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Minimal Chern number

(M, ω): compact symplectic manifold of dimension 2n.

k :=minimal Chern number of (M, ω)

If there exists S ∈ π2(M) s.t. c1(S) > 0 then

k ∈ Z>0 : 〈c1, π2(M)〉 = kZ

otherwise k =∞
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Minimal Chern number

(M, ω): compact symplectic manifold of dimension 2n.

Questions:
Suppose (M, ω) is positive monotone i.e.

c1 = λ[ω] λ > 0

and k <∞.
k ≤ n + 1 ?

What about k = n + 1? M ' CPn?
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Symplectic S1-actions

S1 y (M, ω)

ξ#: vector field associated to the flow of symplectomorphisms

S2

S1

ξ
ξ#
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Symplectic S1-actions

Flow of symplectomorphisms =⇒

ιξ#ω is closed.

• Hamiltonian: ιξ#ω is exact, i.e. ∃ ψ ∈ C∞(M) s.t.

ιξ#ω = dψ

ψ : M → R: moment map.
• Otherwise non-Hamiltonian.
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Hamiltonian S1-spaces

Hamiltonain S1 y (M, ω), ψ : M → R

MS1
:= set of fixed points

Hamiltonian S1 y (M, ω) =⇒ MS1 6= ∅

ιξ#ω = dψ

Assume MS1
is discrete

We call the triple (M, ω, S1),
with S1 y (M, ω) Hamiltonian,
MS1

discrete,
a Hamiltonian S1-space.
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Example of Hamiltonian S1-space

(CPn, ωFS ,S
1)

S1 action:

S1 3 λ ∗ [z0 : z1 : . . . : zn] = [z0 : λa1z1 : λa2z2 : . . . : λanzn]

with a1 < a2 < . . . < an, ai ∈ Z \ {0} for all i .
Fixed points:

[1 : 0 : . . . : 0], [0 : 1 : . . . : 0], . . . , [0 : 0 : . . . : 1]

c1 = (n + 1)x , x gen. of H2(CPn;Z)

k = n + 1
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Results:

(M, ω,S1) Hamiltonian S1-space.

1 1 ≤ k ≤ n + 1
(it holds without assuming c1 = λ[ω], λ > 0)
S., "On the Chern numbers and the Hilbert polynomial of an almost complex

manifold with a circle action", Commun. Contemp. Math., 19 (2017).

2 If k = n + 1, c1 = λ[ω] (+ two technical hypotheses)

(a) χ(M) = n + 1
Godinho, von Heymann, S., "12, 24 and beyond", Adv. Math., 319
(2017).

(b) M is homotopy equivalent to CPn.
Charton, "Hamiltonian manifolds with high index", Master thesis.
University of Cologne, 2017.
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1 ≤ k ≤ n + 1

Index k0 of (M, ω): largest integer s.t. (modulo torsion)

c1 = k0 η0

for some non-zero η0 ∈ H2(M;Z).

k0 ≥ 0
k0 = 0 exactly if c1 is torsion.
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1 ≤ k ≤ n + 1

(M, ω,S1) Hamiltonian S1-space:

Facts:
1 c1 is not torsion (Hattori ’84, Tolman ’10)
2 M is simply connected

1 =⇒ k0 > 0
2 =⇒ index k0 = minimal Chern number k .

So

1 ≤ k
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1 ≤ k ≤ n + 1

Idea of the proof of upper bound:

Find a polynomial H(z) s.t.

0 < deg(H) ≤ n

H is zero at −1,−2, . . . ,−k + 1

=⇒ k − 1 ≤ deg(H) ≤ n.
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1 ≤ k ≤ n + 1

Consider the polynomial H(z) such that

H(m) =

∫
M
em η0 T(M) for all m ∈ Z

where:
• em η0 =

∑
j≥0

(m η0)j

j!
Chern character of the Line bundle Lm whose first Chern class
is m η0 (c1 = kη0).

• T(M) is the total Todd class of M, i.e. T(M) =
∑

j Tj

Tj : j-th Todd polynomial, e.g.

T0 = 1, T1 = c1
2 , T2 =

c2
1+c2
12 , T3 = c1c2

24 , . . .
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1 ≤ k ≤ n + 1

H(m) =
n∑

h=0

mh

∫
M

ch1Tn−h
khh!

Facts about H:
deg(H) ≤ n

H(0) =
∫
M Tn = 1 for (M, ω,S1) with M connected

(Feldman ’01)

If k ≥ 2 then H(−1) = H(−2) = . . . = H(−k + 1) = 0
(S. ’17)
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1 ≤ k ≤ n + 1

Sketch of the proof of the zeros of H(z):

1 H(m) = topological index of the bundle Lm, for all m ∈ Z,
where c1(L) = η0 and c1 = k η0 (Atiyah-Singer Index
Theorem);

2 Lm admits an equivariant extension Lm
S1 for every m ∈ Z

(Hattori-Yoshida);
3 the equivariant index Pm(t) of Lm

S1 is in Z[t, t−1], and for
t = 1 gives H(m);

4 the equivariant index can be computed using a localization
formula in equivariant K -theory;

5 using this formula, compute the limits of Pm(t) for t →∞
and t → 0, and realize that these limits are both zero for all
m ∈ {−1, . . . ,−k + 1}.

6 Hence Pm(t) ≡ 0 for all m ∈ {−1, . . . ,−k + 1} =⇒
H(m) = 0 for all m ∈ {−1, . . . ,−k + 1}.
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Relations between Betti numbers and k

The toric one-skeleton of a symplectic toric manifold (M, ω, µ) is
the family of smoothly embedded, symplectic, invariant 2-spheres
corresponding to the edge set of µ(M) = ∆

e ←→ S2
e := µ−1(e).

Fact: cn−1 = PD

[⋃
e∈E

S2
e

]
.

Silvia Sabatini Universität zu Köln Hamiltonian spaces with large minimal Chern number



Relations between Betti numbers and k

The toric one-skeleton of a symplectic toric manifold (M, ω, µ)

is
the family of smoothly embedded, symplectic, invariant 2-spheres
corresponding to the edge set of µ(M) = ∆

e ←→ S2
e := µ−1(e).

Fact: cn−1 = PD

[⋃
e∈E

S2
e

]
.

Silvia Sabatini Universität zu Köln Hamiltonian spaces with large minimal Chern number



Relations between Betti numbers and k

The toric one-skeleton of a symplectic toric manifold (M, ω, µ) is
the family of smoothly embedded, symplectic, invariant 2-spheres
corresponding to the edge set of µ(M) = ∆

e ←→ S2
e := µ−1(e).

Fact: cn−1 = PD

[⋃
e∈E

S2
e

]
.

Silvia Sabatini Universität zu Köln Hamiltonian spaces with large minimal Chern number



Relations between Betti numbers and k

The toric one-skeleton of a symplectic toric manifold (M, ω, µ) is
the family of smoothly embedded, symplectic, invariant 2-spheres
corresponding to the edge set of µ(M) = ∆

e ←→ S2
e := µ−1(e).

Fact: cn−1 = PD

[⋃
e∈E

S2
e

]
.

Silvia Sabatini Universität zu Köln Hamiltonian spaces with large minimal Chern number



Relations between Betti numbers and k

Many Hamiltonian S1-spaces admit a toric one-skeleton.

All Hamiltonian S1-spaces admit a multigraph Γ = (V ,E ) that
describes the action;
A toric one-skeleton (when it exists) is the union of finitely
many smoothly embedded, symplectic, invariant 2-spheres,
each one “associated” to exactly one edge of Γ.
Idea: p ∈ M with stabilizer Zk , Op := C×-orbit, S2 = Op

Fact: If the toric one-skeleton exists:

cn−1 = PD

[⋃
e∈E

S2
e

]
.
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Relations between Betti numbers and k

E.g. Hamiltonian GKM (Goresky-Kottwitz-MacPherson) spaces

(for instance, coadjoint orbits of compact simple Lie groups).
µ(∪e∈ES2

e ) is a graph in Lie(T)∗:
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Relations between Betti numbers and k

Theorem (Godinho-S. ’12, G.-S.- von Heymann ’17)

Let (M, ω, µ) be a Hamiltonian S1-space of dimension 2n with toric
one-skeleton {S2

e }e∈E .

Let bi (M) be the Betti numbers of M, and
χ(M) its Euler characteristic.
Then

∑
e∈E c1[S2

e ] only depends on the Betti numbers.
More precisely:

If n is even

∑
e∈E

c1[S2
e ] +

n

2
χ(M) = 12

n
2∑

k=1

[
k2bn−2k(M)

]
If n is odd

∑
e∈E

c1[S2
e ] +

(
n − 3
2

)
χ(M) = 12

n−1
2∑

k=1

[
k(k + 1)bn−1−2k(M)

]
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Special cases:
Under the same hypotheses:

If n = 2 then ∑
e∈E

c1[S2
e ] + χ(M) = 12 .

If n = 3 then ∑
e∈E

c1[S2
e ] = 24 .
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Relations between Betti numbers and k

Sketch of the Proof:
Since cn−1 = PD

[
∪e∈ES2

e

]
,∑

e∈E
c1[S2

e ] = c1cn−1[M].

c1cn−1[M] only depends on the Betti numbers (“Rigidity of
Hirzebruch genus”) (Godinho-S. ’12).
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Relations between Betti numbers and k

Hamiltonian S1-spaces which are “positive”:

c1[S2
e ] > 0 for all e ∈ E .

E.g. : (M, ω, S1) monotone, i.e. c1 = λ[ω], λ ∈ R
(For Hamiltonian S1-spaces λ > 0).

Observe that:

c1[S2
e ]− k is a non-negative multiple of k , hence

∑
e∈E

c1[S2
e ]− k|E | is a non-negative multiple of k.

Both
∑

e∈E c1[S2
e ] and |E | depend on the Betti numbers.
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Relations between Betti numbers and k

(M, ω,S1) positive Hamiltonian S1-space with a toric one-skeleton
and minimal Chern number k :

k n = 2 n = 3 n = 4 n = 5

b2 b2 (b2, b4) (b2, b4)

1 b2 ≤ 4 b2 ≤ 7

2 2 b2 ≤ 3

3 1 1 (1, 2), (2, 3), (3, 1), (4, 2), (6, 1)

4 1 (1, 2)

5 (1, 1) (1, 1), (6, 1)

6 (1, 1)

Table: List of allowed values of b2 and b4 for 2 ≤ n ≤ 5.
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Relations between Betti numbers and k

Unimodality of even Betti numbers:
The sequence of even Betti numbers of (M, ω,S1) is unimodal if:

b0 ≤ b2 ≤ . . . ≤ b2b n2 c

Theorem (Cho ’16)

The sequence of even Betti numbers of a Hamiltonian S1-space
admitting an index-increasing moment map is unimodal.

E.g. Transversality of unstable and stable manifolds of moment
map =⇒ index increasing.
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k = n + 1 =⇒ χ(M) = n + 1

Theorem (Godinho, von Heymann, S. ’17)

Suppose (M, ω, S1) is a Hamiltonian S1-space s.t.

it admits a toric one-skeleton (e.g. toric action, GKM, ...);
it is positive , i.e. c1[S2

e ] > 0 on all spheres of the toric
one-skeleton (e.g. c1 = λ[ω]);
the sequence of even Betti numbers is unimodal (e.g.
transversality...).

If k = n + 1, then b2i (M) = 1 for all i = 0, . . . , n and
bodd(M) = 0, hence χ(M) = n + 1.

Sketch of the proof:∑
e∈E c1[S2

e ]− k|E | is a non-negative multiple of k∑
e∈E c1[S2

e ] and |E | can be expressed as linear combinations
of (even) Betti numbers.
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From χ(M) = n + 1 to M ' CPn

Local form of the action around p ∈ MS1
: Weights at p

If p ∈ MS1
then S1 y TpM ' Cn:

λ · (z1, . . . , zn) = (λw1pz1, . . . , λ
wnpzn)

w1p, . . . ,wnp ∈ Z are the weights of the S1 action at p.
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From χ(M) = n + 1 to M ' CPn

Example: (CPn, ωFS ,S
1)

S1 3 λ ∗ [z0 : z1 : . . . : zn] = [z0 : λa1z1 : λa2z2 : . . . : λanzn]

with a1 < a2 < . . . < an, ai ∈ Z \ {0} for all i .

Weights at p0 := [1 : 0 : . . . : 0]: a1, a2, . . . , an
p1 := [0 : 1 : . . . : 0]: −a1, a2 − a1, . . . , an − a1

. . .
pn := [0 : 0 : . . . : 1]: −an, a1 − an, . . . , an−1 − an.
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From χ(M) = n + 1 to M ' CPn

Hattori ’84 =⇒

Theorem

(M, ω, S1) Hamiltonian S1-space with χ(M) = k = n + 1. Let
p0, . . . , pn be the fixed points.
Then ∃ a1, . . . , an ∈ Z s.t. the weights at p0, . . . , pn are those of
CPn with “standard S1-action”.

The S1-action on TM|
MS1 coincides with the standard S1-action

on CPn.
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From χ(M) = n + 1 to M ' CPn

Hamiltonian S1-space (M, ω, S1),

χ(M) = n + 1 = |MS1 |

S1-action is Hamiltonian =⇒ H2i (M;Z) = Z for all i = 0, . . . , n.
Cohomology ring structure?

c1 = λ[ω], λ > 0 =⇒ c i1 6= 0 ∈ H2i (M;Z) i = 0, . . . , n =⇒

∃ Ni ∈ Z\{0} s.t. c i1
Ni

is a generator of H2i (M;Z), i = 0, . . . , n

Theorem (Tolman ’10)

Hamiltonian S1-space (M, ω, S1) with χ(M) = n + 1.
Then Ni ’s are determined by the weights, hence H∗(M;Z) is
determined by the weights at the fixed points.

Hence: if the weights agree with those of CPn, the cohomology
ring does as well.
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From χ(M) = n + 1 to M ' CPn

Theorem (Charton ’17)

Suppose (M, ω, S1) is a Hamiltonian S1-space s.t.

it admits a toric one-skeleton (e.g. toric action, GKM, ...);
it is positive , i.e. c1[S2

e ] > 0 on all spheres of the toric
one-skeleton (e.g. c1 = λ[ω]);
the sequence of even Betti numbers is unimodal (e.g.
transversality of stable and unstable manifolds of m.m. ...).

If k = n + 1, then M is homotopy equivalent to CPn.
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From χ(M) = n + 1 to M ' CPn

Sketch of the proof:

(Godinho, von Heymann, S. ’17) =⇒ χ(M) = n + 1;

M homotopy equivalent to a CW-complex X with one cell in
dimension 0, 2, . . . , 2n, π1(M) = π1(CPn) = 0;

(Hattori ’84, Tolman ’10) =⇒ H∗(M;Z) ' H∗(CPn;Z);

Construct a map f : X → CPn s.t. f∗ : Hi (X )→ Hi (CPn) is
an isomorphism for all i ;

(Corollary of Hurewicz) =⇒ f is a homotopy equivalence.
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Thank you!
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