category of almost-toric systems, starting with "the" category of toric systems shall help us understand the meaning of "à la Delzant" beyond some heuristic approach.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Plan

Joint work with D. Lejay.

- Reminder of the language of categories
 - Definition
 - Functors and equivalence of categories

2 The existing categorie(s) of toric systems and Delzant polytopes

- On hamiltonian torus action
- Toric integrable systems
- The Delzant correspondence
- A category of toric systems

3 Can we do better ?

Polarized toric varieties

イロト 不得 トイヨト イヨト 二日

Definition

- A (small) category ${\mathcal C}$ is defined as
 - a set of objects $Ob(\mathcal{C})$,
 - For each pair of objects A and B of C, a set $\mathcal{C}(A, B)$ called the set of "morphisms", or arrows : $f : A \to B$.
 - For each triplet A, B, C of objects in C, a binary operation

$$\circ: \mathcal{C}(A,B) \times \mathcal{C}(B,C) \to \mathcal{C}(A,C)$$
$$(f,g) \mapsto \circ(f,g) =: g \circ f$$

that is associative : $(f \circ g) \circ h = f \circ (g \circ h)$, and with an identity morphism $id_A \in \mathcal{C}(A, A)$ for each object in \mathcal{C} : $f \circ id_A = f$, $id_A \circ g = g$.

イロト 不得 トイヨト イヨト 二日

Example

- Set : $Ob(\mathbf{Set}) = \{ \mathsf{all sets} \}$, and $\mathbf{Set}(X, Y) := \{ \mathsf{maps from } X \mathsf{ to } Y \}$
- Top : $Ob(Top) = \{topological spaces\}, and$ Top $((X, \tau), (Y, \tau')) := \{continuous maps from (X, \tau) to (Y, \tau)\}$
- Grp : $Ob(Grp = \{groups\} and$ Grp $(G, H) := \{group homomorphisms from G to H\}$
- A groupoid is a category for which every arrow as an inverse.

Example (Rel)

- $Ob(\mathbf{Rel}) = \{ \mathsf{all sets} \}$
- $\mathbf{Rel}(A, B) :=$ {all binary relations between A and Bi.e. : subsets of $A \times B$ },
- for $\mathcal{R}: A \to B$ and $\mathcal{R}': B \to C$, $\mathcal{R}' \circ \mathcal{R}$ is defined by $: z(\mathcal{R}' \circ \mathcal{R})x$ if there exists a $y \in B$ such that $y\mathcal{R}x$ and $z\mathcal{R}'y$.

イロト 不得 トイヨト イヨト 二日

Definition

A functor $F: \mathcal{C} \to \mathcal{C}'$ associates objects of \mathcal{C} to objects of \mathcal{C}' , $A \to F(A)$, and to each morphism $f \in \mathcal{C}(A, B)$, associates a morphism $F(f) \in \mathcal{C}'(F(A), F(B))$ such that :

$$F(f \circ_{\mathcal{C}} g) = F(f) \circ_{\mathcal{C}'} F(g)$$
 and $F(id_A) = id_{F(A)}$

Example

- $\pi_1: \mathbf{Top}_p \to \mathbf{Grp}$ which associates to a pointed topological set (X, p) its fundamental group $\pi_1(X, p)$
- Spec: ComRing → LocRngSp, which associates to a commutative ring its spectrum of prime ideals. An important property in algebraic geometry is that it defines an equivalence of category between ComRing^{op} and the "image" of Spec, which are called affine schemes.

イロト 不得 トイヨト イヨト 二日

Definition Functors and equivalence of categories

Some "mantras" in category theory

- "Morphisms are everything": more than the objects, they give the "shape" of the category ⇒ Adjusting the number of morphisms is like having enough open sets in a topology
- "Do NOT make choices": the power of category language is to formulate construction as "best/universal solution to a problem" which is formulated by a diagram.

Each non-canonical choice hinders the power, and thus the purpose of using category, so we try to avoid them as much as possible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

On hamiltonian torus action Toric integrable systems The Delzant correspondence A category of toric systems

Definition

A torus is here a compact connected abelian Lie group of finite dimension, here denoted T. ker(exp) defines a canonical lattice Λ on t, and by duality Λ^* on t*.

Let (M^{2n}, ω) be a symplectic manifold.

Definition

An Lie group action $\rho: G \to Diff(M)$ is called Hamiltonian if there exists a Lie algebra homomorphism $\eta: \to \mathcal{C}^{\infty}(M, \mathbb{R})$ called the *comoment map* such that

$$\mathfrak{g} \xrightarrow{d\rho} \Gamma(M, TM)^G$$

$$\eta \qquad \qquad \uparrow^{ad}$$

$$\mathcal{C}^{\infty}(M)$$

The moment map μ is defined by duality. Both are uniquely defined up to a constant.

On hamiltonian torus action Toric integrable systems The Delzant correspondence A category of toric systems

First definition of an Integrable Hamiltonian systems

Definition

An Integrable Hamiltonian System (IHS) will be a triplet (M^{2n}, ω, F) with (M, ω) a symplectic manifold, and $F := (f_1, \ldots, f_n) \in \mathcal{C}^{\infty}(M^{2n} \to \mathbb{R}^n)$, such that:

- $\forall i, j = 1..n, \{f_i, f_j\}_{\omega} = 0,$
- rk(dF) is maximal almost everywhere.

F is the moment map for a Poisson \mathbb{R}^n -action, $\mathcal{F} := \{ \text{c.c. of } F^{-1}(c) \mid c \in F(M) \}$ its associated (singular) Lagrangian foliation with projection $\pi_{\mathcal{F}} : M \to B$ so that $\mathcal{F} = \{\Lambda_b\}_{b \in B}$.

For us, M will always be compact connected. We set $B_r := \{b \in B \mid \forall m \in \Lambda_b, \operatorname{rk}(dF_m) = n\}$

イロト 不得 トイヨト イヨト 二日

On hamiltonian torus action Toric integrable systems The Delzant correspondence A category of toric systems

Action-Angles coordinates

Theorem (Liouville-Arnold-Mineur theorem)

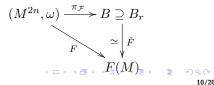
Let $b \in B_r$ the set of regular value of $\pi_{\mathcal{F}}$, then there exists an open set \mathcal{U} of Λ_b , and an *n*-dimensional torus \mathbf{T} such that $\mathcal{F}|_{\mathcal{U}}$ is symplectically isomorphic to a fibration by Lagrangian tori in a saturated neighborhood of the zero section in $T^*\mathbf{T}$.

 $\pi_{\mathcal{F}}$ defines a *singular* Lagrangian torus fibration.

A byproduct : At each $b \in B_r$, the integral covectors define *canonical* lattice A_b on T_b^*B : $(B_r, \mathcal{A} := (A_b)_{b \in B_r})$ is an open integral affine manifold: $GL_n(\mathbb{Z}) \rtimes \mathbb{R}^n$.

B and F(M) are related by:

On B_r (at least) the map $\tilde{F}: (B, \mathbb{C}) \to (F(M), \mathcal{C}^{\infty}(\mathbb{R}))$ is a local diffeomorphism.



On hamiltonian torus action Toric integrable systems The Delzant correspondence A category of toric systems

To chose or not to chose ?

Definition

An *intrinsic*, or *geometric* integrable system is a singular Lagrangian torus fibration $p: M \rightarrow B$.

An intrinsic integrable system is called "genuine" if there exists an F such that $p = \pi_F$; an *immersed* integrable system is an intrinsic integrable system together with a choice of an F.

Definition

A genuine system (M, ω, π_F) is called toric if there exists an (effective) action of a torus whose moment map is a choice of F. An "*immersed*" toric system is a genuine toric system together with a choice of such an action.

The connectedness of the fiber in [AGS] ensures that in the toric case, the immersion is actually an embedding.

On hamiltonian torus action Toric integrable systems **The Delzant correspondence** A category of toric systems

Theorem (Atiyah – Guillemin & Sternberg, 1982)

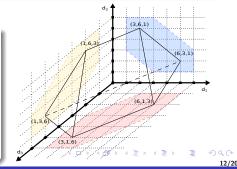
Let $\mathbf{T} \cap (M^{2n}, \omega)$ be an Hamiltonian action of a torus of dimension d, with moment map $\mu : M^{2n} \to \mathfrak{t}^*$. We have :

- the fibers of μ are connected,
- $\mu(M) =: \Delta$ is an intrinsic polytope i.e. : an integral affine **convex** manifold with corners with a finite number of extremal points, that is genuine, ie. there exists a global section for \mathcal{A}_{Δ} .

Example

The Gelfand-Cetlin system with $\Lambda = (1,3,6)$: the set of isospectral 3×3 -Hermitian matrices have diagonals (d_1, d_2, d_3) contained in the polytope

$$\Delta := Conv((1,3,6), (1,6,3), \ldots)$$



On hamiltonian torus action Toric integrable systems **The Delzant correspondence** A category of toric systems

Theorem (Delzant '87)

- Let (M, ω, π_F) be an intrinsic toric integrable system. Then: Delta is moreover normal and smooth
- Given two "embedded" toric integrable system manifolds, with the same torus T. If $\mu_1(M_1) = \mu_2(M_2)$, there exists a T-equivariant symplectomorphism such that the following diagram commutes

$$\begin{array}{ccc} M_1 & & \Phi & M_2 \\ \mu_1 & & & \downarrow \mu_2 \\ \mu_1(M_1) & & & \mu_2(M_2) \end{array}$$

Such an symplectomorphism is uniquely defined up to automorphisms.

 Given a Delzant polytope Δ, there is an explicit construction for a canonical genuine toric integrable system. If Δ is given together with a choice of an embedding, on can reconstruct an "embedded" toric integrable system, which is unique up to a T-equivariant symplectomorphism.

From that, one can give definition for the category of genuine and embedded toric systems, and the category of genuine and embedded Delzant polytopes

Definition

We set

- $gSysTor_0$ the trivial category whose object are genuine toric systems, and with identity morphisms only,
- $eSysTor_0$ the category whose object are embedded toric systems, and the morphisms are the *T*-equivariant symplectomorphisms,
- $gDel_0$ the trivial category whose object are genuine Delzant polytopes, and with the identity morphisms only,
- eDel₀ the trivial category whose object are embedded Delzant polytopes, and with the identity morphisms only,

Not satisfying from a categorical viewpoint: **very poor categories !** $eSysTor_0$ is a groupoid; the Delzant classification defines an equivalence of categories, but it is just a bijection between their π_0 's.

イロト 不得 トイヨト イヨト

We need more maps, that are not isomophisms !

A hint: Arnol'd-Liouville -Mineur theorem

 \implies the integral affine structure is the crucial structure ! $gDel_0$ is a (non-full !) subcategory of the category of integral affine manifolds.

 $\Longrightarrow \mathsf{A}$ possible \mathbf{gDel}_1 with

 $gDel_1(\Delta, \Delta') = \{a : \Delta \to \Delta' | a(\Lambda) \text{ a sublattice of } \Lambda'\}$?

I. e. : $eDel_1$ with $eDel_1(\Delta, \Delta') = \{A \in GL_n(\mathbb{Z}) \rtimes \mathbb{R}^n | A(\Delta) \subseteq \Delta'\}$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Polarized toric varieties

The underlying toric variety

There exists a forgetful functor to the category of toric varieties.

Theorem

There are no non-constant algebraic map from \mathbb{CP}^n to any algebraic variety of smaller dimension.

Proof : Bézout theorem !

イロト 不得 トイヨト イヨト 二日

Polarized toric varieties

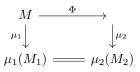
Morphisms of fans

Definition

A morphism $D:\sigma\to\sigma'$ is a integral linear map such that every cone $\tau\subseteq\sigma$ is sent to a cone $\tau'\subseteq\sigma'$

Definition

A morphism of toric varieties $V \to W$ is the same as a morphism of fan from $\sigma_V \to \sigma_W$



イロト 不得 トイヨト イヨト 二日

Let $(M^{2m}, \omega_M, \mathbf{T}, \rho_M, \mu_M)$ and $(N^{2n}, \omega_N, \mathbf{S}, \rho_N, \mu_N)$ two embedded toric systems.

Definition

Let $\varphi \in \mathcal{C}^{\infty}(M, N)$ and ψ be such that $\varphi^* \omega_N = \omega_M$, and such that it is (S, T)-equivariant, i.e.: the following diagram commutes

$$\begin{array}{ccc} T \times M & \stackrel{id_T \times \varphi}{\longrightarrow} & S \times N \\ \rho_M^T & & & \downarrow \rho_N^S \circ (\psi \times id_M) \\ M & \stackrel{\varphi}{\longrightarrow} & N \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you !

Christophe Wacheux, IBS-CGP Pleading for a functorial approach of Delzant correspondence

<□> <同> <同> < 目> < 目> < 目> < 目> < 目> □ ○ ○ ○