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Kepler problem (in 3D)

Liouville integrable:  
(H, |L|2, Lz) three integrals in involution
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Kepler problem (in 3D)

Liouville integrable:  
(H, |L|2, Lz) three integrals in involution 

more integrals (super-integrable):  
Runge-Lenz vector 

7 integrals? Only 5 independent (in 6D) 
=> EVERY orbit is periodic 

very special, but very important; similarly:  
isotropic harmonic oscillator, free particle, 
geodesic flow on spheres
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Hydrogen atom

                        (Kepler in 3D) 

                        (Schrödinger operator) 

                        (Schrödinger equation, PDE) 

eigenvalues E = -1/(2n2), n=1,2,3,… 

degenerate eigenspace, multiplicity n2
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Quantum Integrable System
quantum integrable system with classical limit 

separation of variables in spherical coordinates  
gives 3 commuting 2nd order differential operators 
(H, |L|2, Lz) on L2(R3)  

joint spectrum of (H, |L|2, Lz) is lattice  
(-1/(2n2), l(l+1), m),  
n=1,2,…, l=0,1,…,n-1, m=-l,…,l 

for fixed n (e.g. n=6):

n=6:
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Hydrogen Orbitals
separation of variables in spherical coordinates 

Laguerre polynomials for radial part 

spherical harmonics Ylm() 

wave function Ψnlm 

slice of |Ψnlm|:

l=1,p

l=2,d

l=3,f

n=4:
m=0 1 2 3

l=0,s
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Super-integrable Kepler
integrals: 

more integrals:  
Laplace-Runge-Lenz vector  

full symmetry algebra so(4):  

Casimirs 

maximally super-integrable  
every orbit is periodic  
Integrals do not all have vanishing Poisson bracket!
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so(4) algebra
either with {,} (or in QM similarly with [,]): 

{ Li, Lj } = eijk Lk  
{ Li, Kj } = eijk Kk  
{ Ki, Kj } = eijk Lk 

Casimirs (K+L)2 = n2 and (K-L)2 = n2       

hence symplectic leaf is S2xS2    

a compact symplectic manifold 
NB: reduction of maximally superintegrable 
systems with respect to Hamiltonian flow 
typically leads to compact symplectic mflds.  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Super- vs. Liouville-integrable
Liouville-integrable: n independent commuting integrals 

Conjecture that non-commutative integrability implies 
Liouville integrability (Mischenko-Fomenko ’78) 

proved by Sadetov ’03, Bolsinov ’05 
(but not proven in the same functional class)  

key to our analysis is this simple observation:  
 
A superintegrable system may be Liouville  
integrable in non-equivalent ways
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Liouville integrable realisations

Definition: Given a super-integrable Hamiltonian H, 
a Liouville integrable realisation of H is a 
collection of functions (H, F2, …, Fn) in involution, 
independent almost everywhere. 

For maximally super-integrable H there are 
infinitely many Liouville integrable realisations
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Another Liouville integrable 
realisation of Kepler 

(H, |L|2, Lz) is the standard Liouville integrable 
realisation of the Kepler problem 

(H, G, Lz) with G = |L|2+2aez is another Liouville 
integrable realisation of the Kepler problem 

a is deformation parameter, for a=0: G=|L|2 

corresponding statements for the quantum case;  
use quantum Laplace-Runge-Lenz vector
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classical: it appears arbitrary to consider Liouville 
integrable realisations of a super-integrable system 

quantum: each realisation should be studied since 
each gives a set of commuting observables,  
which can hence be measured simultaneously 

can measure (H, |L|2, Lz) simultaneously and  
can measure (H, G, Lz) simultaneously, but  
cannot measure (H, |L|2, G, Lz) simultaneously
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Joint spectrum (G, Lz)
H=-1/(2n2) fixed
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Monodromy in Hydrogen

Consider the quantum integrable system (H,G,Lz) in 
the semiclassical limit. 

Theorem (Waalkens and HRD): For fixed n with  
n2 > a the joint spectrum of (G,Lz) has quantum 
monodromy. The joint spectrum is locally a lattice, 
but there is only one globally well defined 
quantum number m, the eigenvalue of Lz. 

HRD, Waalkens, PRL 120:020507 (2018)
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The Kepler system on S2xS2

commuting fct. in K,L-variables: G = |L|2 + 2aKz/n,  Lz    

on S2xS2: Coordinates S1=(x1,y1,z1), S2=(x2,y2,z2) 
radius of spheres: n  
G = |S1+S2|2 + 2a(z1-z2)/n,  Lz = z1+z2 

commuting fct.  x1x2+y1y2+z1z2 + f(z1,z2) and z1+z2;  
here f(z1,z2) = b(z1-z2) 

other systems on S2xS2 with different f:  
* coupled spins: Zhilinskii & Sadovski ’99, Floch & Pelayo ’16, 
Jaume Alonso & HRD & Hohloch ’18, Jaume Alonso’s poster 
* geodesic flow on S3: Diana Nguyen’s poster 
* Hydrogen EM field: Cushman & Sadovskii ’99, & Efstathiou ’07  
* 2FF: Hohloch & Palmer ‘18 
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Joint spectrum (G, Lz)
H=-1/(2n2) fixed

n=12

a=28.8
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pre-image of 
focus-focus value
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Kepler ellipses forming 
the pinched torus

pinched torus
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Semiclassical limit
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a=n2/4: keeping the relative position of focus-focus point fixed

n = 6 n = 21 n = 41
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Dependence on a
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n2<a: no monodromy, 
a toric system

n2>a: monodromy, 
semi-toric systems

a=4 a=36 a=288

parabolic quantum numbers n1, n2, m  
n = n1+n2+|m|+1
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multi-separability
separability in different coordinate systems; 
implies super-integrability 

gives natural realisations of Liouville integrable 
systems, similarly in quantum mechanics 

Kepler problem (Hydrogen) is multi-separable  
1) spherical coordinates (a=0)  
2) parabolic coordinates (a=∞) 
3) spheroidal coordinates  
4) sphero-conical coordinates 

The family (H,G,Lz) contains the first three
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prolate spheroidal coordinates
confocal ellipses, focus points at ±a 

classical: separation constant G,  
as before G = |L|2+2aez 

quantum: separation gives  
spheroidal wave equation  
(confluent Heun) 

finite expansion of spheroidal harmonics 
in terms of spherical harmonics 
(Coulson & Robinson ’58)
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Spectrum and Orbitals
Classical and Quantum system on S2xS2   

Obtained from quotient by flow of H 

Joint spectrum determined by eigenvalues of 
tri-diagonal matrix A, fixed eigenvalue m of Lz   

non-zero matrix entries for l = |m|, |m|+1,…,n-1  
for fixed n, m

Al,l = l(l + 1), Al+1,l =
a

n

q
(n2 � l2)(l2 �m2)/(l2 � 1
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n=7
a=7.72

slice through |Ψ|2 
with Φ=π/2

red: classical caustic
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Regularisation
Moser regularisation: maps system to geodesic 
flow on S3. Clearly SO(4) symmetric. Quotient 
by flow of H leads to system on S2xS2. 

Kustaanheimo-Stiefel regularisation: maps 
system to isotropic harmonic oscillator in R4. 
Quotient by flow of H and flow of bi-linear 
integral leads to system on S2xS2. 

Liouville integrable realisations obtained from 
separation of variables are the same as before.

https://www.google.ch/search?client=safari&rls=en&dcr=0&q=Kustaanheimo+Stiefel&spell=1&sa=X&ved=0ahUKEwixmKPh5K7aAhWBPFAKHWmnAAoQBQgpKAA
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Laplacian
remove the potential -> just free particle,  
QM = Laplace operator 

separates in many coordinate system 

separated equations define special functions  
spherical harmonics, spheroidal harmonics,… 

quotient by free particle dynamics 
leads to integrable systems on T*S2    

with Diana Nguyen and Sean Dawson:  
Monodromy in spheroidal harmonics, Sean’s poster
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free particle quotient
r = (x,y,z)t, p=(px,py,pz)t, L=rxp ang. momentum 

H = (px2+py2+pz2)/2, flow of H: straight lines in R3 

Fix H: sphere in momentum space 

Components of linear momentum p and angular 
momentum L=rxp satisfy SE(3) algebra 

reduced phase space is T*S2    

spheroidal integrable system:  
G = |L|2 - a2(px2+py2), Lz    
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Monodromy in Spheroidal Harmonics
with Diana Nguyen and Sean Dawson

ListPlot[  Flatten[ Table[{l, SpheroidalEigenvalue[n, l, 16]}, {n, 0,   20}, {l, -n, n}], 1]]
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Proof of Mondromy
Regular reduction by flow of H to S2xS2 

Singular reduction by flow of Lz to 2-D orbifold 
using invariant polynomials 

Show existence of a pinched torus by  
reconstruction from orbifold to S2xS2 

similar to Cushman & Sadovskii ’00, & Efstathiou ’04,  
but our “Hamiltonian” G is different  

implies classical monodromy (Matveev ’96, Zung ’97) 

implies quantum monodromy (Vu Ngoc ’99)
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singular reduction
reduction by flow generated by Lz, rotation 

invariant polynomials:  
I1 = Kz, I2 = Lx2+Ly2-Kx2-Ky2, I3 = KxLy-KyLx,  

{I1, I2+iI3} = 2i(I2+iI3), {I2, I3} = ∂C/∂I1   
Casimir C =  P(I1)-I22-I32,  

G = I2 + n2+m2 - I12 + 2aI1/n 

C=0 defines reduced phase space, singular for m = 
Lz = 0 (Lemon), reconstruction gives pinched torus
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Conclusion
Super-integrable systems have different Liouville-
integrable realisations, some may have monodromy 

Same for corresponding Quantum Integrable Systems 

The most important super-integrable systems:  
 * Kepler problem (PRL 120:020507 (2018)) 
 * 3D isotropic Harmonic Oscillator 
 * Free particle (Laplace Operator) (Sean’s poster) 
 * geodesic flow on sphere (Diana’s poster) 

All have (quantum) monodromy in spheroidal coordinates 

Program: Identify semi-toric special functions


