Symplectic invariants of integrable Hamiltonian systems: the case of degenerate singularities

> Alexey Bolsinov Loughborough University, UK and Moscow State University, Russia (joint work with L. Guglielmi and E. Kudryavtseva)

Geometric aspects of momentum maps and integrability 9 – 13 April, 2018 Congressi Stefano Franscini (CSF) Ascona, Switzerland

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An *integrable system* on a symplectic manifold (M^{2n}, ω) is defined by *n* functions f_1, \ldots, f_n satisfying two properties:

- they Poisson commute;
- they are functionally independent on M almost everywhere.

These functions define the momentum map $\mathcal{F} = (f_1, \ldots, f_n) : M^{2n} \to \mathbb{R}^n$. If $a \in \mathbb{R}^n$ is a regular value of \mathcal{F} , then connected components of $\mathcal{F}^{-1}(a)$ are Lagrangian submanifolds treated as fibers of the singular Lagrangian fibration on M^{2n} associated with our integrable system. A fiber is called *singular*, if it contains a point from the singular set

Sing = {
$$x \in M^{2n}$$
 | rank $dF(x) < n$ } $\subset M^{2n}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We assume that all the fibers are compact.

We are interested in the properties of the momentum map and, in some sense, "ignore" the dynamics. In particular,

- we are not going to solve this Hamiltonian system;
- we do not choose any distinguished Hamiltonian function among f_1, \ldots, f_n ;
- ▶ we do not fix these functions f_1, \ldots, f_n either allowing any kind of invertible transformations $(f_1, \ldots, f_n) \mapsto (\tilde{f}_1, \ldots, \tilde{f}_n)$.

In this view, the object we want to study is just a singular Lagrangian fibration

$M^{2n} \rightarrow B^n$,

which locally can be given by commuting functions.

It is more convenient to replace the image $\mathcal{F}(M^{2n})$ of the momentum map by the set of fibers B which, in general, is not a smooth manifold. However in all interesting examples, B has a structure of a stratified manifold with good topological properties (bifurcation complex).

Equivalent integrable systems

Given two integrable systems $F: M^{2n} \to B$ and $\widetilde{F}: \widetilde{M}^{2n} \to \widetilde{B}$ (singular Lagrangian fibrations), we want to find/discuss/study conditions for the existence of fiberwise maps between them:

Equivalent integrable systems

Given two integrable systems $F: M^{2n} \to B$ and $\widetilde{F}: \widetilde{M}^{2n} \to \widetilde{B}$ (singular Lagrangian fibrations), we want to find/discuss/study conditions for the existence of fiberwise maps between them:

Three options for M and \widetilde{M} :

- local (neighborhood of a singular point);
- semilocal (neighborhood of a singular fiber);
- ▶ global (whole manifold *M*).

Equivalent integrable systems

Given two integrable systems $F: M^{2n} \to B$ and $\widetilde{F}: \widetilde{M}^{2n} \to \widetilde{B}$ (singular Lagrangian fibrations), we want to find/discuss/study conditions for the existence of fiberwise maps between them:

Three options for M and M:

- local (neighborhood of a singular point);
- semilocal (neighborhood of a singular fiber);
- ▶ global (whole manifold *M*).

Three options for Φ (fiberwise map between M and \widetilde{M}):

- topological;
- smooth;
- symplectic.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Local

► J. Vey, H. Eliasson:

Non-degenarate singularities: no local symplectic invariants

E. Miranda, N.T. Zung:

Equivariant version of this result (near a non-degenerate orbit)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Local

► J. Vey, H. Eliasson:

Non-degenarate singularities: no local symplectic invariants

E. Miranda, N.T. Zung:

Equivariant version of this result (near a non-degenerate orbit)

- Semi-local
 - A.Toulet and J.-P. Dufour:

Hyperbolic singularities (one degree of freedom)

S. Vũ Ngoọ:

Focus-focus singularities (two degrees of freedom, pinched torus)

H. Dullin and S. Vũ Ngoọ:

Hyperbolic (saddle-saddle) singularities (two degrees of freedom)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Unpublished result by A.B. and S. Vũ Ngoç, 2005: Non-degenerate singularities (n degrees of freedom)

Local

► J. Vey, H. Eliasson:

Non-degenarate singularities: no local symplectic invariants

E. Miranda, N.T. Zung:

Equivariant version of this result (near a non-degenerate orbit)

- Semi-local
 - A.Toulet and J.-P. Dufour:

Hyperbolic singularities (one degree of freedom)

► S. Vũ Ngoọ:

Focus-focus singularities (two degrees of freedom, pinched torus)

► H. Dullin and S. Vũ Ngọc:

Hyperbolic (saddle-saddle) singularities (two degrees of freedom)

Unpublished result by A.B. and S. Vũ Ngoc, 2005: Non-degenerate singularities (n degrees of freedom)

Global

- J. Duistermaat: Regular case (no singular fibers)
- T. Delzant: Toric actions
- S. Vũ Ngoc, À. Pelayo: Semitoric manifolds (two degrees of freedom)

N.T. Zung: Very general case

Theorem (Liouville theorem)

Let \mathcal{L} be a regular compact fiber of a Lagrangian fibration. Then in a suitable neighborhood $U(\mathcal{L})$ (i.e., semilocally) this fibration is symplectically equivalent to the following standard model:

 $T^n \times D^n \to D^n$, (here T^n is a torus and D^n is a disc)

and $\omega = \sum_{i=1}^{n} dI_i \wedge d\varphi_i$, where $\varphi_1, \ldots, \varphi_n$ (angles) are 2π -periodic coordinates on T^n (fiber) and I_1, \ldots, I_n (actions) are coordinates on D^n (base).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Liouville theorem)

Let \mathcal{L} be a regular compact fiber of a Lagrangian fibration. Then in a suitable neighborhood $U(\mathcal{L})$ (i.e., semilocally) this fibration is symplectically equivalent to the following standard model:

 $T^n \times D^n \to D^n$, (here T^n is a torus and D^n is a disc)

and $\omega = \sum_{i=1}^{n} dI_i \wedge d\varphi_i$, where $\varphi_1, \ldots, \varphi_n$ (angles) are 2π -periodic coordinates on T^n (fiber) and I_1, \ldots, I_n (actions) are coordinates on D^n (base). Three important properties:

- (i) explicit formula for action variables: $I_i = \frac{1}{2\pi} \oint_{\gamma_i} \alpha$, where $d\alpha = \omega$;
- (ii) the actions are defined modulo $GL(n, \mathbb{Z}) \times \mathbb{R}^n$;
- (iii) when the actions are chosen, the angles are defined uniquely after fixing "initial condition", a transversal Lagrangian section
 N = {φ₁ = 0,..., φ_n = 0} ⊂ Tⁿ × Dⁿ.

Conclusion: action variables = integer affine structure on B_{reg} . They are the most natural symplectic invariants of integrable systems.

From "affine" to "symplectic"

Question. Let $\phi: B \to \widetilde{B}$ be an affine equivalence. Can ϕ be lifted up to a fiberwise symplectomorphism $\Phi: M \to \widetilde{M}$? If not, what are additional symplectic invariants?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

From "affine" to "symplectic"

Question. Let $\phi: B \to \widetilde{B}$ be an affine equivalence. Can ϕ be lifted up to a fiberwise symplectomorphism $\Phi: M \to \widetilde{M}$? If not, what are additional symplectic invariants?

The answer to the first question is known to be positive in many important cases:

Liouville:	neighborhoods of Liouville tori
Delzant:	toric manifolds
Dufour-Toulet:	neighborhoods of hyperbolic singular fibers
S.Vũ Ngoọ:	neighborhoods of pinched tori (focus fibers)
S.Vũ Ngoc, Dullin:	saddle-saddle singularities
S.Vũ Ngoc, Pelayo:	semitoric manifolds (?)

For any affine equivalence between the corresponding bases $\phi : B \to \tilde{B}$ there is a symplectic map $\Phi : M \to \tilde{M}$ such that the following diagram is commutative:

Except for the Liouville theorem, the existence of an affine equivalence between B and \widetilde{B} is a non-trivial condition.

Example

Hyperbolic case, one degree of freedom: the action is defined on the Reeb graph of the Hamiltonian as just a function of t, parameter on the edge. At the vertex of this graph, we have:

 $I(t) = a(t) \ln t + b(t)$

with a(t) and b(t) being smooth at zero and a(0) = 0, $a'(0) \neq 0$. We can use reparametrisation $\tau = \tau(t)$ to reduce I to a canonical form, e.g.

$$I(\tau) = \tau \ln \tau + c(\tau)$$

Here the function $c(\tau)$ (more precisely, its Taylor expansion at zero) is well defined and can be understood as a non-trivial semilocal symplectic invariant.

Degenerate singularities

Why do we need them at all?

Because:

- They appear in many integrable systems in classical mechanics, geometry and mathematical physics
- They naturally occur as "transition states" between non-degenerate singularities (cusps, Hamiltonian Hopf bifurcation, etc.)

- Resonances produce degenerate singularities
- Some of them are stable and cannot be destroyed by small integrable perturbations

Because:

- They appear in many integrable systems in classical mechanics, geometry and mathematical physics
- They naturally occur as "transition states" between non-degenerate singularities (cusps, Hamiltonian Hopf bifurcation, etc.)
- Resonances produce degenerate singularities
- Some of them are stable and cannot be destroyed by small integrable perturbations

One degree of freedom:

The simplest case: $H = x^2 - y^3$. Or something more complicated, e.g., $H = x^p \pm y^q$, $H = \text{Re}(x + iy)^k$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Because:

- They appear in many integrable systems in classical mechanics, geometry and mathematical physics
- They naturally occur as "transition states" between non-degenerate singularities (cusps, Hamiltonian Hopf bifurcation, etc.)
- Resonances produce degenerate singularities
- Some of them are stable and cannot be destroyed by small integrable perturbations
- They are much easier for treatment than we could expect

One degree of freedom:

The simplest case: $H = x^2 - y^3$. Or something more complicated, e.g., $H = x^p \pm y^q$, $H = \text{Re}(x + iy)^k$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Because:

- They appear in many integrable systems in classical mechanics, geometry and mathematical physics
- They naturally occur as "transition states" between non-degenerate singularities (cusps, Hamiltonian Hopf bifurcation, etc.)
- Resonances produce degenerate singularities
- Some of them are stable and cannot be destroyed by small integrable perturbations
- They are much easier for treatment than we could expect

One degree of freedom:

The simplest case: $H = x^2 - y^3$. Or something more complicated, e.g., $H = x^p \pm y^q$, $H = \text{Re}(x + iy)^k$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Main idea is to complexify everything.

Theorem (well known fact?)

Let $H(x, y) : (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ be an complex analytic function with an isolated singularity, ω and $\tilde{\omega}$ be two symplectic forms and $\mathcal{L}_{\varepsilon} = \{H = \varepsilon\}$ denote a local fiber of H. The following two conditions are equivalent

- ▶ there exist a (germ of) complex analytic map Φ : (\mathbb{C}^2 , 0) → (\mathbb{C}^2 , 0) such that $\Phi^*H = H$ and $\Phi^*\widetilde{\omega} = \omega$;
- the complex actions coincide, i.e., for any vanishing cycle γ ∈ H₁(L_ε, ℤ) we have

$$\oint_{\gamma} \alpha = \oint_{\gamma} \widetilde{\alpha}.$$

Conceptually this means that as symplectic invariants we should consider m functions of one variable $I_1(H), \ldots, I_m(H)$ where m is the Milnor number of a singularity, i.e., the number of independent vanishing cycles.

Conclusion: In the complex case,

local symplectic invariants are complex actions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

No other invariants needed!

Uniqueness and initial conditions. From *real* to *complex* and back

Theorem

Assume that a symplectic equivalence map Φ from the above statement exists. Consider two arbitrary transversal sections N_0 and N to the singular fiber \mathcal{L}_0 (the same irreducible component of singular fiber). Then there exists a symplectic equivalence map Φ' that sends N_0 to N and such an Φ' is unique.

In other words, we may consider the condition $\Phi(N_0) = N$ as a kind of natural initial condition for Φ . In particular, one may assume that $\Phi(N_0) = N_0$, or equivalently, $\Phi|_{N_0} = \text{id}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniqueness and initial conditions. From *real* to *complex* and back

Theorem

Assume that a symplectic equivalence map Φ from the above statement exists. Consider two arbitrary transversal sections N_0 and N to the singular fiber \mathcal{L}_0 (the same irreducible component of singular fiber). Then there exists a symplectic equivalence map Φ' that sends N_0 to N and such an Φ' is unique.

In other words, we may consider the condition $\Phi(N_0) = N$ as a kind of natural initial condition for Φ . In particular, one may assume that $\Phi(N_0) = N_0$, or equivalently, $\Phi|_{N_0} = \text{id}$.

"From": a real analytic map $\Phi: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ satisfying $\Phi^* H = H$ and $\Phi^* \widetilde{\omega} = \omega$ naturally induces the complexified map $\Phi^{\mathbb{C}}: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ satisfying the same property for the complexified functions and form.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniqueness and initial conditions. From *real* to *complex* and back

Theorem

Assume that a symplectic equivalence map Φ from the above statement exists. Consider two arbitrary transversal sections N_0 and N to the singular fiber \mathcal{L}_0 (the same irreducible component of singular fiber). Then there exists a symplectic equivalence map Φ' that sends N_0 to N and such an Φ' is unique.

In other words, we may consider the condition $\Phi(N_0) = N$ as a kind of natural initial condition for Φ . In particular, one may assume that $\Phi(N_0) = N_0$, or equivalently, $\Phi|_{N_0} = \text{id}$.

"From": a real analytic map $\Phi: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ satisfying $\Phi^* H = H$ and $\Phi^* \widetilde{\omega} = \omega$ naturally induces the complexified map $\Phi^{\mathbb{C}}: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ satisfying the same property for the complexified functions and form.

"Back" is not so obvious. However, it is definitely true if the real singular fiber \mathcal{L}_0 is one-dimensional (we apply the uniqueness theorem). If $\mathcal{L}_0 = \{0\}$, i.e. just a single point, then we do not have any analog for "initial conditions" ... There should be something else.

Idea of the proof (why "complex" is important?)

In the complex world:

Consider an arbitrary section N_0 and try to construct Φ with the initial condition $\Phi|_{N_0} = \text{id}$. For each point $x \in U(0)$ there exists $x_0 \in N$ such that x and x_0 belong to the same fiber $\mathcal{L}_{\varepsilon}$ that can also be viewed as an orbit of the complex Hamiltonian vector field generated by H, i.e., there exists $t = t(x) \in \mathbb{C}$ such that $x = \sigma^t(x_0)$. Then, we simply have to set

$$\Phi(x) = \widetilde{\sigma}^{t(x)} \circ \sigma^{-t(x)}(x)$$

or, equivalently,

$$\Phi(x) = \widetilde{\sigma}^{t(x)-t'(x)}(x) = \widetilde{\sigma}^{r(x)}(x),$$

where t'(x) is defined by $\tilde{\sigma}^{t'(x)}(x_0) = x$ and r(x) = t(x) - t'(x).

In the complex world:

Consider an arbitrary section N_0 and try to construct Φ with the initial condition $\Phi|_{N_0} = \text{id}$. For each point $x \in U(0)$ there exists $x_0 \in N$ such that x and x_0 belong to the same fiber $\mathcal{L}_{\varepsilon}$ that can also be viewed as an orbit of the complex Hamiltonian vector field generated by H, i.e., there exists $t = t(x) \in \mathbb{C}$ such that $x = \sigma^t(x_0)$. Then, we simply have to set

$$\Phi(x) = \widetilde{\sigma}^{t(x)} \circ \sigma^{-t(x)}(x)$$

or, equivalently,

$$\Phi(x) = \widetilde{\sigma}^{t(x)-t'(x)}(x) = \widetilde{\sigma}^{r(x)}(x),$$

where t'(x) is defined by $\tilde{\sigma}^{t'(x)}(x_0) = x$ and r(x) = t(x) - t'(x).

The function r(x) (and hence $\Phi(x)$) is:

- locally holomorphic;
- well-defined (as the complex actions coincide!);
- defined everywhere except for the singular point 0.

In the complex world:

Consider an arbitrary section N_0 and try to construct Φ with the initial condition $\Phi|_{N_0} = \text{id}$. For each point $x \in U(0)$ there exists $x_0 \in N$ such that x and x_0 belong to the same fiber $\mathcal{L}_{\varepsilon}$ that can also be viewed as an orbit of the complex Hamiltonian vector field generated by H, i.e., there exists $t = t(x) \in \mathbb{C}$ such that $x = \sigma^t(x_0)$. Then, we simply have to set

$$\Phi(x) = \widetilde{\sigma}^{t(x)} \circ \sigma^{-t(x)}(x)$$

or, equivalently,

$$\Phi(x) = \widetilde{\sigma}^{t(x)-t'(x)}(x) = \widetilde{\sigma}^{r(x)}(x),$$

where t'(x) is defined by $\tilde{\sigma}^{t'(x)}(x_0) = x$ and r(x) = t(x) - t'(x).

The function r(x) (and hence $\Phi(x)$) is:

- locally holomorphic;
- well-defined (as the complex actions coincide!);
- defined everywhere except for the singular point 0.

We now apply Hartog's theorem to conclude that r(x) is bounded and holomorphic everywhere. Hence, $\Phi(x)$ is explicitly constructed.

Canonical forms for ω

For quasi-homogeneous singularities (at least?), we have the following analog of the isochore Morse lemma.

Consider the differential of H:

$$\mathrm{d} H = (H_x, H_y)$$

and the quotient space $\mathbb{R}[x, y]/\langle H_x, H_y \rangle$. This space is *m*-dimensional (where *m* is a Milnor number). Let us choose a basis in it:

$$f_1,\ldots,f_m$$

We will say that two sympletic forms ω and $\tilde{\omega}$ are equivalent, if there exists a map Φ with the above properties.

Theorem (Françoise)

Each 2-form is equivalent to one of the forms of the following kind:

$$\omega_{\rm can} = \alpha_1(H)\,\omega_1 + \alpha_2(H)\,\omega_2 + \cdots + \alpha_m(H)\,\omega_m$$

where $\omega_k = f_k(x, y) dx \wedge dy$. The functions $\alpha_i(\cdot)$ are uniquely defined.

・ロト <
日 > <
三 > <
三 > <
三 > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ > <
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ >
、 こ

Example

 $H = x^2 - y^2$, $\omega_{can} = \alpha(H) dx \wedge dy$, $I(H) = a(H) \ln H + \dots$ By reparametrising: $H \mapsto h = a(H) \Rightarrow I(h) = h \ln h + \dots$ Conclusion: No local symplectic invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

 $H = x^2 - y^2$, $\omega_{can} = \alpha(H) dx \wedge dy$, $I(H) = a(H) \ln H + \dots$ By reparametrising: $H \mapsto h = a(H) \Rightarrow I(h) = h \ln h + \dots$ Conclusion: No local symplectic invariants

Example

$$\begin{split} & H = x^2 - y^3, \\ & \omega_{\rm can} = \alpha(H) \, dx \wedge dy + \beta(H) \, y \, dx \wedge dy, \ I(H) = a(H) \cdot H^{5/6} + b(H) \cdot H^{7/6} \\ & \text{Reparametrisation } H \mapsto h = h(H) \text{ gives:} \\ & \omega_{\rm can} = dx \wedge dy + \widehat{\beta}(h) \, y \, dx \wedge dy, \ I(h) = \text{const} \cdot h^{5/6} + \widehat{b}(h) \cdot h^{7/6} \\ & \text{Conclusion: Symplectic invariant is one function of one variable } \widehat{b}(h) \end{split}$$

Example

 $H = x^2 - y^2$, $\omega_{can} = \alpha(H) dx \wedge dy$, $I(H) = a(H) \ln H + \dots$ By reparametrising: $H \mapsto h = a(H) \Rightarrow I(h) = h \ln h + \dots$ Conclusion: No local symplectic invariants

Example

$$\begin{split} H &= x^2 - y^3, \\ \omega_{\rm can} &= \alpha(H) \, dx \wedge dy + \beta(H) \, y \, dx \wedge dy, \ I(H) &= a(H) \cdot H^{5/6} + b(H) \cdot H^{7/6} \\ \text{Reparametrisation } H &\mapsto h = h(H) \text{ gives:} \\ \omega_{\rm can} &= dx \wedge dy + \widehat{\beta}(h) \, y \, dx \wedge dy, \ I(h) &= \text{const} \cdot h^{5/6} + \widehat{b}(h) \cdot h^{7/6} \\ \text{Conclusion: Symplectic invariant is one function of one variable } \widehat{b}(h) \end{split}$$

Example

 $H = x^2 + y^4$, $\omega_{can} = \alpha(H) dx \wedge dy + \beta(H) y dx \wedge dy + \gamma(H) y^2 dx \wedge dy$ Does the action determine the symplectic structure? No, the forms

$$dx \wedge dy$$
 and $dx \wedge dy + y \, dx \wedge dy$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

have the same actions but are not equivalent. Conclusion: Sometimes, actions are not enough.

Can we see complex actions from real data?

Fact. Symplectic invariants are complex actions $\oint_{\gamma_i} \alpha$, where γ_i 's are vanishing cycles.

Question. Can we see them from the real data, namely from $\Pi_{\tau_j}(H) = \int_{\tau_i} \frac{\omega}{dH}$, where τ_j are real relative cycles?

 $\Pi_{\tau_j}(H) = \int_{\tau_j} \frac{\omega}{\mathrm{d}H}$ (where $\frac{\omega}{\mathrm{d}H}$ is known as Gelfand-Leray form) is just the pasage time form N_1 to N_2 and we have the relation:

$$\int_{\tau_j} \frac{\omega}{\mathrm{d}H} = \frac{\mathrm{d}}{\mathrm{d}H} \int_{\tau_i} \alpha.$$

If we think of H as a real variable, then $\Pi_{\tau}(H)$ is a single-valued function having perhaps certain singularity at zero (tends to infinity).

Let us now think of it as a complex function of a complex variable.

When the endpoints of τ go around a small loop and return to their initial positions, the relative cycle τ does not remain the same but changes $\tau \mapsto \tau + \operatorname{Var}(\tau)$ where $\operatorname{Var}(\tau)$ is certain cycle in $H_1(\mathcal{L}_H, \mathbb{Z})$ and therefore

$$|\Pi(e^{i\phi}H)|_{\phi=2\pi} = \Pi(H) + \oint_{\operatorname{Var}(au)} \frac{\omega}{\mathrm{d}H}$$

If we iterate this procedure, then at the next step we will get an additional increment and so on:

$$\oint_{\operatorname{Var}(\tau)} \frac{\omega}{\mathrm{d}H} + \oint_{M(\operatorname{Var}(\tau))} \frac{\omega}{\mathrm{d}H} + \oint_{M^2(\operatorname{Var}(\tau))} \frac{\omega}{\mathrm{d}H} + \dots$$

Conclusion. If $\operatorname{Var}(\tau)$, $M(\operatorname{Var}(\tau))$, $M^2(\operatorname{Var}(\tau))$, ... generate the whole homotopy group $H_1(\mathcal{L}_H, \mathbb{Z})$, then the real data is sufficient.

Singularity		Good δ	Bad δ
$y^2 - x^p$ <i>p</i> prime <i>p</i> > 2	δ_1^+	$\{\delta_1^+\}, \{\delta_1^-\}$	
$y^2 - x^{2k}$ $k = 2, 3$	δ_1^+ δ_2^- δ_2^+ δ_2^+	$\{\delta_1^+ + \delta_2^+, \ \delta_1^-, \delta_2^-\}$	$\{\delta_1^+, \delta_2^+, \ \delta_1^- + \delta_2^-\}$
$y^{p} - x^{q}$ $p, q \text{ prime}$ $p, q > 2, p \neq q$	$\qquad $	$\{\delta_1^+\}, \{\delta_1^-\}$	
$y^3 - x^2 y$	$\begin{array}{c} \delta_2^-\\ \hline\\ \delta_2^+\\ \hline\\ \delta_2^+\\ \hline\\ \delta_3^-\\ \hline\\ \delta_3^-\\ \hline\\ \delta_3^-\\ \hline\\ \delta_3^+\\ \hline\\ \delta_3^+\\ \hline\\ \delta_3^-\\ \hline\\ \end{array}$	$\begin{array}{l} \{\delta_1^+,\delta_2^+,\delta_3^+,\\ \delta_1^-+\delta_2^-+\delta_3^-\},\\ \text{same with }+\leftrightarrow-\end{array}$	$\{ \delta_1^+ + \delta_2^+ + \delta_3^+, \\ \delta_1^- + \delta_2^- + \delta_3^- \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Consider the singularity of type $f(x, y) = y^2 - x^4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Case 1: the actions do not determine the symplectic structure. Case 2: the actions determine the symplectic structure.

Consider the singularity of type $f(x, y) = y^3 - x^2 y$.

Case 1: the actions do not determine the symplectic structure. Case 2: the actions determine the symplectic structure.

Cusp type (parabolic) singularities in 2 degrees of freedom

Two degrees of freedom system $\mathcal{F} = (H, F) : M^4 \to \mathbb{R}^2$

Elliptic: $H = p_1^2 + q_1^2$, $F = p_2$

Hyperbolic: $H = p_1^2 - q_1^2$, $F = p_2$

In the both cases: No symplectic invariants (equivariant version of Eliasson theorem by Miranda, Zung)

Cusp type (parabolic) singularities in 2 degrees of freedom

Two degrees of freedom system $\mathcal{F} = (H, F) : M^4 \to \mathbb{R}^2$

Elliptic: $H = p_1^2 + q_1^2$, $F = p_2$

Hyperbolic:
$$H = p_1^2 - q_1^2$$
, $F = p_2$

In the both cases: No symplectic invariants (equivariant version of Eliasson theorem by Miranda, Zung)

Parabolic: $H = p_1^2 + q_1^3 + q_1 p_2$, $F = p_2$

Cusp type (parabolic) singularities in 2 degrees of freedom

Two degrees of freedom system $\mathcal{F} = (H, F) : M^4 \to \mathbb{R}^2$

Elliptic: $H = p_1^2 + q_1^2$, $F = p_2$

Hyperbolic:
$$H = p_1^2 - q_1^2$$
, $F = p_2$

In the both cases: No symplectic invariants (equivariant version of Eliasson theorem by Miranda, Zung)

Parabolic:
$$H = p_1^2 + q_1^3 + q_1 p_2$$
, $F = p_2$

Parabolic (cusp) singularities in the context of integrable Hamiltonian systems have been studied by many authors:
L. Lerman, Ya. Umanskii (1987, 1994), V. Kalashnikov (1998), N. T. Zung (2000), Y. Colin de Verdière (2003), H. Dullin, A. Ivanov (2005) and K. Efstathiou, A. Giacobbe (2012).

Parabolic orbits in 2 degrees of freedom

Proposition (\simeq Definition)

Let γ_0 be a parabolic orbit for an integrable Hamiltonian system with the momentum mapping $\mathcal{F} = (H, F) : M^4 \to \mathbb{R}^2$. Assume that F is a generator of the S^1 -action and the local bifurcation diagram $\Sigma \subset \mathbb{R}^2(H, F)$ of \mathcal{F} takes the standard form

with $\Sigma_{\rm ell} = \Sigma \cap \{H < 0\}$, $\Sigma_{\rm hyp} = \Sigma \cap \{H > 0\}$. Then in a neighborhood of a parabolic point there exists a local coordinate system (x, y, λ, φ) in which $H = x^2 + y^3 + \lambda y$ and $F = \lambda$ and

 $\Omega = f(x, y, \lambda) \, dx \wedge dy + d\lambda \wedge d\phi + \dots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem

Consider a singular fibration in a neighbohood of a parabolic orbit γ_0 defined by H and F which is Lagrangian w.r.t. two symplectic forms Ω and $\tilde{\Omega}$. Then the following two statements are equivalent.

- (i) There is a (real-analytic) diffeomorphism Φ such that
 - • preserves H and F;
 - $\blacktriangleright \Phi^*(\widetilde{\Omega}) = \Omega.$

(ii) These two integrable systems have common action variables

$$I(H,F) = \widetilde{I}(H,F) + \text{const}$$
 and $I_{\circ}(H,F) = \widetilde{I}_{\circ}(H,F)$

or, equivalently, for every closed cycle τ on any "narrow" torus we have

$$\oint_{\tau} \alpha = \oint_{\tau} \widetilde{\alpha}, \quad \text{for } d\alpha = \Omega, \ d\widetilde{\alpha} = \widetilde{\Omega},$$

where α and $\widetilde{\alpha}$ are chosen in such a way that $\oint_{\gamma_0} \alpha = \oint_{\gamma_0} \widetilde{\alpha} = 0$.

・ロト・日本・モト・モー シック

Theorem

The necessary and sufficient condition for the existence of a real-analytic fiberwise symplectomorphism $\Phi : U(\gamma_0) \to \widetilde{U}(\widetilde{\gamma}_0)$ between small tubular neighborhoods $U(\gamma_0), \widetilde{U}(\widetilde{\gamma}_0)$ of two parabolic orbits $\gamma_0, \widetilde{\gamma}_0$ is that these two systems have common action variables in the sense that there is a real-analytic diffeomorphism $\phi : (H, F) \mapsto (\widetilde{H}, \widetilde{F})$ which

respects the bifurcation diagrams together with their partitions into hyperbolic and elliptic branch:

$$\phi(\Sigma) = \widetilde{\Sigma}, \quad \textit{moreover} \quad \phi(\Sigma_{\rm ell}) = \widetilde{\Sigma}_{\rm ell} \quad \textit{and} \quad \phi(\Sigma_{\rm hyp}) = \widetilde{\Sigma}_{\rm hyp},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and preserves the action variables defined on the "swallow-tail domains": I = Ĩ ∘ φ and I_◦ = Ĩ_◦ ∘ φ.

Symplectic invariants of cuspidal tori

Consider two integrable systems defined in some neighborhoods of cuspidal tori \mathcal{L}_0 and $\widetilde{\mathcal{L}}_0$:

 $\mathcal{F}: \, \mathcal{U}(\mathcal{L}_0) \to B \subset \mathbb{R}^2(\mathcal{H}, F) \quad \text{and} \quad \widetilde{\mathcal{F}}: \, \widetilde{\mathcal{U}}(\widetilde{\mathcal{L}}_0) \to \widetilde{B} \subset \mathbb{R}^2(\widetilde{\mathcal{H}}, \widetilde{F}),$

where B and \widetilde{B} are some neighborhoods of the corresponding cusp points of the bifurcation diagrams. There are three action variables I, I_{\circ} and I_{μ} (similarly for the second system). We think of them as functions on Band \widetilde{B} (more precisely on the corresponding domains defined by Σ and $\widetilde{\Sigma}$).

Theorem

A necessary and sufficient condition for the existence of a semilocal fiberwise symplectomorphism $\Phi : U(\mathcal{L}_0) \to \widetilde{U}(\widetilde{\mathcal{L}}_0)$ is that the corresponding bases B and \widetilde{B} are affinely equivalent. This means that there exists a local real-analytic diffeomorphism $\phi : B \to \widetilde{B}$ respecting the bifurcation diagrams Σ and $\widetilde{\Sigma}$ and such that $I = \widetilde{I} \circ \phi$, $I_\circ = \widetilde{I_\circ} \circ \phi$ and $I_\mu = \widetilde{I_\mu} \circ \phi$.

Every affine equivalence $\phi: B \to \widetilde{B}$ can be lifted up to a fiberwise symplectomorphism Φ .