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Definition of Finsler metric.

Finsler metric is a function F : TM → R such that for every p ∈ M the
restriction F|TpM is a Minkowski norm, that is ∀ξ, ν ∈ TpM, ∀λ > 0

(a) F (λ · ξ) = λ · F (ξ),

(b) F (ξ + ν) ≤ F (ξ) + F (ν),

(c) F (ξ) = 0 ⇐⇒ ξ = 0.

◮ F is reversible if F (v) = F (−v).

We in addition assume that the Finsler metric is strictly convex that is

the matrix
(

∂2F 2

∂ξi∂ξj

)

, is positive definite.

Everything in my talk is smooth.



Main message and plan of the talk
◮ We solve or at least advanced in a solution of a long-standing

problem in Finsler geometry
◮ I give all necessary definition
◮ I explain motivation and history

◮ The solution would not be possible without the training I have
in the integrable system group of Fomenko in the last
millenium

◮ Understanding symplectic topology of integrable systems was
crucial

◮ The methods you possess are useful and important – trust to
look around and apply them in other branches.

◮ We (Topalov, Bolsinov, Bryant ... ) applied them in the theory
geodesically equivalent metrics – solved Lichnerowicz
conjecture and two problems stated by Sophus Lie

◮ We (Bolsinov, Rosemann, Eastwood ...) applied them in the
theory of c-projectively equivalent metrics – solved Yano-Obata
conjecture

◮ In the present talk we (Bryant, Foulon, Ivanov, Ziller) apply
them in Finsler geometry



History of Finsler metrics

◮ Appeared in Riemann’s habilitation addressed who did not consider
them interesting; were discussed in the Hermann Weyl’s comment
on Riemann’s hablitation address who found them interesting and
suggested to study what now is called Berwald and generalized
Berwald metrics and I do not discuss in my talk.

◮ Were intensively studied by classics of calculus of variations –
Cartheodory, Landsberg (beginning of the 20th century). They
were:

◮ interested in continuous optimal (variational) problems
◮ impressed by description of qualitative behaviour of geodesics

of Riemannian metrics with the help of Jacobi vector fields and
sectional curvature

◮ wanted to generalize them to the Finslerian setting.



Popular game in Finsler geometry: generalize methods and
results from Riemannian geometry

Example: (Parameterized) Geodesics are solitions of the extremal
problem L(c) 7→ min with

L(c) :=

∫ 1

−1

F (c(t), ċ(t))2dt.

Alternatively, one can view geodesic as soluions of the Hamiltonian
system on T ∗M with Hamiltonian F ∗ which is the 1

2F
2-Legendre

transform of F 2.

Example: flag curvature. It is a generalization of the sectional
curvature. I will recall the definition later, in the proof of the main result;
at the present point it is sufficient to know that in dimension two it is a
function on a three-dimensional unit tangent bundle. In my talk I will
mostly speak about the case when the flag curvature is constant.



Topic of my talk: metrics of constant flag curvature on
closed surfaces: History

◮ Because of importance of Riemannian metrics of constant sectional
curvature, Finsler metrics of constant flag curvature were intensively
studied. In a slightly different form, the problem was asked already
by Landsberg in 1908.

◮ Locally and microlocally, there is not a problem to prove the
existence of metrics of constant flag curvature: in fact, the equation
K = 1 is one PDE on the function F of 3 variables, and it has tons
of microlocal solutions.

◮ In the case of negative or zero curvature everything is understood.

Theorem (Akbar-Zadeh 1988). Every closed 2-dimensional
surfaces with constant negative flag curvature is Riemannian. Every
closed manifold with zero flag curvature is locally Minkowski.

(The result for negative constant curvature was extended to all
dimensions by Foulon 1997).



Positive constant curvature is different and similar: there
are many irreversible examples and no reversible

◮ There are many examples
︸ ︷︷ ︸

discuss at the end

of Finsler metrics of positive

constant flag curvature on the sphere.
The most famous example is the so-called Katok metrics, I
will recall the definition later.

◮ Theorem (Bryant 2002–2006). A reversible Finlser metric
of constant positive flag curvature on the 2-sphere is
Riemannian



Main Theorem

Main Theorem (Bryant-Foulon-Ivanov-Matveev-Ziller 2017).
Geodesic flow of any metric of constant flag curvature +1 on the
2-sphere is symplectically conjugated to that of an appropriate
Katok metric
︸ ︷︷ ︸

to be explained

.

Here symplectic conjugacy means the existence a symplectic
diffeomorphism of the split tangent bundles that takes F1 to F2.



Zermelo transformation and Katok metrics

Let F be a Finsler metric and v a vector field such that F (−v) < 1.

Zermelo transformation of a Finsler
metric F by v is a Finsler metric F̃

whose unit ball
{ξ ∈ TxM | F̃ (x , ξ) ≤ 1} at every x

is the v -parallel transport of the the
unit ball of F .

Def. Katok metrics are the Zermelo transformations of Riemannian
metrics of constant positive curvature by Killing vector fields.

(Essentially, g = dθ2 + cos2 θdφ2 and v = α ∂
∂φ

with |α| < 1)



Properties of Zermelo transformation w.r.t. a Killing
vector field

Fact. Suppose v is a Killing vector field for F , and Ψt the flow of
v . Suppose F (−v) < 1 and denote by F̃ the v -Zermelo transform
of F . Then:

◮ For every arc-length geodesic γ(t) of F the curve
γ̃(t) = Ψt(γ(t)) is an arc-lenght F̃ -geodesic (Known already
by Katok 1979).

◮ The flag curvature K̃ of F̃ is given by K̃ (x , ξ + v) = K (x , ξ).
In particular, if F has constant flag curvature, then so does F̃ .
(Was observed by P. Foulon in 2003 but not properly
published; follows from works of Javaloyes – Vitorio 2014 and
Huang – Mo 2015; we (Foulon-Matveev) wrote a simple
selfcontained proof 2018.)



Geodesics of the Katok metric

◮ If α is rational, α = p

q
, then all geodesics are periodic, and all but at

most two have the same length. For these two special geodesics,
the sum of reciprocals of the length’s is 1

π
.

◮ If α is irrational, precisely two geodesics are periodic, and again the
sum of reciprocals of their length’s is 1

π
.

Corollary. All these properties remain true for each metric of constant
flag curvature +1.

Corollary. The length of the shortest geodesic determines the geodesic
flow of a metric of constant flag curvature +1 on S2.



Main technical statements which lead to the proof
Theorem A. Geodesic flow of a metric of positive constant flag
curvature is Liouville integrable (We denote the integral by I ).
Thus, most geodesics (viewed as curves on the unit tangent bundle UM)
are windings on two-dimensional Liouville tori.

◮ We will see from the proof in many cases the corresponding systems
are even superintegrable – all geodesics are closed.

Theorem B. The rotational number is the same for all Liouville tori.

◮ If it is rational, all geodesics are closed (and the geodesic flow is
superintegrable).

Theorem C. (If one chooses I appropriately in the superintegrable case),
the Liouville foliation has only two singular fiber which are circles and are
ellipic singularities in the Morse-Bott classification.

By Thm C, we have that
US2 \{two circles} is foliated
by the tori.

I critical circlesLiouville tori



Why Main Theorem follows from Theorems A, B, C?
Orbital equivalence (≈ conjugacy but we allow reparameterisation) of
integrable Hamiltonian systems (with Bott-Morse singularities) were
actively studied in 1990th in Moscow by the group around Fomenko. In
particular, they constructed a complete family of invariants
(Bolsinov-Fomenko 1994–..., Kruglikov PhD Thesis 1995, Kruglikov
1997, Topalov PhD Thesis 1997)).

Fact. (Bolsinov-Fomenko, Kruglikov) In the
class of systems under the consideration, be-
cause the topology of the Liouville-foliation is
the same, the rotation number (viewed as a
function on the red thick interval) is the only
invariant

I critical circlesLiouville tori

In our case the rotational function is a constant by Thm B, so it is
sufficient to show that possible rotational numbers are the same as that
for the Katok metric, this follows from some variational arguments which
I do not have time discuss in this talk.

The symplectic conjugacy follows then, in the case when the rotational
number is irrational, from the existence of action-angle coordinates, and
in the case when the rotational number is rational, from the Weinstein’s
trick 1974 and from Wadsley 1975.



Plan for the rest of the talk

◮ Some basics of the Finsler geometry:

◮ “Fundamental tensor” and why it is not as artificial as it looks
◮ Flag curvature
◮ Its relation with Jacobi vector fields

◮ Proof of (technical) Theorems A, B, C.

◮ Zoll metrics and (Bryant’s) constructions of Finsler metrics of
constant curvature and some new examples.



Fundamental tensor

Def. Fundamental tensor is the second differential by the
ξ-coordinates of the function 1

2F
2:

g(x ,ξ) =
1
2d

2
ξ F

2.

As a mathematical object, it is a bilinear symmetric form on TM

which depends on the point of M and on a vector ξ tangent to this
point. Its matrix is n × n matrix

g(x , ξ)ij =
1
2

∂2F 2

∂ξi∂ξj

and it is positive definite by our definition of Finsler metric.



Fundamental tensor is natural and useful: I give two
indications why:

Observation 1. gp(ξ, ξ) = F 2(p, ξ), in particular geodesics are
extremals of

c(t) 7→

∫

gc(t),ċ(t)(ċ(t), ċ(t))dt.

Observation 2. If at ξ ∈ TxM with F (x , ξ) = 1 the vector ν is
tangent to the unit sphere {η ∈ TxM | F = 1}, then gξ(ξ, ν) = 0.



Flag curvature in dimension 2
Consider the following triangle:

The black lines are geodesic segments
of length r , one should think that r

is small and φ is very small

In the Riemannian case,

ℓ(r , φ) = (r − 1
6Kr

3)φ+ terms of higher order,

where K is the sectional curvature, and this is a definition of the
sectional curvature.

We will use the same picture and the same formula for the definition of
the flag curvature in Finsler geometry (assuming dimension 2): we simply
need to give sense to the notion “angle” φ and “distance” ℓ(r , φ):

◮ Angle φ is calculated in the sense of gγ(0),γ̇(0).

◮ Distance ℓ is calculated in the sense of gγ(r),γ̇(r).

The flag curvature is a function on TM2; it is homogeneous so one can
view it as a function on UM2; there is a complicated expression for it in
g and its first and second derivatives.



Jacobi vector fields
Def. The definition is the same as in the Riemannian geometry: Let
γs(t) be a family of geodesics. Jacobi vector field is the vector field along
γ0 given by

J(t) = ∂
∂s
γs(t)|s=0.

Jacobi field is normal, if it is orthogonal in gγ(t),γ̇(t) to γ̇(t) at all points.

Example. Consider the exponential map-

ping exp : TpM
︸ ︷︷ ︸

R2

→ M; then d exp

(
−ξ2
ξ1

)

is a normal Jacobi vector field (the vector
(
−ξ2
ξ1

)

is simply ∂
∂φ

in the polar coordi-

nates corresponding to the norm F . That
is, the punctured lines on the picture are
{F = const}, and of course the coordinates
are not linear.

The coordinates on TpM
2 are nonlinear

and are such that {F (0, ξ) = r} is the

standard r -circle

Analog of the Gauss Lemma: In the polar coordinates we have:

g(r ,φ),(1,0) =

(
1 0
0 G (r , φ)2

)

.



Comparison of normal Jacobi vector fields of Finsler
and Riemannian geodesics.

Consider two metrics on the same U ⊆ R
2: the Finsler metric F

and the Riemannian metric g̃ .

Assume the same curve γ(t) is a geodesic of both metrics, and
assume that g̃γ(t) = gγ(t),γ̇(t). Consider normal Jacobi vector fields

J̃(t) and J(t) in g̃ and F along this geodesic such that
J(0) = J̃(0) = 0.

Assume K (γ(t), γ̇(t)) ≡ K̃ (γ(t)), where K̃ is the (sectional)
curvature of the Riemannian metric. Then,

J(t) = const · J̃(t).

Explanation. The differential equation for the length of J is
govered by the first nontrivial coefficient in the Taylor polynomial
which is K .



The isometry ψ and proof of Theorem A

Assume flag curvature is +1, take a point p and consider the exponential
map exp : TpS

2 → S2.

Follows from the definition of the curvature/relation to Jacobi
vector fields I explained before. The mapping restricted to the
r -sphere {ξ | F (p, ξ) = r} is a homothety w.r.t. the distance in gp,ξ on
the sphere and the distance in g(γp,ξ(r)),γ̇p,ξ(r)) on the r−sphere

{x ∈ S2 | d(p, x) = r}.

The coefficient of the homothety is | sin(r)| and vanishes for r = kπ.

Corollary. All arc-lenght geodesics starting from p come to the same
point in time π. We call this point ψ(p).

Theorem. ψ is an isometry.



Proof that ψ is an isometry.

◮ Take two arbitrary points x , y ∈ Mn consider an acr-length geodesic
γ passing through these points, we assume γ(0) = x and γ(r) = y .

◮ Then, by the construction of ψ we have ψ(x) = γ(π) and
ψ(y) = γ(π + r) which implies that
dF (x , y) = r = dF (ψ(x), ψ(y)).



Important properties of ψ.

◮ The mapping ψk sends the point x to the point γx ,v (kπ),
where v is an arbitrary vector of Finsler length 1.

◮ The differential dxψ
k sends the vector v to the vector

γ̇x ,v (kπ).

Remark. If the metric is reversible, ψ2 = Id. For general metrics,
ψ2 6= Id. For example, for the Katok metrics
ψ(θ, φ) = (−θ, φ+ π(1 +α)) , and if α is irrational, ψk is never an
identity for k 6= 0.



The mapping ψ in the spherical coordinates (θ, φ)

Theorem. ∃ a spherical coordinate system s.t. ψ(θ, φ) = (−θ, φ+ λπ).

Proof. This is actually a general observation attributed to Poincare: An
isometry group of any Riemannian 2-sphere is a subgroup of the isometry

group of a certain metric of constant curvature on the same sphere.

The reduction Finsler −→ Riemannian is given as follows: to each Finsler
metric, one can associate a Riemannian metric such that isometries of
the Finsler metrics gF are isometries of the Riemannian metric, see e.g.
[M∼, Rademacher, Troyanov, Zeghib 2009] or [M∼, Troyanov 2012].



The group generated by ψ and rough scheme of the
further proof

Consider the group generated by ψ, i.e., the closure of
{ψ,ψ2 := ψ ◦ ψ,ψ3 = ψ ◦ ψ ◦ ψ, ...} in the group of isometries of F .

Case 1. The group is finite, i.e., ψk = Id .
In this case, all geodesics are closed of length at most kπ. Indeed, for
every arc-length geodesic γ we have γ(kπ) = γ(0) and
γ̇(kπ) = dψk(γ̇(0)) = γ̇(0).
Then, the system is even superintegrable, and the roational number is
constant and is the same as for the Katok metric.

Case 2. The group is infinite. As we proved above,
ψ(θ, φ) = (−θ, φ+ λπ). Then, λ is irrational and all rotations of the
form (θ, φ) 7→ (θ, φ+ α) are isometries. Thus, there exists a Killing
vector field and the integrability follows.
P.S. The rotational number is again the same as for the Katok metric.



More comments on Case 1: ψk = Id so all geodesics are
closed of typical length of 2πk .

In this case, the geodesic flow generate the locally free action of the
circle S1 and thus produces Seifert foliation on US2 = RP3.

Seifert foliation on RP3 are completely understood (e.g. Orlik 1972) and
the “rotational number” (called Euler number in the Seifert theory)
describes it completely.



Proof of Theorem B under assumptions of Case 2
(geodesics are not periodic; there exists a Killing vector
field)

Theorem B. The rotational number is the same for all Liouville tori.

Proof. W.l.o.g. the Killing vector field is ∂
∂φ

. Then, its flow Ψ acts by

Ψt(φ, θ) = (φ+ t, θ).

As we proved above, ψ(θ, φ) = (−θ, φ+ λπ), where λ is a constant.
Then, ψ2 ◦Ψ−2λπ is the identity. But the mapping ψ2 ◦Ψ−2λπ is just the
projection of the time 2π Hamiltonian flow with the Hamiltonian
HF + λpθ.

Thus, the orbits of the Hamiltonian HF + λpθ are closed. Since the
orbits of the Hamiltonian pθ are also closed, the rotation number of
HF + λpθ is constant as we want.

Theorem B is proved.

Remark. We just proved that our Hamiltonian HF is a linear combination
with constant coefficient of two generators of a Hamiltonian torus action.



Proof of the remaining part of Theorem C

Theorem C. The Lioville foliation has only two singular fiber which
are circles and are ellipic singularities in the Morse-Bott classifica-
tion.

Proof. In the case all geodesics are closed, it is nothing to prove. If not,
we have shown that the Hamiltonian action is embedded in that of the
torus. It is known (Delzant 1988? it is not directly in Delzant but rather
a folklore) that Hamiltonian action of the torus has only Bott-Morse
nondegenerate elliptic singularities.

Last part of Theorem C, and therefore Main Theorem are proved.



Multidimensional generalizations

Let M be a closed manifold of any dimension and F a Finsler metric of
constant flag curvature on it.

◮ Theorem (Folklore, e.g. Shen 2002). M is covered by the
sphere.

◮ Theorem. Geodesic flow of F is Liouville integrable and has zero
topological entropy.

◮ Theorem. Either all geodesics are closed, or there exists a Killing
vector field such that after Zermelo transform all geodesics are
closed.

◮ In dimension 2, one can even make all geodesics to be of the
same length 2π



Examples of metrics of constant curvature on S2 (most
results and techniques are due to R. Bryant; possibly an
ongoing project with Bryant)

Def. A Riemannian metric on the (2-) sphere is Zoll, if all geodesics are
closed (which automatically imply by that they are of the same length by
Wadsley 1975 and Raymond 1968)

Fact (Bryant 2002). Given a Zoll Riemannian metric g on S2

satisfying certain condition
︸ ︷︷ ︸

to be commented

, we can construct a Finsler metric of

constant curvature +1 on S2

such that all its geodesics are closed and of the lenght 2π.

Comment on “certain conditions”:

◮ if the construction works for a Zoll metric, then it works for its small
perturbation

◮ the construction works for the standard sphere

◮ In fact the construction is more general: one starts with Zoll Weyl

structures (Riemannian structures are special case of Weyl
structures).



Duality of the construction:

◮ The geodesics of the Zoll metrics correspond to the points of
the Finsler sphere (actually, to the circles
{ξ ∈ TxS

2 | F (x , ξ) = 1})

◮ the circles {ξ ∈ TxS
2 | gx(ξ, ξ) = 1} correspond to geodesics

of the Finsler metric.



Zoll metrics were intensively studied

◮ There exist a lot of explicit examples: Tannery 1886, Zoll 1906,
Blaschke 1924, Kiyohara 2001, Matveev & Shevchishin 2009

◮ The space of Zoll metrics is quite big:

Theorem of Guillemin (1974), informal version. The tangent
space to the set of Zoll metrics at the round metric can be
identified with the space of odd functions on the sphere.

In particular, “most” Zoll metrics do not have any symmetry – first
examples with no symmetry are due to Blaschke 1924, I explain
them if I have time.



But how to construct Finsler metrics of constant curvature
such that not all geodesics are of the same length? Are
there examples different from Katok?

Fact. The construction of Bryant survives if we start not from S2 but
from a Riemannian orbifold such that all geodesics are closed and of the
same length (I call it Zoll orbifold). Our main theorem says that the
orbifolds interesting for us have at most two orbital points and prescribes
the type of these points.

◮ Example. If we start from weighted projective space, we obtain the
Katok metric.

◮ The construction of Tannery 1886 and Zoll 1906, survives for
orbifolds and produces rotationally symmetric Finsler metrics
different from Katok one.

◮ Example: Starting from integrals quadratic in momenta, we
constructed an example of a Zoll orbifold with no symmetries

◮ Goal of the project with R. Bryant: does Theorem of Guillemin
survive as well? Positive answer to this question would possibly be a
final result in the direction of description of Finsler metrics of
constant curvature.



Conclusion: what we did and what we can not do

◮ Main Theorem. Geodesic flow of metrics of constant flag
curvature on the 2-sphere is conjugate to that of a Katok metric.

◮ This reduces the problem of describing metrics of constant
curvature to discussion of Zoll Weyl orbifolds with two orbifold
points.

◮ It is not clear what happens in higher dimensions.

◮ In dimension 3 there still are chances that one can solve the
problem by the same circle of ideas, but in higher dimensions
isometry group of a riemannian sphere is not necessary
conjugate (at least it does not follow from known general
results) to a linear subgroup so we possibly need additional
circle of ideas


