Hamiltonian S¹-spaces with large minimal Chern number

Silvia Sabatini Universität zu Köln

April 12, 2018

Silvia Sabatini Universität zu Köln Hamiltonian spaces with large minimal Chern number

Minimal Chern number

k:=minimal Chern number of (M, ω)

k:=minimal Chern number of (M, ω)

• If there exists $S \in \pi_2(M)$ s.t. $c_1(S) > 0$ then

k:=minimal Chern number of (M, ω)

• If there exists $S \in \pi_2(M)$ s.t. $c_1(S) > 0$ then

$$k \in \mathbb{Z}_{>0}$$
:

k:=minimal Chern number of (M, ω)

• If there exists $S \in \pi_2(M)$ s.t. $c_1(S) > 0$ then

 $k \in \mathbb{Z}_{>0}$: $\langle c_1, \pi_2(M) \rangle = k\mathbb{Z}$

k:=minimal Chern number of (M, ω)

• If there exists $S \in \pi_2(M)$ s.t. $c_1(S) > 0$ then

 $k \in \mathbb{Z}_{>0}$: $\langle c_1, \pi_2(M) \rangle = k\mathbb{Z}$

• otherwise $k = \infty$

Questions: Suppose (M, ω) is positive monotone

Questions:

Suppose (M, ω) is positive monotone i.e.

$$c_1 = \lambda[\omega] \quad \lambda > 0$$

Questions:

Suppose (M, ω) is positive monotone i.e.

$$c_1 = \lambda[\omega] \quad \lambda > 0$$

and $k < \infty$.

Questions:

Suppose (M, ω) is positive monotone i.e.

$$c_1 = \lambda[\omega] \quad \lambda > 0$$

and $k < \infty$.

• $k \le n+1$?

Questions:

Suppose (M, ω) is positive monotone i.e.

$$c_1 = \lambda[\omega] \quad \lambda > 0$$

and $k < \infty$.

- $k \le n+1$?
- What about k = n + 1?

Questions:

Suppose (M, ω) is positive monotone i.e.

$$c_1 = \lambda[\omega] \quad \lambda > 0$$

and $k < \infty$.

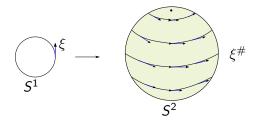
- $k \le n+1$?
- What about k = n + 1? $M \simeq \mathbb{C}P^n$?

Symplectic S^1 -actions

 $S^1 \curvearrowright (M, \omega)$

 $S^1 \curvearrowright (M,\omega)$

 $\xi^{\#}:$ vector field associated to the flow of symplectomorphisms



Flow of symplectomorphisms \implies

Flow of symplectomorphisms $\implies \iota_{\xi^{\#}} \omega$ is closed.

Flow of symplectomorphisms $\implies \iota_{\xi^{\#}} \omega$ is closed.

• Hamiltonian

Flow of symplectomorphisms $\implies \iota_{\xi^{\#}}\omega$ is closed.

• Hamiltonian: $\iota_{\xi^{\#}}\omega$ is exact,

Flow of symplectomorphisms $\implies \iota_{\xi^{\#}} \omega$ is closed.

• Hamiltonian: $\iota_{\xi^{\#}}\omega$ is exact, i.e. $\exists \psi \in C^{\infty}(M)$ s.t.

$$\iota_{\xi^{\#}}\omega={\it d}\psi$$

Flow of symplectomorphisms $\implies \iota_{\xi^{\#}}\omega$ is closed.

• Hamiltonian: $\iota_{\xi^{\#}}\omega$ is exact, i.e. $\exists \psi \in C^{\infty}(M)$ s.t.

$$\iota_{\xi^{\#}}\omega={\it d}\psi$$

 $\psi \colon M \to \mathbb{R}$: moment map.

Flow of symplectomorphisms $\implies \iota_{\xi^{\#}} \omega$ is closed.

• Hamiltonian: $\iota_{\xi^{\#}}\omega$ is exact, i.e. $\exists \psi \in C^{\infty}(M)$ s.t.

$$\iota_{\xi^{\#}}\omega=d\psi$$

 $\psi \colon M \to \mathbb{R}$: moment map.

• Otherwise non-Hamiltonian.

Hamiltonain $S^1 \curvearrowright (M, \omega)$, $\psi \colon M \to \mathbb{R}$

 M^{S^1} := set of fixed points

Hamiltonain
$$S^1 \curvearrowright (M, \omega)$$
, $\psi \colon M \to \mathbb{R}$

 M^{S^1} := set of fixed points

Hamiltonian $S^1 \curvearrowright (M, \omega) \implies M^{S^1} \neq \emptyset$

Hamiltonain
$$S^1 \curvearrowright (M, \omega)$$
, $\psi \colon M \to \mathbb{R}$

 M^{S^1} := set of fixed points

Hamiltonian $S^1 \curvearrowright (M, \omega) \implies M^{S^1} \neq \emptyset$

$$\iota_{\xi^{\#}}\omega={\it d}\psi$$

Hamiltonain
$$S^1 \curvearrowright (M, \omega)$$
, $\psi \colon M \to \mathbb{R}$

 M^{S^1} := set of fixed points

$$\begin{array}{ll} \mathsf{Hamiltonian}\,\,\, S^1 \curvearrowright (M,\omega) \implies M^{S^1} \neq \emptyset \\ \\ \hline \iota_{\xi^{\#}} \omega = d\psi \end{array}$$

Assume M^{S^1} is **discrete**

Hamiltonain
$$S^1 \curvearrowright (M, \omega)$$
, $\psi \colon M \to \mathbb{R}$

 M^{S^1} := set of fixed points

Hamiltonian
$$S^1 \curvearrowright (M, \omega) \implies M^{S^1}
eq \emptyset$$
 $\iota_{\xi^{\#}} \omega = d\psi$

Assume M^{S^1} is **discrete**

We call the triple (M, ω, S^1) ,

Hamiltonain
$$S^1 \curvearrowright (M,\omega)$$
, $\psi \colon M o \mathbb{R}$

 M^{S^1} := set of fixed points

Hamiltonian
$$S^1 \curvearrowright (M, \omega) \implies M^{S^1}
eq \emptyset$$
 $\iota_{\xi^{\#}} \omega = d\psi$

Assume M^{S^1} is **discrete**

We call the triple (M, ω, S^1) , • with $S^1 \sim (M, \omega)$ Hamiltonian,

Hamiltonain
$$S^1 \curvearrowright (M,\omega)$$
, $\psi \colon M o \mathbb{R}$

 M^{S^1} := set of fixed points

Hamiltonian
$$S^1 \curvearrowright (M, \omega) \implies M^{S^1}
eq \emptyset$$
 $\iota_{\xi^{\#}} \omega = d\psi$

Assume M^{S^1} is **discrete**

We call the triple (M, ω, S^1) ,

- with $S^1 \curvearrowright (M,\omega)$ Hamiltonian,
- *M^{S¹*} discrete,

Hamiltonain
$$S^1 \curvearrowright (M,\omega)$$
, $\psi \colon M o \mathbb{R}$

 M^{S^1} := set of fixed points

Hamiltonian
$$S^1 \curvearrowright (M, \omega) \implies M^{S^1}
eq \emptyset$$
 $\iota_{\xi^{\#}} \omega = d\psi$

Assume M^{S^1} is **discrete**

We call the triple (M, ω, S^1) ,

- with $\mathcal{S}^1 \curvearrowright (\mathcal{M}, \omega)$ Hamiltonian,
- M^{S^1} discrete,

a Hamiltonian S^1 -space.

Example of Hamiltonian S^1 -space

Example of Hamiltonian S^1 -space

 $(\mathbb{C}P^n, \omega_{FS}, S^1)$

$$(\mathbb{C}P^n, \omega_{FS}, S^1)$$

 S^1 action:

$$S^1 \ni \lambda * [z_0 : z_1 : \ldots : z_n] = [z_0 : \lambda^{a_1} z_1 : \lambda^{a_2} z_2 : \ldots : \lambda^{a_n} z_n]$$

with $a_1 < a_2 < \ldots < a_n$, $a_i \in \mathbb{Z} \setminus \{0\}$ for all *i*.

$$(\mathbb{C}P^n, \omega_{FS}, S^1)$$

 S^1 action:

$$S^1 \ni \lambda * [z_0 : z_1 : \ldots : z_n] = [z_0 : \lambda^{a_1} z_1 : \lambda^{a_2} z_2 : \ldots : \lambda^{a_n} z_n]$$

with $a_1 < a_2 < \ldots < a_n$, $a_i \in \mathbb{Z} \setminus \{0\}$ for all *i*. Fixed points:

$$[1:0:\ldots:0], \ [0:1:\ldots:0], \ \ldots, \ [0:0:\ldots:1]$$

$$(\mathbb{C}P^n, \omega_{FS}, S^1)$$

 S^1 action:

$$S^1 \ni \lambda * [z_0 : z_1 : \ldots : z_n] = [z_0 : \lambda^{a_1} z_1 : \lambda^{a_2} z_2 : \ldots : \lambda^{a_n} z_n]$$

with $a_1 < a_2 < \ldots < a_n$, $a_i \in \mathbb{Z} \setminus \{0\}$ for all *i*. Fixed points:

$$[1:0:\ldots:0], [0:1:\ldots:0], \ldots, [0:0:\ldots:1]$$

 $c_1 = (n+1)x, x \text{ gen. of } H^2(\mathbb{C}P^n;\mathbb{Z})$

$$(\mathbb{C}P^n, \omega_{FS}, S^1)$$

 S^1 action:

$$S^1 \ni \lambda * [z_0 : z_1 : \ldots : z_n] = [z_0 : \lambda^{a_1} z_1 : \lambda^{a_2} z_2 : \ldots : \lambda^{a_n} z_n]$$

with $a_1 < a_2 < \ldots < a_n$, $a_i \in \mathbb{Z} \setminus \{0\}$ for all *i*. Fixed points:

$$[1:0:\ldots:0], [0:1:\ldots:0], \ldots, [0:0:\ldots:1]$$

 $c_1 = (n+1)x$, x gen. of $H^2(\mathbb{C}P^n;\mathbb{Z})$
 $k = n+1$

(M, ω, S^1) Hamiltonian S^1 -space.

$$(M, \omega, S^1)$$
 Hamiltonian S^1 -space.

$$0 \quad 1 \le k \le n+1$$

(M, ω, S^1) Hamiltonian S^1 -space.

$$1 \le k \le n+1$$

(it holds without assuming $c_1 = \lambda[\omega], \ \lambda > 0$)

(M, ω, S^1) Hamiltonian S^1 -space.

 $0 \quad 1 \le k \le n+1$

(it holds without assuming $c_1 = \lambda[\omega], \ \lambda > 0$)

S., "On the Chern numbers and the Hilbert polynomial of an almost complex manifold with a circle action", Commun. Contemp. Math., **19** (2017).

(M, ω, S^1) Hamiltonian S^1 -space.

 $0 \quad 1 \le k \le n+1$

(it holds without assuming $c_1 = \lambda[\omega], \ \lambda > 0$)

S., "On the Chern numbers and the Hilbert polynomial of an almost complex manifold with a circle action", Commun. Contemp. Math., **19** (2017).

2 If k = n + 1, $c_1 = \lambda[\omega]$

(M, ω, S^1) Hamiltonian S^1 -space.

 $0 \quad 1 \le k \le n+1$

(it holds without assuming $c_1 = \lambda[\omega], \ \lambda > 0$)

S., "On the Chern numbers and the Hilbert polynomial of an almost complex manifold with a circle action", Commun. Contemp. Math., **19** (2017).

2 If k = n + 1, $c_1 = \lambda[\omega]$ (+ two technical hypotheses)

(M, ω, S^1) Hamiltonian S^1 -space.

 $0 \quad 1 \le k \le n+1$

(it holds without assuming $c_1 = \lambda[\omega], \ \lambda > 0$)

S., "On the Chern numbers and the Hilbert polynomial of an almost complex manifold with a circle action", Commun. Contemp. Math., **19** (2017).

2 If k = n + 1, $c_1 = \lambda[\omega]$ (+ two technical hypotheses)

(a)
$$\chi(M) = n+1$$

(M, ω, S^1) Hamiltonian S^1 -space.

 $0 \quad 1 \le k \le n+1$

(it holds without assuming $c_1 = \lambda[\omega], \ \lambda > 0$)

S., "On the Chern numbers and the Hilbert polynomial of an almost complex manifold with a circle action", Commun. Contemp. Math., **19** (2017).

2 If k = n + 1, $c_1 = \lambda[\omega]$ (+ two technical hypotheses)

(a) $\chi(M) = n+1$

Godinho, von Heymann, S., "12, 24 and beyond", Adv. Math., **319** (2017).

(M, ω, S^1) Hamiltonian S^1 -space.

 $0 \quad 1 \le k \le n+1$

(it holds without assuming $c_1 = \lambda[\omega], \ \lambda > 0$)

S., "On the Chern numbers and the Hilbert polynomial of an almost complex manifold with a circle action", Commun. Contemp. Math., **19** (2017).

- 2 If k = n + 1, $c_1 = \lambda[\omega]$ (+ two technical hypotheses)
 - (a) $\chi(M) = n + 1$ Godinho, von Heymann, S., "12, 24 and beyond", Adv. Math., **319** (2017).
 - (b) *M* is homotopy equivalent to $\mathbb{C}P^n$.

(M, ω, S^1) Hamiltonian S^1 -space.

 $0 \quad 1 \le k \le n+1$

(it holds without assuming $c_1 = \lambda[\omega], \ \lambda > 0$)

S., "On the Chern numbers and the Hilbert polynomial of an almost complex manifold with a circle action", Commun. Contemp. Math., **19** (2017).

- 2 If k = n + 1, $c_1 = \lambda[\omega]$ (+ two technical hypotheses)
 - (a) $\chi(M) = n+1$

Godinho, von Heymann, S., "12, 24 and beyond", Adv. Math., **319** (2017).

(b) *M* is homotopy equivalent to CPⁿ.
 Charton, "Hamiltonian manifolds with high index", Master thesis.
 University of Cologne, 2017.

Index k_0 of (M, ω) :

 c_1

$$c_1 = k_0 \eta_0$$

for some non-zero $\eta_0 \in H^2(M; \mathbb{Z})$.

$$c_1 = k_0 \ \eta_0$$

for some non-zero $\eta_0 \in H^2(M;\mathbb{Z}).$

• $k_0 \ge 0$

$$c_1 = k_0 \ \eta_0$$

for some non-zero $\eta_0 \in H^2(M;\mathbb{Z})$.

*k*₀ ≥ 0 *k*₀ = 0 exactly if *c*₁ is torsion.

 (M, ω, S^1) Hamiltonian S^1 -space:

(M, ω, S^1) Hamiltonian S^1 -space:

Facts:• c1 is not torsion (Hattori '84, Tolman '10)

(M, ω, S^1) Hamiltonian S^1 -space:

Facts: c₁ is not torsion (Hattori '84, Tolman '10) *M* is simply connected

(M, ω, S^1) Hamiltonian S^1 -space:

Facts: c₁ is not torsion (Hattori '84, Tolman '10) *M* is simply connected

$\textcircled{1} \implies$

(M, ω, S^1) Hamiltonian S^1 -space:

Facts: c₁ is not torsion (Hattori '84, Tolman '10) *M* is simply connected

(M, ω, S^1) Hamiltonian S^1 -space:

Facts: c₁ is not torsion (Hattori '84, Tolman '10) *M* is simply connected

(2)

(M, ω, S^1) Hamiltonian S^1 -space:

Facts: c₁ is not torsion (Hattori '84, Tolman '10) *M* is simply connected

(M, ω, S^1) Hamiltonian S^1 -space:

Facts: c₁ is not torsion (Hattori '84, Tolman '10) *M* is simply connected

So

$$1 \le k$$

Find a polynomial H(z) s.t.

Find a polynomial H(z) s.t.

•
$$0 < \deg(H) \le n$$

Find a polynomial H(z) s.t.

•
$$0 < \deg(H) \le n$$

• *H* is zero at $-1, -2, \ldots, -k+1$

Find a polynomial H(z) s.t.

•
$$0 < \deg(H) \le n$$

• *H* is zero at $-1, -2, \ldots, -k+1$

 $\implies k-1 \leq \deg(H) \leq n.$

Consider the polynomial H(z) such that

Consider the polynomial H(z) such that

$$H(m) = \int_M e^{m \, \eta_0} \, \mathfrak{T}(M) \quad ext{for all} \quad m \in \mathbb{Z}$$

Consider the polynomial H(z) such that

$$H(m) = \int_M e^{m \, \eta_0} \, \mathfrak{T}(M) \quad ext{for all} \quad m \in \mathbb{Z}$$

where:

•
$$e^{m \eta_0} = \sum_{j \ge 0} \frac{(m \eta_0)^j}{j!}$$

Consider the polynomial H(z) such that

$$H(m) = \int_M e^{m \, \eta_0} \, {\mathbb T}(M) \quad ext{for all} \quad m \in {\mathbb Z}$$

where:

• $e^{m \eta_0} = \sum_{j \ge 0} \frac{(m \eta_0)^j}{j!}$ Chern character of the Line bundle \mathbb{L}^m whose first Chern class is $m \eta_0$ $(c_1 = k \eta_0)$.

Consider the polynomial H(z) such that

$$H(m) = \int_M e^{m \, \eta_0} \, {\mathbb T}(M) \quad ext{for all} \quad m \in {\mathbb Z}$$

where:

- $e^{m\eta_0} = \sum_{j\geq 0} \frac{(m\eta_0)^j}{j!}$ Chern character of the Line bundle \mathbb{L}^m whose first Chern class is $m\eta_0$ $(c_1 = k\eta_0)$.
- $\mathfrak{T}(M)$ is the total Todd class of M, i.e. $\mathfrak{T}(M) = \sum_j T_j$

$$T_j$$
: *j*-th Todd polynomial, e.g.
 $T_0 = 1, \quad T_1 = \frac{c_1}{2}, \quad T_2 = \frac{c_1^2 + c_2}{12}, \quad T_3 = \frac{c_1 c_2}{24}, \dots$

$$H(m) = \sum_{h=0}^{n} m^h \int_{\mathcal{M}} \frac{c_1^h T_{n-h}}{k^h h!}$$

$$H(m) = \sum_{h=0}^{n} m^h \int_M \frac{c_1^h T_{n-h}}{k^h h!}$$

Facts about *H*:

$$H(m) = \sum_{h=0}^{n} m^h \int_M \frac{c_1^h T_{n-h}}{k^h h!}$$

Facts about *H*:

• $\deg(H) \leq n$

$$H(m) = \sum_{h=0}^{n} m^h \int_M \frac{c_1^h T_{n-h}}{k^h h!}$$

Facts about *H*:

- $\deg(H) \leq n$
- $H(0) = \int_M T_n = 1$ for (M, ω, S^1) with M connected (Feldman '01)

$$H(m) = \sum_{h=0}^{n} m^h \int_M \frac{c_1^h T_{n-h}}{k^h h!}$$

Facts about *H*:

- $\deg(H) \leq n$
- $H(0) = \int_M T_n = 1$ for (M, ω, S^1) with M connected (Feldman '01)
- If $k \ge 2$ then $H(-1) = H(-2) = \ldots = H(-k+1) = 0$ (S. '17)

Sketch of the proof of the **zeros of** H(z):

• H(m) = topological index of the bundle \mathbb{L}^m , for all $m \in \mathbb{Z}$, where $c_1(\mathbb{L}) = \eta_0$ and $c_1 = k \eta_0$ (Atiyah-Singer Index Theorem);

- H(m) = topological index of the bundle \mathbb{L}^m , for all $m \in \mathbb{Z}$, where $c_1(\mathbb{L}) = \eta_0$ and $c_1 = k \eta_0$ (Atiyah-Singer Index Theorem);
- 2 L^m admits an equivariant extension L^m_{S1} for every m ∈ Z (Hattori-Yoshida);

- H(m) = topological index of the bundle \mathbb{L}^m , for all $m \in \mathbb{Z}$, where $c_1(\mathbb{L}) = \eta_0$ and $c_1 = k \eta_0$ (Atiyah-Singer Index Theorem);
- 2 L^m admits an equivariant extension L^m_{S1} for every m ∈ Z (Hattori-Yoshida);
- the equivariant index $P_m(t)$ of $\mathbb{L}_{S^1}^m$ is in $\mathbb{Z}[t, t^{-1}]$, and for t = 1 gives H(m);

- H(m) = topological index of the bundle \mathbb{L}^m , for all $m \in \mathbb{Z}$, where $c_1(\mathbb{L}) = \eta_0$ and $c_1 = k \eta_0$ (Atiyah-Singer Index Theorem);
- 2 L^m admits an equivariant extension L^m_{S1} for every m ∈ Z (Hattori-Yoshida);
- the equivariant index $P_m(t)$ of $\mathbb{L}_{S^1}^m$ is in $\mathbb{Z}[t, t^{-1}]$, and for t = 1 gives H(m);
- the equivariant index can be computed using a localization formula in equivariant K-theory;

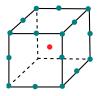
- H(m) = topological index of the bundle \mathbb{L}^m , for all $m \in \mathbb{Z}$, where $c_1(\mathbb{L}) = \eta_0$ and $c_1 = k \eta_0$ (Atiyah-Singer Index Theorem);
- 2 L^m admits an equivariant extension L^m_{S1} for every m ∈ Z (Hattori-Yoshida);
- the equivariant index $P_m(t)$ of $\mathbb{L}_{S^1}^m$ is in $\mathbb{Z}[t, t^{-1}]$, and for t = 1 gives H(m);
- the equivariant index can be computed using a localization formula in equivariant K-theory;
- **③** using this formula, compute the limits of $P_m(t)$ for $t \to \infty$ and $t \to 0$,

- H(m) = topological index of the bundle \mathbb{L}^m , for all $m \in \mathbb{Z}$, where $c_1(\mathbb{L}) = \eta_0$ and $c_1 = k \eta_0$ (Atiyah-Singer Index Theorem);
- 2 L^m admits an equivariant extension L^m_{S1} for every m ∈ Z (Hattori-Yoshida);
- the equivariant index $P_m(t)$ of $\mathbb{L}_{S^1}^m$ is in $\mathbb{Z}[t, t^{-1}]$, and for t = 1 gives H(m);
- the equivariant index can be computed using a localization formula in equivariant K-theory;
- using this formula, compute the limits of $P_m(t)$ for $t \to \infty$ and $t \to 0$, and realize that these limits are both zero for all $m \in \{-1, \ldots, -k+1\}$.

- H(m) = topological index of the bundle \mathbb{L}^m , for all $m \in \mathbb{Z}$, where $c_1(\mathbb{L}) = \eta_0$ and $c_1 = k \eta_0$ (Atiyah-Singer Index Theorem);
- 2 L^m admits an equivariant extension L^m_{S1} for every m ∈ Z (Hattori-Yoshida);
- the equivariant index $P_m(t)$ of $\mathbb{L}_{S^1}^m$ is in $\mathbb{Z}[t, t^{-1}]$, and for t = 1 gives H(m);
- the equivariant index can be computed using a localization formula in equivariant K-theory;
- using this formula, compute the limits of $P_m(t)$ for $t \to \infty$ and $t \to 0$, and realize that these limits are both zero for all $m \in \{-1, \ldots, -k+1\}$.
- Hence $P_m(t) \equiv 0$ for all $m \in \{-1, \dots, -k+1\} \Longrightarrow$ H(m) = 0 for all $m \in \{-1, \dots, -k+1\}.$

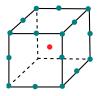
The toric one-skeleton of a symplectic toric manifold (M, ω, μ)

The toric one-skeleton of a symplectic toric manifold (M, ω, μ) is the family of smoothly embedded, symplectic, invariant 2-spheres corresponding to the edge set of $\mu(M) = \Delta$



$$e \longleftrightarrow S_e^2 := \mu^{-1}(e).$$

The toric one-skeleton of a symplectic toric manifold (M, ω, μ) is the family of smoothly embedded, symplectic, invariant 2-spheres corresponding to the edge set of $\mu(M) = \Delta$



$$e \longleftrightarrow S_e^2 := \mu^{-1}(e).$$

Fact: $c_{n-1} = \operatorname{PD}\left[\bigcup_{e \in E} S_e^2\right]$

.

Many Hamiltonian S^1 -spaces admit a *toric one-skeleton*.

• All Hamiltonian S^1 -spaces admit a multigraph $\Gamma = (V, E)$ that describes the action;

- All Hamiltonian S¹-spaces admit a multigraph Γ = (V, E) that describes the action;
- A toric one-skeleton (when it exists) is the union of finitely many smoothly embedded, symplectic, invariant 2-spheres,

Many Hamiltonian S^1 -spaces admit a *toric one-skeleton*.

- All Hamiltonian S¹-spaces admit a multigraph Γ = (V, E) that describes the action;
- A toric one-skeleton (when it exists) is the union of finitely many smoothly embedded, symplectic, invariant 2-spheres, each one "associated" to exactly one edge of Γ.

• Idea:

- All Hamiltonian S¹-spaces admit a multigraph Γ = (V, E) that describes the action;
- A toric one-skeleton (when it exists) is the union of finitely many smoothly embedded, symplectic, invariant 2-spheres, each one "associated" to exactly one edge of Γ.
- *Idea*: $p \in M$ with stabilizer \mathbb{Z}_k ,

- All Hamiltonian S¹-spaces admit a multigraph Γ = (V, E) that describes the action;
- A toric one-skeleton (when it exists) is the union of finitely many smoothly embedded, symplectic, invariant 2-spheres, each one "associated" to exactly one edge of Γ.
- Idea: $p \in M$ with stabilizer \mathbb{Z}_k , $\mathbb{O}_p := \mathbb{C}^{\times}$ -orbit,

- All Hamiltonian S¹-spaces admit a multigraph Γ = (V, E) that describes the action;
- A toric one-skeleton (when it exists) is the union of finitely many smoothly embedded, symplectic, invariant 2-spheres, each one "associated" to exactly one edge of Γ.
- *Idea*: $p \in M$ with stabilizer \mathbb{Z}_k , $\mathbb{O}_p := \mathbb{C}^{\times}$ -orbit, $S^2 = \overline{\mathbb{O}_p}$

Many Hamiltonian S^1 -spaces admit a *toric one-skeleton*.

- All Hamiltonian S¹-spaces admit a multigraph Γ = (V, E) that describes the action;
- A toric one-skeleton (when it exists) is the union of finitely many smoothly embedded, symplectic, invariant 2-spheres, each one "associated" to exactly one edge of Γ.
- *Idea*: $p \in M$ with stabilizer \mathbb{Z}_k , $\mathbb{O}_p := \mathbb{C}^{\times}$ -orbit, $S^2 = \overline{\mathbb{O}_p}$

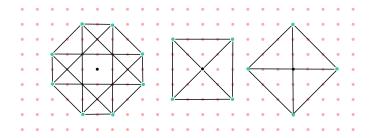
Fact: If the toric one-skeleton exists:

$$c_{n-1} = \operatorname{PD}\left[\bigcup_{e \in E} S_e^2\right].$$

E.g. Hamiltonian GKM (Goresky-Kottwitz-MacPherson) spaces

E.g. Hamiltonian GKM (*Goresky-Kottwitz-MacPherson*) spaces (for instance, coadjoint orbits of compact simple Lie groups).

E.g. Hamiltonian GKM (*Goresky-Kottwitz-MacPherson*) spaces (for instance, coadjoint orbits of compact simple Lie groups). $\mu(\bigcup_{e \in E} S_e^2)$ is a graph in $\operatorname{Lie}(\mathbb{T})^*$:



Theorem (Godinho-S. '12, G.-S.- von Heymann '17)

Let (M, ω, μ) be a Hamiltonian S^1 -space of dimension 2n with toric one-skeleton $\{S_e^2\}_{e \in E}$.

Theorem (Godinho-S. '12, G.-S.- von Heymann '17)

Let (M, ω, μ) be a Hamiltonian S^1 -space of dimension 2n with toric one-skeleton $\{S_e^2\}_{e \in E}$. Let $b_i(M)$ be the Betti numbers of M, and $\chi(M)$ its Euler characteristic.

Theorem (Godinho-S. '12, G.-S.- von Heymann '17)

Let (M, ω, μ) be a Hamiltonian S^1 -space of dimension 2n with toric one-skeleton $\{S_e^2\}_{e \in E}$. Let $b_i(M)$ be the Betti numbers of M, and $\chi(M)$ its Euler characteristic.

Then $\sum_{e \in E} c_1[S_e^2]$ only depends on the Betti numbers.

Theorem (Godinho-S. '12, G.-S.- von Heymann '17)

Let (M, ω, μ) be a Hamiltonian S^1 -space of dimension 2n with toric one-skeleton $\{S_e^2\}_{e \in E}$. Let $b_i(M)$ be the Betti numbers of M, and $\chi(M)$ its Euler characteristic.

Then $\sum_{e \in E} c_1[S_e^2]$ only depends on the Betti numbers. More precisely:

Theorem (Godinho-S. '12, G.-S.- von Heymann '17)

Let (M, ω, μ) be a Hamiltonian S^1 -space of dimension 2n with toric one-skeleton $\{S_e^2\}_{e \in E}$. Let $b_i(M)$ be the Betti numbers of M, and $\chi(M)$ its Euler characteristic.

Then $\sum_{e \in E} c_1[S_e^2]$ only depends on the Betti numbers. More precisely:

• If *n* is even

$$\sum_{e \in E} c_1[S_e^2] + \frac{n}{2} \chi(M) = 12 \sum_{k=1}^{\frac{n}{2}} \left[k^2 b_{n-2k}(M) \right]$$

If n is odd

$$\sum_{e \in E} c_1[S_e^2] + \left(\frac{n-3}{2}\right) \chi(M) = 12 \sum_{k=1}^{\frac{n-1}{2}} \left[k(k+1)b_{n-1-2k}(M)\right]$$

Hamiltonian spaces with large minimal Chern number

Special cases:

Under the same hypotheses:

• If n = 2 then $\sum_{e \in E} c_1[S_e^2] + \chi(M) = 12.$ • If n = 3 then $\sum_{e \in E} c_1[S_e^2] = 24.$

Sketch of the Proof:

• Since
$$c_{n-1} = \operatorname{PD}\left[\bigcup_{e \in E} S_e^2\right]$$
,

$$\sum_{e \in E} c_1[S_e^2] = c_1 c_{n-1}[M].$$

Sketch of the Proof:

• Since
$$c_{n-1} = \operatorname{PD}\left[\bigcup_{e \in E} S_e^2\right]$$
,

$$\sum_{e\in E} c_1[S_e^2] = c_1 c_{n-1}[M].$$

 c₁c_{n-1}[M] only depends on the Betti numbers ("Rigidity of Hirzebruch genus") (Godinho-S. '12).

Hamiltonian S¹-spaces which are "positive":

Hamiltonian S^1 -spaces which are "positive":

 $c_1[S_e^2] > 0$ for all $e \in E$.

Hamiltonian S^1 -spaces which are "positive":

 $c_1[S_e^2] > 0$ for all $e \in E$.

• E.g. : (M, ω, S^1) monotone, i.e. $c_1 = \lambda[\omega], \lambda \in \mathbb{R}$ (For Hamiltonian S^1 -spaces $\lambda > 0$).

Hamiltonian S¹-spaces which are "positive":

 $c_1[S_e^2] > 0$ for all $e \in E$.

 E.g.: (M, ω, S¹) monotone, i.e. c₁ = λ[ω], λ ∈ ℝ (For Hamiltonian S¹-spaces λ > 0).
 Observe that:

Hamiltonian S^1 -spaces which are "positive":

 $c_1[S_e^2] > 0$ for all $e \in E$.

• E.g. : (M, ω, S^1) monotone, i.e. $c_1 = \lambda[\omega], \lambda \in \mathbb{R}$ (For Hamiltonian S^1 -spaces $\lambda > 0$).

Observe that:

 $c_1[S_e^2] - k$ is a non-negative multiple of k,

Hamiltonian S¹-spaces which are "positive":

 $c_1[S_e^2] > 0$ for all $e \in E$.

E.g. : (M, ω, S¹) monotone, i.e. c₁ = λ[ω], λ ∈ ℝ
 (For Hamiltonian S¹-spaces λ > 0).

Observe that:

 $c_1[S_e^2] - k$ is a non-negative multiple of k, hence

 $\sum_{e \in E} c_1[S_e^2] - k|E| \text{ is a non-negative multiple of } k.$

Hamiltonian S^1 -spaces which are "positive":

 $c_1[S_e^2] > 0$ for all $e \in E$.

• E.g. :
$$(M, \omega, S^1)$$
 monotone, i.e. $c_1 = \lambda[\omega], \lambda \in \mathbb{R}$
(For Hamiltonian S^1 -spaces $\lambda > 0$).

Observe that:

 $c_1[S_e^2] - k$ is a non-negative multiple of k, hence

$$\sum_{e \in E} c_1[S_e^2] - k|E| \text{ is a non-negative multiple of } k.$$

Both $\sum_{e \in E} c_1[S_e^2]$ and |E| depend on the Betti numbers.

 (M, ω, S^1) positive Hamiltonian S^1 -space with a toric one-skeleton and minimal Chern number k:

 (M, ω, S^1) positive Hamiltonian S^1 -space with a toric one-skeleton and minimal Chern number k:

k	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
	<i>b</i> ₂	<i>b</i> ₂	(b_2, b_4)	(b_2, b_4)
1	$b_2 \leq 4$	$b_2 \leq 7$		
2	2	$b_2 \leq 3$		
3	1	1	(1,2), (2,3), (3,1), (4,2), (6,1)	
4		1	(1,2)	
5			(1,1)	(1,1),(6,1)
6				(1,1)

Table: List of allowed values of b_2 and b_4 for $2 \le n \le 5$.

Silvia Sabatini Universität zu Köln Hamiltonian spaces with large minimal Chern number

Unimodality of even Betti numbers:

The sequence of even Betti numbers of (M, ω, S^1) is unimodal if:

$$b_0 \leq b_2 \leq \ldots \leq b_{2\lfloor \frac{n}{2} \rfloor}$$

Unimodality of even Betti numbers:

The sequence of even Betti numbers of (M, ω, S^1) is unimodal if:

$$b_0 \leq b_2 \leq \ldots \leq b_{2\lfloor \frac{n}{2} \rfloor}$$

Theorem (Cho '16)

The sequence of even Betti numbers of a Hamiltonian S^1 -space admitting an *index-increasing* moment map is unimodal.

Unimodality of even Betti numbers:

The sequence of even Betti numbers of (M, ω, S^1) is unimodal if:

$$b_0 \leq b_2 \leq \ldots \leq b_{2\lfloor \frac{n}{2} \rfloor}$$

Theorem (Cho '16)

The sequence of even Betti numbers of a Hamiltonian S^1 -space admitting an *index-increasing* moment map is unimodal.

E.g. Transversality of unstable and stable manifolds of moment map \implies index increasing.

$k = n + 1 \implies \chi(M) = n + 1$

Theorem (Godinho, von Heymann, S. '17)

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

• it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. c₁[S²_e] > 0 on all spheres of the toric one-skeleton (e.g. c₁ = λ[ω]);

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. $c_1[S_e^2] > 0$ on all spheres of the toric one-skeleton (e.g. $c_1 = \lambda[\omega]$);
- the sequence of even Betti numbers is *unimodal* (e.g. transversality...).

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. $c_1[S_e^2] > 0$ on all spheres of the toric one-skeleton (e.g. $c_1 = \lambda[\omega]$);
- the sequence of even Betti numbers is *unimodal* (e.g. transversality...).

If
$$k = n + 1$$
, then $b_{2i}(M) = 1$ for all $i = 0, ..., n$ and $b_{odd}(M) = 0$, hence $\chi(M) = n + 1$.

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. $c_1[S_e^2] > 0$ on all spheres of the toric one-skeleton (e.g. $c_1 = \lambda[\omega]$);
- the sequence of even Betti numbers is *unimodal* (e.g. transversality...).

If k = n + 1, then $b_{2i}(M) = 1$ for all i = 0, ..., n and $b_{odd}(M) = 0$, hence $\chi(M) = n + 1$.

Sketch of the proof:

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. $c_1[S_e^2] > 0$ on all spheres of the toric one-skeleton (e.g. $c_1 = \lambda[\omega]$);
- the sequence of even Betti numbers is *unimodal* (e.g. transversality...).

If k = n + 1, then $b_{2i}(M) = 1$ for all i = 0, ..., n and $b_{odd}(M) = 0$, hence $\chi(M) = n + 1$.

Sketch of the proof:

• $\sum_{e \in E} c_1[S_e^2] - k|E|$ is a non-negative multiple of k

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. $c_1[S_e^2] > 0$ on all spheres of the toric one-skeleton (e.g. $c_1 = \lambda[\omega]$);
- the sequence of even Betti numbers is *unimodal* (e.g. transversality...).

If
$$k = n + 1$$
, then $b_{2i}(M) = 1$ for all $i = 0, ..., n$ and $b_{odd}(M) = 0$, hence $\chi(M) = n + 1$.

Sketch of the proof:

- $\sum_{e \in E} c_1[S_e^2] k|E|$ is a non-negative multiple of k
- $\sum_{e \in E} c_1[S_e^2]$ and |E| can be expressed as linear combinations of (even) Betti numbers.

From $\chi(M) = n + 1$ to $M \simeq \mathbb{C}P^n$

Local form of the action around $p \in M^{S^1}$: Weights at p

Local form of the action around $p \in M^{S^1}$: Weights at p

If $p \in M^{S^1}$ then $S^1 \curvearrowright T_p M \simeq \mathbb{C}^n$: $\lambda \cdot (z_1, \dots, z_n) = (\lambda^{w_{1p}} z_1, \dots, \lambda^{w_{np}} z_n)$ $w_{1p}, \dots, w_{np} \in \mathbb{Z}$ are the weights of the S^1 action at p. **Example**: $(\mathbb{C}P^n, \omega_{FS}, S^1)$

Example: $(\mathbb{C}P^n, \omega_{FS}, S^1)$ $S^1 \ni \lambda * [z_0 : z_1 : \ldots : z_n] = [z_0 : \lambda^{a_1} z_1 : \lambda^{a_2} z_2 : \ldots : \lambda^{a_n} z_n]$ with $a_1 < a_2 < \ldots < a_n, a_i \in \mathbb{Z} \setminus \{0\}$ for all i. Example: $(\mathbb{C}P^n, \omega_{FS}, S^1)$ $S^1 \ni \lambda * [z_0 : z_1 : \ldots : z_n] = [z_0 : \lambda^{a_1} z_1 : \lambda^{a_2} z_2 : \ldots : \lambda^{a_n} z_n]$ with $a_1 < a_2 < \ldots < a_n$, $a_i \in \mathbb{Z} \setminus \{0\}$ for all i.

Weights at $p_0 := [1:0:...:0]: a_1, a_2, ..., a_n$

Example: $(\mathbb{C}P^n, \omega_{FS}, S^1)$ $S^1 \ni \lambda * [z_0 : z_1 : \ldots : z_n] = [z_0 : \lambda^{a_1} z_1 : \lambda^{a_2} z_2 : \ldots : \lambda^{a_n} z_n]$

with $a_1 < a_2 < \ldots < a_n$, $a_i \in \mathbb{Z} \setminus \{0\}$ for all *i*.

Weights at
$$p_0 := [1:0:\ldots:0]: a_1, a_2, \ldots, a_n$$

 $p_1 := [0:1:\ldots:0]: -a_1, a_2 - a_1, \ldots, a_n - a_1$

Example: $(\mathbb{C}P^{n}, \omega_{FS}, S^{1})$ $S^{1} \ni \lambda * [z_{0} : z_{1} : ... : z_{n}] = [z_{0} : \lambda^{a_{1}}z_{1} : \lambda^{a_{2}}z_{2} : ... : \lambda^{a_{n}}z_{n}]$ with $a_{1} < a_{2} < ... < a_{n}, a_{i} \in \mathbb{Z} \setminus \{0\}$ for all *i*. Weights at $p_{0} := [1 : 0 : ... : 0]: a_{1}, a_{2}, ..., a_{n}$ $p_{1} := [0 : 1 : ... : 0]: -a_{1}, a_{2} - a_{1}, ..., a_{n} - a_{1}$... $p_{n} := [0 : 0 : ... : 1]: -a_{n}, a_{1} - a_{n}, ..., a_{n-1} - a_{n}.$

Theorem

 (M, ω, S^1) Hamiltonian S^1 -space with $\chi(M) = k = n + 1$.

Theorem

 (M, ω, S^1) Hamiltonian S^1 -space with $\chi(M) = k = n + 1$. Let p_0, \ldots, p_n be the fixed points.

Theore<u>m</u>

 (M, ω, S^1) Hamiltonian S^1 -space with $\chi(M) = k = n + 1$. Let p_0, \ldots, p_n be the fixed points. Then $\exists a_1, \ldots, a_n \in \mathbb{Z}$ s.t. the weights at p_0, \ldots, p_n are those of $\mathbb{C}P^n$ with "standard S^1 -action".

Theorem

 (M, ω, S^1) Hamiltonian S^1 -space with $\chi(M) = k = n + 1$. Let p_0, \ldots, p_n be the fixed points. Then $\exists a_1, \ldots, a_n \in \mathbb{Z}$ s.t. the weights at p_0, \ldots, p_n are those of $\mathbb{C}P^n$ with "standard S^1 -action".

The S^1 -action on $TM|_{M^{S^1}}$ coincides with the standard S^1 -action on $\mathbb{C}P^n$.

From $\chi(M) = n + 1$ to $M \simeq \mathbb{C}P^n$

Hamiltonian S^1 -space (M, ω, S^1) ,

From $\chi(M) = n + 1$ to $M \simeq \mathbb{C}P^n$

Hamiltonian S¹-space (M, ω, S^1) , $\chi(M) = n + 1 = |M^{S^1}|$

Hamiltonian
$$S^1$$
-space (M,ω,S^1) , $\chi(M)=n+1=|M^{S^1}|$

 S^1 -action is Hamiltonian $\implies H^{2i}(M;\mathbb{Z}) = \mathbb{Z}$ for all $i = 0, \dots, n$.

Hamiltonian S¹-space (M, ω, S^1) , $\chi(M) = n + 1 = |M^{S^1}|$

 S^1 -action is Hamiltonian $\implies H^{2i}(M; \mathbb{Z}) = \mathbb{Z}$ for all i = 0, ..., n. Cohomology ring structure?

Hamiltonian S¹-space (M, ω, S^1) , $\chi(M) = n + 1 = |M^{S^1}|$

 S^1 -action is Hamiltonian $\implies H^{2i}(M; \mathbb{Z}) = \mathbb{Z}$ for all i = 0, ..., n. Cohomology ring structure?

 $c_1 = \lambda[\omega], \quad \lambda > 0$

Hamiltonian S¹-space (M, ω, S^1) , $\chi(M) = n + 1 = |M^{S^1}|$

 S^1 -action is Hamiltonian $\implies H^{2i}(M; \mathbb{Z}) = \mathbb{Z}$ for all i = 0, ..., n. Cohomology ring structure?

$$c_1 = \lambda[\omega], \quad \lambda > 0 \implies c_1^i \neq 0 \in H^{2i}(M; \mathbb{Z}) \ i = 0, \dots, n$$

Hamiltonian
$$\mathcal{S}^1$$
-space $(\mathcal{M},\omega,\mathcal{S}^1)$, $\chi(\mathcal{M})=n+1=|\mathcal{M}^{\mathcal{S}^1}|$

 S^1 -action is Hamiltonian $\implies H^{2i}(M; \mathbb{Z}) = \mathbb{Z}$ for all i = 0, ..., n. Cohomology ring structure?

$$c_1 = \lambda[\omega], \quad \lambda > 0 \implies c_1^i \neq 0 \in H^{2i}(M;\mathbb{Z}) \ i = 0, \dots, n \implies$$

 $\exists \quad N_i \in \mathbb{Z} \setminus \{0\} \quad \text{s.t.} \quad \frac{c_1^i}{N_i} \text{ is a generator of } H^{2i}(M;\mathbb{Z}), \quad i=0,\ldots,n$

Hamiltonian
$$\mathcal{S}^1$$
-space $(\mathcal{M},\omega,\mathcal{S}^1)$, $\chi(\mathcal{M})=n+1=|\mathcal{M}^{\mathcal{S}^1}|$

 S^1 -action is Hamiltonian $\implies H^{2i}(M; \mathbb{Z}) = \mathbb{Z}$ for all i = 0, ..., n. Cohomology ring structure?

$$c_1 = \lambda[\omega], \quad \lambda > 0 \implies c_1^i \neq 0 \in H^{2i}(M;\mathbb{Z}) \ i = 0, \dots, n \implies$$

$$\exists \quad N_i \in \mathbb{Z} \setminus \{0\} \quad \text{s.t.} \quad \frac{c_1'}{N_i} \text{ is a generator of } H^{2i}(M;\mathbb{Z}), \ i=0,\ldots,n$$

Theorem (Tolman '10)

Hamiltonian S^1 -space (M, ω, S^1) with $\chi(M) = n + 1$. Then N_i 's are determined by the weights,

Hamiltonian
$$\mathcal{S}^1$$
-space $(\mathcal{M},\omega,\mathcal{S}^1)$, $\chi(\mathcal{M})=n+1=|\mathcal{M}^{\mathcal{S}^1}|$

 S^1 -action is Hamiltonian $\implies H^{2i}(M; \mathbb{Z}) = \mathbb{Z}$ for all i = 0, ..., n. Cohomology ring structure?

$$c_1 = \lambda[\omega], \quad \lambda > 0 \implies c_1^i \neq 0 \in H^{2i}(M;\mathbb{Z}) \ i = 0, \dots, n \implies$$

$$\exists \quad N_i \in \mathbb{Z} \setminus \{0\} \quad \text{s.t.} \quad \frac{c_1'}{N_i} \text{ is a generator of } H^{2i}(M;\mathbb{Z}), \ i=0,\ldots,n$$

Theorem (Tolman '10)

Hamiltonian S^1 -space (M, ω, S^1) with $\chi(M) = n + 1$. Then N_i 's are determined by the weights, hence $H^*(M; \mathbb{Z})$ is determined by the weights at the fixed points.

Hamiltonian
$$\mathcal{S}^1$$
-space $(\mathcal{M},\omega,\mathcal{S}^1)$, $\chi(\mathcal{M})=n+1=|\mathcal{M}^{\mathcal{S}^1}|$

 S^1 -action is Hamiltonian $\implies H^{2i}(M; \mathbb{Z}) = \mathbb{Z}$ for all i = 0, ..., n. Cohomology ring structure?

$$c_1 = \lambda[\omega], \quad \lambda > 0 \implies c_1^i \neq 0 \in H^{2i}(M;\mathbb{Z}) \ i = 0, \dots, n \implies$$

$$\exists \quad N_i \in \mathbb{Z} \setminus \{0\} \quad \text{s.t.} \quad \frac{c_1^i}{N_i} \text{ is a generator of } H^{2i}(M;\mathbb{Z}), \quad i=0,\ldots,n$$

Theorem (Tolman '10)

Hamiltonian S^1 -space (M, ω, S^1) with $\chi(M) = n + 1$. Then N_i 's are determined by the weights, hence $H^*(M; \mathbb{Z})$ is determined by the weights at the fixed points.

Hence: if the weights agree with those of $\mathbb{C}P^n$, the cohomology ring does as well.

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

• it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. $c_1[S_e^2] > 0$ on all spheres of the toric one-skeleton (e.g. $c_1 = \lambda[\omega]$);

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. c₁[S_e²] > 0 on all spheres of the toric one-skeleton (e.g. c₁ = λ[ω]);
- the sequence of even Betti numbers is *unimodal* (e.g. transversality of stable and unstable manifolds of m.m. ...).

Suppose (M, ω, S^1) is a Hamiltonian S^1 -space s.t.

- it admits a *toric one-skeleton* (e.g. toric action, GKM, ...);
- it is *positive*, i.e. c₁[S_e²] > 0 on all spheres of the toric one-skeleton (e.g. c₁ = λ[ω]);
- the sequence of even Betti numbers is *unimodal* (e.g. transversality of stable and unstable manifolds of m.m. ...).

If k = n + 1, then M is homotopy equivalent to $\mathbb{C}P^n$.

Sketch of the proof.

• (Godinho, von Heymann, S. '17) $\implies \chi(M) = n + 1;$

- (Godinho, von Heymann, S. '17) $\implies \chi(M) = n + 1;$
- *M* homotopy equivalent to a CW-complex *X* with one cell in dimension 0, 2, ..., 2*n*,

- (Godinho, von Heymann, S. '17) $\implies \chi(M) = n + 1;$
- M homotopy equivalent to a CW-complex X with one cell in dimension 0, 2, ..., 2n, π₁(M) = π₁(ℂPⁿ) = 0;

- (Godinho, von Heymann, S. '17) $\implies \chi(M) = n + 1;$
- M homotopy equivalent to a CW-complex X with one cell in dimension 0, 2, ..., 2n, π₁(M) = π₁(ℂPⁿ) = 0;
- (Hattori '84, Tolman '10) $\implies H^*(M; \mathbb{Z}) \simeq H^*(\mathbb{C}P^n; \mathbb{Z});$

- (Godinho, von Heymann, S. '17) $\implies \chi(M) = n + 1;$
- M homotopy equivalent to a CW-complex X with one cell in dimension 0, 2, ..., 2n, π₁(M) = π₁(ℂPⁿ) = 0;
- (Hattori '84, Tolman '10) $\implies H^*(M; \mathbb{Z}) \simeq H^*(\mathbb{C}P^n; \mathbb{Z});$
- Construct a map f: X → CPⁿ s.t. f_{*}: H_i(X) → H_i(CPⁿ) is an isomorphism for all i;

- (Godinho, von Heymann, S. '17) $\implies \chi(M) = n + 1;$
- M homotopy equivalent to a CW-complex X with one cell in dimension 0, 2, ..., 2n, π₁(M) = π₁(ℂPⁿ) = 0;
- (Hattori '84, Tolman '10) $\implies H^*(M; \mathbb{Z}) \simeq H^*(\mathbb{C}P^n; \mathbb{Z});$
- Construct a map f: X → CPⁿ s.t. f_{*}: H_i(X) → H_i(CPⁿ) is an isomorphism for all i;
- (Corollary of Hurewicz) \implies f is a homotopy equivalence.

Thank you!