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Introduction: Semitoric systems

Semitoric integrable systems: definition

A semitoric integrable system is a triple (M, w, (J, H)) where
(M,w) is a 4-dimensional symplectic manifold and

Q {J,H}=0;

@ dJ and dH are linearly independent almost everywhere;
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A semitoric integrable system is a triple (M, w, (J, H)) where
(M,w) is a 4-dimensional symplectic manifold and

Q {J,H}=0;

@ dJ and dH are linearly independent almost everywhere;
© the flow of X is periodic;

Q J is proper;

@ all singularities of (J, H) are non-degenerate with no
hyperbolic blocks.
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Introduction: Semitoric systems

Semitoric integrable systems: definition

A semitoric integrable system is a triple (M, w, (J, H)) where
(M,w) is a 4-dimensional symplectic manifold and

Q {J,H}=0;

@ dJ and dH are linearly independent almost everywhere;
© the flow of X is periodic;

Q J is proper;

@ all singularities of (J, H) are non-degenerate with no
hyperbolic blocks.

@ Simple = at most one focus-focus point in each level set of J.
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Introduction: Semitoric systems

Semitoric integrable systems: fibers

S O - &

regular elliptic-regular elliptic-elliptic focus-focus
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Introduction: Semitoric systems

Semitoric integrable systems: classification

Simple semitoric systems have been classified in terms of five
invariants:

@ the number of focus-focus points invariant,
the polygon invariant;

Q

© the Taylor series invariant;
@ the twisting index invariant,
(5

the height invariant,
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Simple semitoric systems have been classified in terms of five
invariants:

@ the number of focus-focus points invariant,

@ the polygon invariant;

© the Taylor series invariant;

@ the twisting index invariant,

© the height invariant,

Theorem (Pelayo-Vii Ngoc classification (2009, 2011))

@ Two simple semitoric systems are isomorphic if and only if
they have the same invariants (1)-(5);

@ Given any admissible list of invariants (1)-(5) there exists a
simple semitoric system with those as its invariants.
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Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

e F: M — R? produces a singular Lagrangian torus fibration
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e F: M — R? produces a singular Lagrangian torus fibration

F(M)

5/28

J. Palmer Some results on semitoric integrable systems



Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

e F: M — R? produces a singular Lagrangian torus fibration.

T =

F(M)
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Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

e F: M — R? produces a singular Lagrangian torus fibration.
’ —
F(M)

@ Focus-focus points produce monodromy in the torus fibration
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Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

@ Singular torus fibration — integral affine structure
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Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

@ Singular torus fibration — integral affine structure
@ The integral affine structure may be “straightened out” [Vii
Ngoc, 2007]

i
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Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

@ Singular torus fibration — integral affine structure
@ The integral affine structure may be “straightened out” [Vii
Ngoc, 2007]

=

e Semitoric polygon invariant. Family of polygons
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Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

@ Singular torus fibration — integral affine structure
@ The integral affine structure may be “straightened out” [Vii
Ngoc, 2007]

=

e Semitoric polygon invariant. Family of polygons

@ Height invariant: position of images of focus-focus points. 6/28
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Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

@ "Straightening out” — compose with a map £..

@ f. o F is a toric momentum map away from the cuts.
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Semitoric invariants (and the twisting index)

Semitoric invariants: 2. Polygon invariant

@ "Straightening out” — compose with a map £..
@ f. o F is a toric momentum map away from the cuts.

o If v,w € Z? are inwards pointing normal vectors of a corner:
e Delzant: v and w span 72;
o Fake: Tv=w;
o Hidden: Tv and w span Z2. oy

/11 .
(o)

wy vy
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Semitoric invariants (and the twisting index)

Semitoric invariants: 3. Taylor series invariant

@ For each focus-focus point the neighborhood of the singular
fiber is classified by a Taylor series [Vii Ngoc, 2003].
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Semitoric invariants (and the twisting index)

Semitoric invariants: 3. Taylor series invariant

@ For each focus-focus point the neighborhood of the singular
fiber is classified by a Taylor series [Vii Ngoc, 2003].

@ Starting at a fiber nearby, follow the flow of H to return to
the J-orbit, and then follow the flow of J.
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Semitoric invariants (and the twisting index)

Semitoric invariants: 3. Taylor series invariant

@ Use 71 and 7 to specify a Taylor series in two variables.
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Semitoric invariants (and the twisting index)

Semitoric invariants: 3. Taylor series invariant

@ Use 71 and 7 to specify a Taylor series in two variables.

@ Notice: this construction only sees where the trajectory
“lands” - it can't detect a Dehn twist.
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Semitoric invariants (and the twisting index)

Semitoric invariants: 4. Twisting index invariant

@ The toric momentum map f o F gives us a background
against which to compare v from the Taylor series definition.
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Semitoric invariants (and the twisting index)

Semitoric invariants: 4. Twisting index invariant

@ The toric momentum map f o F gives us a background
against which to compare v from the Taylor series definition.

@ The path of the second component of ® = f o F and ~ differ
by some number of twists in the J direction:

[Yo,l = [V] + k[vy]  in m1(T).
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Semitoric invariants (and the twisting index)

Semitoric invariants: 4. Twisting index invariant

@ The toric momentum map f o F gives us a background
against which to compare v from the Taylor series definition.

@ The path of the second component of ® = f o F and ~ differ
by some number of twists in the J direction:

[Yo,l = [V] + k[vy]  in m1(T).

@ This k € Z is the twisting
index [joint project with S.
Hohloch].

(Also, ® = Tkv)
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A motivating example: Coupled angular momenta

Coupled angular momenta

[Sadovskij and Zhilinskij, 1999]

e

o M=52x5% w=Riwi® Rouws
@ coordinates (X1,Y1,21,X27y2722)
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A motivating example: Coupled angular momenta

Coupled angular momenta

[Sadovskij and Zhilinskij, 1999]

e

o M=52x5% w=Riwi® Rouws
@ coordinates (X1,Y1,21,X27y2722)

{J = Riz1 + Roz

He = (1 —t)z1 + t(xaxe + y1y2 + z122)
for t € [0,1] and R; < R».
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A motivating example: Coupled angular momenta

Coupled angular momenta

[Sadovskij and Zhilinskij, 1999]

e

o M=5%2x52 w=Rw & Ruw
e coordinates (x1,y1, 21, X2, Y2, 22)
J=Riz1 + Roz
{Ht = (1 - t)zr + tlaxe + y1y2 + 2122)
for t € [0,1] and Ry < R».
e Let NS =(0,0,1,0,0,-1)
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A motivating example: Coupled angular momenta

Coupled angular momenta

[Sadovskij and Zhilinskij, 1999]

e

o M=5%2x52 w=Rw & Ruw
e coordinates (x1,y1, 21, X2, Y2, 22)
J=Riz1 + Rz
{Ht = (1 —t)z + tlaxe + y1ye + 2122)
for t € [0,1] and Ry < R».
e Let NS =(0,0,1,0,0,-1)
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A motivating example: Coupled angular momenta

Coupled angular momenta

Theorem (Sadovskij-Zhilinskij (1999) and Le Floch-Pelayo (2016))
Let t € [0,1]. There exists t—,t* € (0,1) such that t_ < ty and

Q ift <t~ then (J, Hy) is semitoric with zero focus-focus
points;
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A motivating example: Coupled angular momenta

Coupled angular momenta

Theorem (Sadovskij-Zhilinskij (1999) and Le Floch-Pelayo (2016))
Let t € [0,1]. There exists t—,t* € (0,1) such that t_ < ty and

Q ift <t~ then (J, Hy) is semitoric with zero focus-focus
points;

@ ift =t~ then (J, H;:) has a degenerate singular point at NS;

© ift~ <t < tt then (J,H;) is a semitoric with exactly one
focus-focus point (at NS);

Q ift=1t" then (J, H;) has a degenerate singular point at NS;

Q ift > t* then (J, H;) is semitoric with zero focus-focus
points.

12/28

J. Palmer Some results on semitoric integrable systems



A motivating example: Coupled angular momenta

Coupled angular momenta: moment map image

Semitoric with zero focus-focus points

(figure made in Mathematica)
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A motivating example: Coupled angular momenta

Coupled angular momenta: moment map image

-1.01

Semitoric with zero
(figure made in

J. Palmer

\

focus-focus points
Mathematica)
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A motivating example: Coupled angular momenta

Coupled angular momenta: moment map image

~1.00

Semitoric with one focus-focus point

(figure made in Mathematica)
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A motivating example: Coupled angular momenta

Coupled angular momenta: moment map image

10—

Semitoric with one focus-focus point
(figure made in Mathematica)
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A motivating example: Coupled angular momenta

Coupled angular momenta: moment map image

1.0F —

Semitoric with one focus-focus point

(figure made in Mathematica)
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A motivating example: Coupled angular momenta

Coupled angular momenta: moment map image

Semitoric with zero focus-focus points

(figure made in Mathematica)
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A motivating example: Coupled angular momenta

Coupled angular momenta

The image of the momentum map:

o ' 10) 5 10) —
—/ r" -7 A%/ /J’/’T// \
05 s / 5 X 05 05

TA A s 34 . A s L2 <« v 35 = ; 33 = : 3
05 03 ~* 05 05 Y
- 10 — -10f ovep

rob—
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A motivating example: Coupled angular momenta

Coupled angular momenta

The image of the momentum map:
A A A R A

S T A s 3 A s L2 T AN - : ) Ey : ) E T 3
s 05 ~* -0s -0s 03
- “10f T ~10F -10f ovep

rob—

The semitoric polygons for (J, Hy):
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A motivating example: Coupled angular momenta

Coupled angular momenta

The image of the momentum map:

S T A s 3 R g T AN - Ey : T3 E T 3
05 L 05 ~ 05 05
o Rr b —rob—

o}

The semitoric polygons for (J, Hy):

LS
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Semitoric minimal models

Minimal models

@ Around an elliptic-elliptic point can perform a blowup of toric
type, by blowing up with respect to f o F (blowing down is
the inverse operation)
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Semitoric minimal models

Minimal models

@ Around an elliptic-elliptic point can perform a blowup of toric
type, by blowing up with respect to f o F (blowing down is
the inverse operation)

Find all compact semitoric systems which do not admit a
blowdown.
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Semitoric minimal models

Minimal models

@ Around an elliptic-elliptic point can perform a blowup of toric
type, by blowing up with respect to f o F (blowing down is
the inverse operation)

Find all compact semitoric systems which do not admit a
blowdown.

@ Then all systems can be obtained from these by performing a
sequence of blowups.
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Semitoric minimal models

Minimal models: blowups and corner chops

@ Blowups correspond to a corner chop of the semitoric polygon.

—>
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Semitoric minimal models

Minimal models: blowups and corner chops

@ Blowups correspond to a corner chop of the semitoric polygon.

—>

@ Sometimes can be hard to see if blowdown is possible.

AN

16/28

J. Palmer Some results on semitoric integrable systems



Semitoric minimal models

Minimal models: blowups and corner chops

@ Blowups correspond to a corner chop of the semitoric polygon.

—>

@ Sometimes can be hard to see if blowdown is possible.

16/28

J. Palmer Some results on semitoric integrable systems



Semitoric minimal models
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@ Blowups correspond to a corner chop of the semitoric polygon.

—>

@ Sometimes can be hard to see if blowdown is possible.
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Semitoric minimal models

Minimal models: the semitoric helix

A semitoric helix is H = (d, ¢, [{vi}iez]), vi € Z?, such that:
@ v;, viy1 span Z? (and positively oriented) for all i € Z;
Q v,...,vy_1 are arranged in counter-clockwise order;

Q Viig=TCyforalliecZ.
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Semitoric minimal models

Minimal models: the semitoric helix

A semitoric helix is H = (d, ¢, [{vi}iez]), vi € Z?, such that:

@ v;, viy1 span Z? (and positively oriented) for all i € Z;
Q v,...,vy_1 are arranged in counter-clockwise order;
Q Viig=TCyforalliecZ.

d € Z~go, number of elliptic-elliptic points
¢ € Z>o, number of focus-focus points

11
(o 1)
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Semitoric minimal models

Minimal models: the semitoric helix

@ Idea: “unwind” non-Delzant corners, so all corners are
Delzant but boundary no longer closes up.
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Semitoric minimal models

Minimal models: equations in SLy(Z)

o Let A; € SLy(Z) be the matrix sending (vj, vi+1) to
(Vit1, Vig2).
o If there are no focus-focus points (toric case):

AoAr .. Ay 1 =1
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o Let A; € SLy(Z) be the matrix sending (vj, vi+1) to
(Vit1, Vig2).
o If there are no focus-focus points (toric case):

AoAr .. Ay 1 =1

@ If there are ¢ focus-focus points:
AoAr .. Ag_1 = X1TX

where X = (vp, v1).
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Minimal models: equations in SLy(Z)

o Let A; € SLy(Z) be the matrix sending (vj, vi+1) to
(Vit1, Vig2).
o If there are no focus-focus points (toric case):

ApAr.. . Ag1 =1
@ If there are ¢ focus-focus points:
AoAr .. Ag_1 = X1TX

where X = (vp, v1).
@ Problem: Not all solutions to this equation correspond to a
semitoric helix.
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Semitoric minimal models

Minimal models: equations in SLy(Z)

o Let A; € SLy(Z) be the matrix sending (vj, vi+1) to
(Vit1, Vig2).
o If there are no focus-focus points (toric case):

ApAr.. . Ag1 =1
@ If there are ¢ focus-focus points:
AoAr .. Ag_1 = X1TX

where X = (vp, v1).
@ Problem: Not all solutions to this equation correspond to a
semitoric helix. It doesn't encode winding around origin.

19/28
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Semitoric minimal models

Minimal models: winding twice

V2
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Semitoric minimal models

—_——

Minimal models: equations in SLy(Z)

@ Solution: lift equations to “universal cover of SLo(Z)"

P S

SLa(Z) —2— SLy(R)

l l

SLy(Z) —— SLy(R)
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Semitoric minimal models

—_——

Minimal models: equations in SLy(Z)

@ Solution: lift equations to “universal cover of SLo(Z)"

—~—— e~

SLa(Z) —2— SLy(R)

l l

SLy(Z) —— SLy(R)

Proposition (Kane-P.-Pelayo, 2016)

There is a one-to-one correspondence between solutions to

AoA1 ... Ag_1 :Si;(i) §4X_1 TX

and semitoric helices.
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Semitoric minimal models

—_——

Minimal models: equations in SLy(Z)

@ Solution: lift equations to “universal cover of SLy(Z)

—~—— e~

SLa(Z) —2— SLy(R)

l l

SLy(Z) —— SLy(R)

Proposition (Kane-P.-Pelayo, 2016)

There is a one-to-one correspondence between solutions to

AoA1 ... Ag_1 :Si;(i) §4X_1 TX

and semitoric helices.

(S € SL(Z) corresponds to rotation by 7/2, lifts to S) 21/28



Semitoric minimal models

Minimal models: minimal helices

Theorem (Kane-P.-Pelayo, 2016)

The minimal helices come in 7 families:

/7
P

with(1) c=1; (2)c=2; (3) k#£2, c=1;
(4) c£2; (5) k#+1,0, c#1; (6) k#—-1,1—c,c>0
and type (7). 2228
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Semitoric minimal models

Minimal models: minimal polygons (1), (2), (3)

i~

slope

-

23/28
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Semitoric minimal models

Minimal models: minimal polygons (1), (2), (3)

=1

2 3)
L 3 A N slope 7
X X X

@ The coupled angular momenta system is of type (3) with
k=-1.
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A system with two focus-focus points

A system of type (2)

Find an explicit system which is minimal of type (2).
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A system with two focus-focus points

A system of type (2)

Find an explicit system which is minimal of type (2).

@ Interesting because it has two focus-focus points.

@ Think about coupled angular momenta again:
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A system with two focus-focus points

A system of type (2)

Find an explicit system which is minimal of type (2).

@ Interesting because it has two focus-focus points.

@ Think about coupled angular momenta again:

o 10) 10 10) 10 I
0| 05| 73| 03| 05
2 ) ERE] [ 3 aNe 4 T 33 = T 3 5 E} 1 3
-0s| 03| 5 o3| o3|
o

@ The point NS passes through the interior and becomes
focus-focus, can we do this with SN as well?

24/28
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A system with two focus-focus points

A system of type (2): 4 parameter family

J = Riz1 + Rz
Hitotsn = tiz1 + oz + t3(xax2 + y1y2) + hz122
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A system with two focus-focus points

A system of type (2): 4 parameter family

J = Riz1 + Rz
Hitotsn = tiz1 + oz + t3(xax2 + y1y2) + hz122

Theorem (Hohloch-P.)

Let Ry =1 and R, = 2. Then (J,H1 11 ) is a semitoric

474727
integrable system with exactly two focus-focus points (and so is
every system in an open neighborhood of these parameters).
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A system of type (2): 4 parameter family

J = Riz1 + Rz
Hitotsn = tiz1 + oz + t3(xax2 + y1y2) + hz122

Theorem (Hohloch-P.)

Let Ry =1 and R, = 2. Then (J,H1 11 ) is a semitoric

474727
integrable system with exactly two focus-focus points (and so is
every system in an open neighborhood of these parameters).

o Can reparameterize as Hs, s, where

(tl, to, t3, t4) = (51(1—52), 52(1—51), (1—51)(1—52)+51$2, (1—51)(1—52)—5152)

to get a two parameter family.
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A system of type (2): rewriting the system

If
Hoo =x1x+y1y2+ 212
Hio =21
Hop =2
Hii =x1x+y1y2 —z122
then
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A system of type (2): rewriting the system

If
Hoo =x1x+y1y2+ 212
Hio =21
Hop =2
Hii =x1x+y1y2 —z122
then

Hs s, = (1—s2) <(1 —s1)Ho 0+ s1 Hl,O) + 5 ((1 —s1)Ho1+s1 H1,1)

and
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A system of type (2): rewriting the system

If
Hoo =x1x+y1y2+ 212
Hio =21
Hop =2
Hii =x1x+y1y2 —z122
then

Hs s, = (1—s2) <(1 —s1)Ho 0+ s1 Hl,O) + 5 ((1 —s1)Ho1+s1 H1,1)

and

(JoHi11g) = (4, H

111
4402
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A system of type (2): the semitoric polygons

The semitoric polygons for (J, H1 1):
272

= &
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A system of type (2): the momentum map image

Image of (J, Hs, s,) for si,s € [0, 1]
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A system of type (2): the momentum map image

Image of (J, Hs, s,) for si,s € [0, 1]
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A system of type (2): the momentum map image

Image of (J, Hs, s,) for si,s € [0, 1]
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A system of type (2): the momentum map image

Image of (J, Hs, s,) for si,s € [0, 1]
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A system of type (2): the momentum map image

Image of (J, Hs, s,)
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A system of type (2): the momentum map image

Image of (J, Hs, s,) for si,s € [0, 1]
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A system of type (2): the momentum map image

Thanks!
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