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Integrable systems and their symplectic invariants

An integrable system on a symplectic manifold (M2n, ω) is defined by n
functions f1, . . . , fn satisfying two properties:

I they Poisson commute;

I they are functionally independent on M almost everywhere.

These functions define the momentum map F = (f1, . . . , fn) : M2n → Rn.
If a ∈ Rn is a regular value of F , then connected components of F−1(a)
are Lagrangian submanifolds treated as fibers of the singular Lagrangian
fibration on M2n associated with our integrable system.
A fiber is called singular, if it contains a point from the singular set

Sing = {x ∈ M2n | rank dF (x) < n} ⊂ M2n.

We assume that all the fibers are compact.



Singular Lagrangian fibrations

We are interested in the properties of the momentum map and, in some
sense, “ignore” the dynamics. In particular,

I we are not going to solve this Hamiltonian system;

I we do not choose any distinguished Hamiltonian function among
f1, . . . , fn;

I we do not fix these functions f1, . . . , fn either allowing any kind of
invertible transformations (f1, . . . , fn) 7→ (f̃1, . . . , f̃n).

In this view, the object we want to study is just a singular Lagrangian
fibration

M2n → Bn,

which locally can be given by commuting functions.

It is more convenient to replace the image F(M2n) of the momentum
map by the set of fibers B which, in general, is not a smooth manifold.
However in all interesting examples, B has a structure of a stratified
manifold with good topological properties (bifurcation complex).



Equivalent integrable systems

Given two integrable systems F : M2n → B and F̃ : M̃2n → B̃ (singular
Lagrangian fibrations), we want to find/discuss/study conditions for the
existence of fiberwise maps between them:

2

(2)
M2n M̃2n

B B̃.

�

F F̃

�

There are several possibilities.
Three options for M and M̃ :

• local (neighborhood of a singular point);
• semi-local (neighborhood of a singular fiber);
• global (whole manifold M).

Three options for � (fiberwise map between M and M̃):

• topological;
• smooth;
• symplectic.

What is known about symplectic invariants?

• Local
– Vey, H. Eliasson:

Non-degenerate singularities of the same algebraic type are locally symplec-
tomirphic. In other words, for non-degenarate singularities there are no (non-
trivial) local symplectic invariants.

– E. Miranda, N.T. Zung:
Equivariant version of this result (in a neighborhood of a non-degenerate orbit)

• Semi-local
– A.Toulet and J.-P. Dufour:

Hyperbolic singularities (one degree of freedom): semi-local symplectic invari-
ants exist and are completely described by In the simplest case, they are two
formal series of one variable.

– San Vu Ngoc:
Focus-focus singularities (two degrees of freedom, pinched torus): semi-local
symplectic invariants exist and are completely described by (one formal power
series in two variables).

– Unpublished result by A.B. and San Vu Ngoc, 2005:
Description of semi-local symplectic invariants for non-degenerate singularities
in the case on any degrees of freedom.

• Global
– J. Duistermaat:

Regular case (without singular fibers), i.e. the case of locally trivial Lagrangian
fibrations. Symplectic invariants are, roughly speaking, Hamiltonian mon-
odromy, Chern class and Lagrangian Chern class.

– T. Delzant:
The case of toric action. The symplectic invariant is a polytop that is the
image of the momentum mapping F = (f1, . . . , fn) with f1, . . . , fn being (good)
generators of the torus action.

– San Vu Ngoc, Alvaro Pelayo:
Semitoric manifolds (actions), two degrees of freedom. The invariant is quite
complicated.

Three options for M and M̃:

I local (neighborhood of a singular point);

I semilocal (neighborhood of a singular fiber);

I global (whole manifold M).

Three options for Φ (fiberwise map between M and M̃):

I topological;

I smooth;

I symplectic.
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What is known about symplectic invariants?

I Local

I J. Vey, H. Eliasson:
Non-degenarate singularities: no local symplectic invariants

I E. Miranda, N.T. Zung:
Equivariant version of this result (near a non-degenerate orbit)

I Semi-local

I A.Toulet and J.-P. Dufour:
Hyperbolic singularities (one degree of freedom)

I S. Vũ Ngoc.:
Focus-focus singularities (two degrees of freedom, pinched torus)

I H. Dullin and S. Vũ Ngoc.:
Hyperbolic (saddle-saddle) singularities (two degrees of freedom)

I Unpublished result by A.B. and S. Vũ Ngoc., 2005:
Non-degenerate singularities (n degrees of freedom)

I Global

I J. Duistermaat: Regular case (no singular fibers)
I T. Delzant: Toric actions
I S. Vũ Ngoc., À. Pelayo: Semitoric manifolds (two degrees of freedom)
I N.T. Zung: Very general case
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Actions and integer affine structure on B

Theorem (Liouville theorem)
Let L be a regular compact fiber of a Lagrangian fibration. Then in a
suitable neighborhood U(L) (i.e., semilocally) this fibration is
symplectically equivalent to the following standard model:

T n × Dn → Dn, (here T n is a torus and Dn is a disc)

and ω=
∑n

i=1 dIi ∧ dϕi , where ϕ1, . . . , ϕn (angles) are 2π-periodic coordi-
nates on T n (fiber) and I1, . . . , In (actions) are coordinates on Dn (base).

Three important properties:

(i) explicit formula for action variables: Ii = 1
2π

∮
γi
α, where dα = ω;

(ii) the actions are defined modulo GL(n,Z)× Rn;

(iii) when the actions are chosen, the angles are defined uniquely after
fixing “initial condition”, a transversal Lagrangian section
N = {ϕ1 = 0, . . . , ϕn = 0} ⊂ T n × Dn.

Conclusion: action variables = integer affine structure on Breg.
They are the most natural symplectic invariants of integrable systems.
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From “affine” to “symplectic”

Question. Let φ : B → B̃ be an affine equivalence. Can φ be lifted up to
a fiberwise symplectomorphism Φ : M → M̃? If not, what are additional
symplectic invariants?

The answer to the first question is known to be positive in many
important cases:

Liouville: neighborhoods of Liouville tori
Delzant: toric manifolds
Dufour–Toulet: neighborhoods of hyperbolic singular fibers
S.Vũ Ngoc.: neighborhoods of pinched tori (focus fibers)
S.Vũ Ngoc., Dullin: saddle-saddle singularities
S.Vũ Ngoc., Pelayo: semitoric manifolds (?)

For any affine equivalence between the corresponding bases φ : B → B̃
there is a symplectic map Φ : M → M̃ such that the following diagram is
commutative:

2

(2)
M2n M̃2n

B B̃.

�

F F̃

�

There are several possibilities.
Three options for M and M̃ :

• local (neighborhood of a singular point);
• semi-local (neighborhood of a singular fiber);
• global (whole manifold M).

Three options for � (fiberwise map between M and M̃):

• topological;
• smooth;
• symplectic.

What is known about symplectic invariants?

• Local
– Vey, H. Eliasson:

Non-degenerate singularities of the same algebraic type are locally symplec-
tomirphic. In other words, for non-degenarate singularities there are no (non-
trivial) local symplectic invariants.

– E. Miranda, N.T. Zung:
Equivariant version of this result (in a neighborhood of a non-degenerate orbit)

• Semi-local
– A.Toulet and J.-P. Dufour:

Hyperbolic singularities (one degree of freedom): semi-local symplectic invari-
ants exist and are completely described by In the simplest case, they are two
formal series of one variable.

– San Vu Ngoc:
Focus-focus singularities (two degrees of freedom, pinched torus): semi-local
symplectic invariants exist and are completely described by (one formal power
series in two variables).

– Unpublished result by A.B. and San Vu Ngoc, 2005:
Description of semi-local symplectic invariants for non-degenerate singularities
in the case on any degrees of freedom.

• Global
– J. Duistermaat:

Regular case (without singular fibers), i.e. the case of locally trivial Lagrangian
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image of the momentum mapping F = (f1, . . . , fn) with f1, . . . , fn being (good)
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Semitoric manifolds (actions), two degrees of freedom. The invariant is quite
complicated.
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Non-triviality of actions as symplectic invariants

Except for the Liouville theorem, the existence of an affine equivalence
between B and B̃ is a non-trivial condition.

Example
Hyperbolic case, one degree of freedom: the action is defined on the
Reeb graph of the Hamiltonian as just a function of t, parameter on the
edge. At the vertex of this graph, we have:

I (t) = a(t) ln t + b(t)

with a(t) and b(t) being smooth at zero and a(0) = 0, a′(0) 6= 0. We
can use reparametrisation τ = τ(t) to reduce I to a canonical form, e.g.

I (τ) = τ ln τ + c(τ)

Here the function c(τ) (more precisely, its Taylor expansion at zero) is
well defined and can be understood as a non-trivial semilocal symplectic
invariant.



Degenerate singularities

Why do we need them at all?

Because:

I They appear in many integrable systems in classical mechanics,
geometry and mathematical physics

I They naturally occur as “transition states” between non-degenerate
singularities (cusps, Hamiltonian Hopf bifurcation, etc.)

I Resonances produce degenerate singularities

I Some of them are stable and cannot be destroyed by small
integrable perturbations

I They are much easier for treatment than we could expect

One degree of freedom:
The simplest case: H = x2 − y3.
Or something more complicated, e.g., H = xp ± yq, H = Re (x + i y)k .

Main idea is to complexify everything.
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In the complex world...

Theorem (well known fact?)
Let H(x , y) : (C2, 0)→ (C, 0) be an complex analytic function with an
isolated singularity, ω and ω̃ be two symplectic forms and Lε = {H = ε}
denote a local fiber of H. The following two conditions are equivalent

I there exist a (germ of) complex analytic map Φ : (C2, 0)→ (C2, 0)
such that Φ∗H = H and Φ∗ω̃ = ω;

I the complex actions coincide, i.e., for any vanishing cycle
γ ∈ H1(Lε,Z) we have ∮

γ

α =

∮
γ

α̃.

Conceptually this means that as symplectic invariants we should consider
m functions of one variable I1(H), . . . , Im(H) where m is the Milnor
number of a singularity, i.e., the number of independent vanishing cycles.

Conclusion: In the complex case,
local symplectic invariants are complex actions.

No other invariants needed!



Uniqueness and initial conditions.
From real to complex and back

Theorem
Assume that a symplectic equivalence map Φ from the above statement
exists. Consider two arbitrary transversal sections N0 and N to the
singular fiber L0 (the same irreducible component of singular fiber).
Then there exists a symplectic equivalence map Φ′ that sends N0 to N
and such an Φ′ is unique.

In other words, we may consider the condition Φ(N0) = N as a kind of
natural initial condition for Φ. In particular, one may assume that
Φ(N0) = N0, or equivalently, Φ|N0 = id.

“From”: a real analytic map Φ:(R2, 0)→ (R2, 0) satisfying Φ∗H =H and
Φ∗ ω̃ = ω naturally induces the complexified map ΦC : (C2, 0)→ (C2, 0)
satisfying the same property for the complexified functions and form.

“Back” is not so obvious. However, it is definitely true if the real singular
fiber L0 is one-dimensional (we apply the uniqueness theorem).
If L0 = {0}, i.e. just a single point, then we do not have any analog for
“initial conditions” ... There should be something else.
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Idea of the proof (why “complex” is important?)

In the complex world:
Consider an arbitrary section N0 and try to construct Φ with the initial
condition Φ|N0 = id. For each point x ∈ U(0) there exists x0 ∈ N such
that x and x0 belong to the same fiber Lε that can also be viewed as an
orbit of the complex Hamiltonian vector field generated by H, i.e., there
exists t = t(x) ∈ C such that x = σt(x0). Then, we simply have to set

Φ(x) = σ̃t(x) ◦ σ−t(x)(x)

or, equivalently,

Φ(x) = σ̃t(x)−t′(x)(x) = σ̃r(x)(x),

where t ′(x) is defined by σ̃t′(x)(x0) = x and r(x) = t(x)− t ′(x).

The function r(x) (and hence Φ(x)) is:
— locally holomorphic;
— well-defined (as the complex actions coincide!);
— defined everywhere except for the singular point 0.

We now apply Hartog’s theorem to conclude that r(x) is bounded and
holomorphic everywhere. Hence, Φ(x) is explicitly constructed.
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Canonical forms for ω

For quasi-homogeneous singularities (at least?), we have the following
analog of the isochore Morse lemma.
Consider the differential of H:

dH = (Hx ,Hy )

and the quotient space R[x , y ]/〈Hx ,Hy 〉. This space is m-dimensional
(where m is a Milnor number). Let us choose a basis in it:

f1, . . . , fm.

We will say that two sympletic forms ω and ω̃ are equivalent, if there
exists a map Φ with the above properties.

Theorem (Françoise)
Each 2-form is equivalent to one of the forms of the following kind:

ωcan = α1(H)ω1 + α2(H)ω2 + · · ·+ αm(H)ωm

where ωk = fk(x , y)dx ∧ dy . The functions αi (·) are uniquely defined.



Examples

Example
H = x2 − y2, ωcan = α(H) dx ∧ dy , I (H) = a(H) lnH + . . .
By reparametrising: H 7→ h = a(H) ⇒ I (h) = h ln h + . . .
Conclusion: No local symplectic invariants

Example
H = x2 − y3,
ωcan = α(H) dx ∧ dy + β(H) y dx ∧ dy , I (H) = a(H) ·H5/6 + b(H) ·H7/6

Reparametrisation H 7→ h = h(H) gives:

ωcan = dx ∧ dy + β̂(h) y dx ∧ dy , I (h) = const · h5/6 + b̂(h) · h7/6
Conclusion: Symplectic invariant is one function of one variable b̂(h)

Example
H = x2 + y4, ωcan = α(H) dx ∧ dy + β(H) y dx ∧ dy + γ(H) y2 dx ∧ dy
Does the action determine the symplectic structure? No, the forms

dx ∧ dy and dx ∧ dy + y dx ∧ dy

have the same actions but are not equivalent.
Conclusion: Sometimes, actions are not enough.
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Can we see complex actions from real data?

Fact. Symplectic invariants are complex actions
∮
γi
α, where γi ’s are

vanishing cycles.

Question. Can we see them from the real data, namely from
Πτj (H) =

∫
τj

ω
dH , where τj are real relative cycles?

Πτj (H) =
∫
τj

ω
dH (where ω

dH is known as Gelfand-Leray form) is just the

pasage time form N1 to N2 and we have the relation:∫
τj

ω

dH
=

d

dH

∫
τi

α.



Can we see complex actions from real data?

If we think of H as a real variable, then Πτ (H) is a single-valued function
having perhaps certain singularity at zero (tends to infinity).

Let us now think of it as a complex function of a complex variable.

When the endpoints of τ go around a small loop and return to their initial
positions, the relative cycle τ does not remain the same but changes
τ 7→ τ + Var(τ) where Var(τ) is certain cycle in H1(LH ,Z) and therefore

Π(e iφH)|φ=2π = Π(H) +

∮
Var(τ)

ω

dH

If we iterate this procedure, then at the next step we will get an additio-
nal increment and so on:∮

Var(τ)

ω

dH
+

∮
M(Var(τ))

ω

dH
+

∮
M2(Var(τ))

ω

dH
+ . . .

Conclusion. If Var(τ), M(Var(τ)), M2(Var(τ)), . . . generate the whole
homotopy group H1(LH ,Z), then the real data is sufficient.



Introduction One degree of freedom Two degrees of freedom

Singularity Good � Bad �

y2 � xp

p prime
p > 2

δ+1

δ−1 {�+1 }, {��1 }

y2 � x2k

k = 2, 3
δ−1δ−2

δ+1

δ+2

{�+1 + �+2 , ��1 , ��2 } {�+1 , �+2 , ��1 + ��2 }

yp � xq

p, q prime
p, q > 2, p 6= q δ−1

δ+1

{�+1 }, {��1 }

y3 � x2y

δ−2 δ−1

δ−3

δ+1

δ+3δ+2

{�+1 , �+2 , �+3 ,
��1 + ��2 + ��3 },

same with + $ �
{�+1 + �+2 + �+3 ,
��1 + ��2 + ��3 }

Table:



Example 1

Consider the singularity of type f (x , y) = y2 − x4.

+

− −

+

+

−

Case 1: the actions do not determine the symplectic structure.
Case 2: the actions determine the symplectic structure.



Example 2

Consider the singularity of type f (x , y) = y3 − x2y .

Case 1: the actions do not determine the symplectic structure.
Case 2: the actions determine the symplectic structure.



Cusp type (parabolic) singularities in 2 degrees of freedom

Two degrees of freedom system F = (H,F ) : M4 → R2

Elliptic: H = p21 + q21 , F = p2

Hyperbolic: H = p21 − q21 , F = p2

In the both cases: No symplectic invariants (equivariant version of
Eliasson theorem by Miranda, Zung)

Parabolic: H = p21 + q31 + q1p2, F = p2

Parabolic (cusp) singularities in the context of integrable Hamiltonian
systems have been studied by many authors:
L. Lerman, Ya. Umanskii (1987, 1994), V. Kalashnikov (1998), N. T.
Zung (2000), Y. Colin de Verdière (2003), H. Dullin, A. Ivanov (2005)
and K. Efstathiou, A. Giacobbe (2012).
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Parabolic orbits in 2 degrees of freedom

Proposition (' Definition)
Let γ0 be a parabolic orbit for an integrable Hamiltonian system with the
momentum mapping F = (H,F ) : M4 → R2. Assume that F is a gene-
rator of the S1-action and the local bifurcation diagram Σ ⊂ R2(H,F ) of
F takes the standard form

Σ =
{
H2 = − 4

27F
3
}

bifurcation
complexbifurcation

diagram

×S1

F

H

(H;F )

N2

N1

µ

µ◦

with Σell = Σ ∩ {H < 0}, Σhyp = Σ ∩ {H > 0}.
Then in a neighborhood of a parabolic point there exists a local
coordinate system (x , y , λ, ϕ) in which H = x2 + y3 + λy and F = λ and

Ω = f (x , y , λ) dx ∧ dy + dλ ∧ dφ+ . . .
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Symplectic invariants of parabolic orbits (version 1)

Theorem
Consider a singular fibration in a neighbohood of a parabolic orbit γ0
defined by H and F which is Lagrangian w.r.t. two symplectic forms Ω
and Ω̃. Then the following two statements are equivalent.

(i) There is a (real-analytic) diffeomorphism Φ such that
I Φ preserves H and F ;
I Φ∗(Ω̃) = Ω.

(ii) These two integrable systems have common action variables

I (H,F ) = Ĩ (H,F ) + const and I◦(H,F ) = Ĩ◦(H,F )

or, equivalently, for every closed cycle τ on any “narrow” torus we
have ∮

τ

α =

∮
τ

α̃, for dα = Ω, dα̃ = Ω̃,

where α and α̃ are chosen in such a way that
∮
γ0
α =

∮
γ0
α̃ = 0.



Symplectic invariants of parabolic orbits (version 2)

Theorem
The necessary and sufficient condition for the existence of a real-analytic
fiberwise symplectomorphism Φ : U(γ0)→ Ũ(γ̃0) between small tubular

neighborhoods U(γ0), Ũ(γ̃0) of two parabolic orbits γ0, γ̃0 is that these
two systems have common action variables in the sense that there is a
real-analytic diffeomorphism φ : (H,F ) 7→ (H̃, F̃ ) which

I respects the bifurcation diagrams together with their partitions into
hyperbolic and elliptic branch:

φ(Σ) = Σ̃, moreover φ(Σell) = Σ̃ell and φ(Σhyp) = Σ̃hyp,

I and preserves the action variables defined on the “swallow-tail
domains”: I = Ĩ ◦ φ and I◦ = Ĩ◦ ◦ φ.



Symplectic invariants of cuspidal tori

Consider two integrable systems defined in some neighborhoods of
cuspidal tori L0 and L̃0:

F : U(L0)→ B ⊂ R2(H,F ) and F̃ : Ũ(L̃0)→ B̃ ⊂ R2(H̃, F̃ ),

where B and B̃ are some neighborhoods of the corresponding cusp points
of the bifurcation diagrams. There are three action variables I , I◦ and Iµ
(similarly for the second system). We think of them as functions on B

and B̃ (more precisely on the corresponding domains defined by Σ and

Σ̃).

Theorem
A necessary and sufficient condition for the existence of a semilocal
fiberwise symplectomorphism Φ : U(L0)→ Ũ(L̃0) is that the corres-

ponding bases B and B̃ are affinely equivalent. This means that there
exists a local real-analytic diffeomorphism φ : B → B̃ respecting the
bifurcation diagrams Σ and Σ̃ and such that I = Ĩ ◦ φ, I◦ = Ĩ◦ ◦ φ and
Iµ = Ĩµ̃ ◦ φ.

Every affine equivalence φ : B → B̃ can be lifted up to a fiberwise
symplectomorphism Φ.


