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SO(3) case 1 – Euler equation

Free rigid body = Left-inv. geodesic flow on SO(3).
Formulated as a Hamiltonian dynamics on T ∗SO(3)
Described by Euler equation on so(3):

dX

dt
=

[
X ,J −1(X )

]
. (1)

X ∈ so(3): angular momentum,
J : so(3) ∋ X 7→ JX + XJ ∈ so(3): inertia tensor
(positive-def. symmetric linear operator), J:diagonal.

The system can be restricted to an adjoint orbit.

(1) is completely integrable in the sense of Liouville w.r.t.
the orbit symplectic form.

The stability of the equilibria of (1) is well known.
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SO(3) case 2 – equilibria

A

B
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Marsden, Ratiu, ‘Introduction to Mechanics and Symmetry’ ഇࠈ

From Introduction to Mechanics and Symmetry by J. E.
Marsden and T. S. Ratiu (1999).

Observation. The system on a generic adjoint orbit has six
equilibria. Four of them on the A- and B-axes are elliptic,
while the other two on the C -axis are hyperbolic.
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History of generalization 1

– Complete integrability (on generic orbits)

so(n): Mishchenko, Dikii, Manakov, Ratiu (1970’s, 80’s)

semi-simple Lie algebra: Mishchenko-Fomenko (1978)

u(n): Iwai (2004), Ratiu-T 2015.

Bloch-Iserles system: Li-Tomei (2006),
Bloch-Br̂ınzănescu-Iserles-Marsden-Ratiu (2009).
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History of generalization 2

–Stability analysis

so(n): Spiegler (2004), Birtea-Casu-Ratiu-Turhan (n = 4,
2012, cf. Fehér-Marshall (2003)), Izosimov (2014)

u(n): Ratiu-T (2015).

normal (split) and compact real forms of complex
semi-simple Lie algebra: Ratiu-T.

Bloch-Iserles system: Ratiu-T.

real semi-simple of type A: Izosimov (2015, 2016).

⇝ These systems are either on special real semi-simple Lie
algebras or concerning a fixed Cartan subalgebra.

Task of this talk

Analyze the stability of equilibria for the system on any real
semi-simple Lie algebra for an arbitrary Cartan subalgebra.
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Basic (technical) concepts
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Completely integrable systems on symplectic mfd

(M , ω): symplectic mfd (ω: non-degenerate closed 2-form).
For H ∈ C∞(M): Hamiltonian, the Hamiltonian vector field
ΞH is defined through

ιΞH
ω = −dH .

Assume dimM = 2n. The Hamiltonian system is called
completely integrable in the sense of Liouville, if there exist n
functionally independent functions F1, · · · ,Fn−1,Fn(= H)
which Poisson commute:

{Fi ,Fj} = 0, (i , j = 1, · · · , n).

Here, {F ,G} = ω (ΞF ,ΞG ) = ΞF (G ).
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Equilibrium of Hamiltonian system on sympl mfd

For a Hamiltonian system (M , ω,H) on a symplectic manifold,
consider an isolated equilibrium x0 ∈ M , where ΞH (x0) = 0.

When Hess [H] (x0) is non-degenerate., the eigenvalues of the
linearization for ΞH at x0 consist of the three types as follows:

pair of purely imaginary eigenvalues ±
√
−1a (elliptic).

pair of real eigenvalues ±a (hyperbolic).

four complex eigenvalues ±a ±
√
−1b (focus-focus).

The numbers (ne , nh, nf ) of elliptic, hyperbolic, and
focus-focus components characterize the equilibrium x0
(Williamson type).
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Birkhoff normal form

Around the above equilibrium point x0 of type (ne , nh, nf ), we
can take a (formal) canonical coordinates
(p1, . . . , pn; q1, . . . , qn) with which the Hamiltonian H is
written as a (formal) power series H in n variables:

p2i + q2
i

2
, i = 1, . . . , ne ; pjqj , j = ne + 1, . . . , ne + nh;

pkqk+1 − qkpk+1, pkqk + pk+1qk+1, k = ne + nh + 1, . . . , n.

(Birkhoff normal form). N.B. n = ne + nh + 2nf .
Siegel (1954) showed that these canonical coordinates are in
general divergent (only formally determined), but there are
possibilities of convergence for completely integrable systems.
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Birkhoff normal form for integrable systems

An isolated equilibrium x0 ∈ M of a completely integrable
system (M , ω,H) with constants F1, . . . , Fn−1,Fn = H of
motion is called non-degenerate, if the linearization of the
Hamiltonian vector fields ΞF1 , · · · ,ΞFn at x0 generate a Cartan
subalgebra in sp (Tx0M , ω (x0)).

Theorem (Vey 1978)

Around a non-degenerate isolated equilibrium x0 ∈ M for a
real-analytic completely integrable system, we can take a
convergent canonical coordinates which put the Hamiltonian
into Birkhoff normal form.

Generalizations: Ito (1989), Eliasson (1990), Zung (2004).
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Relation to the stability

To analyze the stability of an isolated equilibrium x0 ∈ M for a
Hamiltonian system (M , ω,H) on a sympl mfd, we consider
the linearization of the Hamiltonian vector field ΞH at x0:

dP

dt
= ω (x0)

−1Hess [H] (x0) · P , P ∈ Tx0M .

The linear stability can be analyzed by the eigenvalue problem
of the linearization matrix ω (x0)

−1Hess [H] (x0).

In general, the linear stability does not imply the nonlinear
(Lyapunov) stability. However, if the system is completely
integrable and if one can take the Birkhoff normal form
through convergent canonical transformation, then the linear
stability implies the ellipticity (and hence Lyapunov stability)
of the equilibrium.
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§2. Geometric settings
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Geodesic flow on Lie groups w.r.t. left-inv. metric

G : (real) semi-simple Lie group, g = Lie(G ),
κ(X ,Y ) = Tr (adX ◦ adY ): Killing form, X ,Y ∈ g.

The geodesic flow on G w.r.t. a left-inv. metric can be
formulated as the Hamiltonian system (T ∗G ,Ω,H).
Ω: canonical symplectic form on T ∗G ∼= G × g∗ ∼= G × g,
H(X ) = 1

2
κ (X , φ(X ))): Hamiltonian, X ∈ g,

φ : g → g: symmetric operator.

Because of the left-invariance w.r.t. G (Lie-Poisson
reduction), the system can be described by Euler equation

d

dt
X = [X , φ(X )], X ∈ g.
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Euler equation

Euler equation is Hamilton’s equation for the Hamiltonian H
w.r.t. Lie-Poisson bracket

{F ,G}(X ) = κ(X , [dF (X ), dG (X )]), F ,G ∈ C∞(g).

(Hamiltonian vector field ΞF is defined by ΞF (G ) = {F ,G}.)

Further, the system can be restricted to an adjoint orbit
O = {AdgX0 | g ∈ G} ⊂ g. The restriction is a Hamiltonian
system w.r.t. the orbit symplectic form ωO, where

ωO(adYX , adZX ) = κ(X , [Y ,Z ]), adYX , adZX ∈ TXO.

We consider the complete integrability and the stability of the
(isolated) equilibria on a generic adjoint orbit O.
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Lie algebraic preliminary 1

To define Mishchenko-Fomenko integrable geodesic flow, we
consider a (Lie algebra isomorphic) involution θ : g → g:
θ2 = idg and set κθ (X ,Y ) := −κ (X , θY ) for X ,Y ∈ g.
If κθ is positive-definite, then θ is called Cartan involution.
(Cartan involution is known to exist and it is unique up to
inner automorphism.)

With respect the Cartan involution θ, we have the orthogonal
eigenspace decomposition g = k+ p, where θ|h = idk,
θ|p = −idp.
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Lie algebraic preliminary 2

Let h ⊂ g: (θ-stable) Cartan subalgebra (maximal Abelian
subalgebra consisting of semi-simple elements),
g = h⊕m: orthogonal decomposition w.r.t. κ.
⟨·, ·⟩ : (hC)∗ × hC → C be the dual pairing.

For α ∈ (hC)∗, set
gCα :=

{
X ∈ gC

∣∣adYX = ⟨α,Y ⟩X ,∀Y ∈ hC
}
: root space,

∆ :=
{
α ∈

(
hC

)∗ ∣∣α ̸= 0, gCα ̸= 0
}
: root system.

Then, SpanC∆ =
(
hC

)∗
,

dimCg
C
α = 1 for α ∈ ∆,

gC = hC ⊕mC = hC ⊕
∑
α∈∆

gCα: root decomposition.
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Lie algebraic preliminary 3

A subset Π = {α1, · · · , αr} ⊂ ∆ is called a base, when Π is a
basis of the vector space

(
hC

)∗
and when all α ∈ ∆ writes

α =
r∑

i=1

miαi , mi ∈ Z,

s.t. either m1, · · · ,mr ≥ 0 or m1, · · · ,mr ≤ 0. The elements
in Π are called simple roots.
We have ∆ = ∆+ ⊔∆−, setting

∆± =

{
α =

r∑
i=1

miαi ∈ ∆

∣∣∣∣∣m1, · · · ,mr ≥ 0(resp. ≤ 0)

}
.
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Sectional operator by Mishchenko-Fomenko

For a given Cartan subalgebra h ⊂ g, we take a, b ∈ h, where
⟨a, α⟩ ̸= 0 for all α ∈ ∆, and a symmetric operator D : h → h.

For X = Xh + Xm ∈ g, where Xh ∈ h, Xm ∈ m, we set
φa,b(Xm) = (ad−1

a ◦ adb)(Xm). The operator φa,b,D : g → g
defined through

φa,b,D(X ) = D(Xh) + φa,b(Xm), X ∈ g.

is called the sectional operator.
We consider Euler equation

d

dt
X = [X , φa,b,D(X )], X ∈ g.
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Bi-Hamiltonian structure of Euler equation

Euler equation has the bi-Hamiltonian structure as follows:
Besides the Lie-Poisson bracket {·, ·}, Euler equation is
Hamilton’s equation w.r.t. Poisson brackets

{F ,G}a,λ(X ) = κ (X + λa, [dF (X ), dG (X )]) , F ,G ∈ C∞(g).

for all λ ∈ R.
N. B. {·, ·}a,λ = {·, ·}+ λ{·, ·}a, {·, ·}a,0 = {·, ·}.
This can be checked through the following Lax equation

d

dt
(X + λa) = [X + λa, φa,b,D (X ) + λb] ,

equivalent to Euler equation.
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Methods by Bolsinov-Oshemkov 1

Bolsinov-Oshemkov (2009) developed systematic methods to
deal with the complete integrability and the equilibria for
bi-Hamiltonian systems (cf. Bolsinov-Izosimov (2014)).

Theorem (Mishchenko-Fomenko, Bolsinov-Oshemkov)

Let Fa be the ring of functions generated by Casimir functions
for all {·, ·}a,λ, λ ∈ R. (F ∈ C∞ (g) is Casimir w.r.t.
{·, ·}a,λ ⇐⇒ {F , ·}a,λ = 0.) Then, Fa is complete, i.e.

dFa(X ) := {dF (X ) | F ∈ Fa} ⊂ g

is a maximal isotropic subspace for X in an open dense subset
of g. Consequently, on a generic adjoint orbit O ⊂ g, the
restriction of Euler equation is completely integrable in the
sense of Liouville.
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Methods by Bolsinov-Oshemkov 2

Theorem (Bolsinov-Oshemkov)

On a generic adjoint orbit O ⊂ g, the set of the isolated
equilibria is given as

h ∩ O.

Theorem (Bolsinov-Oshemkov)

The equilibrium X ∈ h ∩O of the restriction of Euler equation
to O is non-degenerate, if the following numbers are distinct:

α (X )

α (a)
, where α ∈ ∆+ are arbitrary positive roots.
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§3. Stability analysis
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Lyapunov stability through linear stability

By Bolsinov-Oshemkov Theorem, the isolated equilibrium
X ∈ h ∩ O is Lyapunov stable if

α (X )

α (a)
, where α ∈ ∆+ are arbitrary positive roots

are distinct and if X is linearly stable.

We compute the linearization matrix of the Hamilton’s
equation with respect to a basis of TXO = m = h⊥κ .
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Linear stability 1

We use the following classification of roots:
A root α ∈ ∆ is called real, if α(h) ⊂ R.
β ∈ ∆ is (purely) imaginary, if β(h) ⊂

√
−1R.

Otherwise, a root γ ∈ ∆ is called complex.

For a real root α ∈ ∆+, we can take the root vector

uα ∈ gCα ∩ g, θuα ∈ gC−α ∩ g.

For a (purely) imaginary root β ∈ ∆+, we can take the root
vectors vβ ∈ gCβ and vβ ∈ gC−β. We consider the elements

v r
β :=

vα + vα
2

, v i
β :=

vα − vα

2
√
−1

∈ g.
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Linear stability 2

For a complex root γ ∈ ∆+, we take the root vectors
w±γ ∈ g±γ, w±γ ∈ g±γ. N. B. γ ̸= ±γ We then consider the
elements

w r
γ =

wγ + wγ

2
, w i

γ =
wγ − wγ

2
√
−1

,

w r
−γ =

w−γ + w−γ

2
, w i

−γ =
w−γ − w−γ

2
√
−1

.

The elements
uα, θuα, v

r
β, v

i
β,w

r
±γ,w

i
±γ (2)

where α ∈ ∆+: real, β ∈ ∆+: purely imaginary, γ ∈ ∆:
complex, form a basis of the complement m.
W.r.t. adYX where Y is one of (2), the linearization matrix is
decomposed into the direct sum of the following blocks.
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Linear stability 3

For a real root α ∈ ∆+, we have the 2× 2 block{
α(b)

α(a)
α(X )− α(D(X ))

}(
1 0
0 −1

)
,

for uα, θuα, which corresponds to the hyperbolic component of
Williamson type.

For a purely imaginary root β ∈ ∆+, we have the 2× 2 block

√
−1

{
β(b)

β(a)
β(X )− β(D(X ))

}(
0 −1
1 0

)
,

for v r
β, v

i
β, which corresponds to the elliptic component of

Williamson type.
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Linear stability 4

For a complex root γ ∈ ∆+, we have the 4× 4 block(
Mγ 0
0 −Mγ

)
, Mγ =

(
ργ ιγ
−ιγ ργ

)
,

where

ργ +
√
−1ιγ = γ(X )

γ(b)

γ(a)
− γ(D(X )),

for w r
±γ,w

i
±γ. This 4× 4 block corresponds to the focus-focus

component of Williamson type.
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Main results

Theorem

The Williamson type of the isolated equilibrium X ∈ h ∩ O is
given as (ne , nh, nf ), where

ne = # {β ∈ ∆+ : purely imaginary} ,
nh = # {α ∈ ∆+ : real} ,

nf =
1

2
·# {γ ∈ ∆+ : complex} .

Theorem

The isolated equilibrium X ∈ h ∩ O is linearly (and hence
Lyapunov) stable if and only if ∆+ only contains purely
imaginary roots.
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