Semiglobal symplectic invariants of focus-focus singular fibers with multiple pinched points Xiudi Tang (joint with Álvaro Pelayo) University of California, San Diego

Figure 1: Fibers and invariants

Abstract

Invariants

We classify, up to symplectomorphisms, a neighborhood of a singular fiber of an integrable system (which is proper and has connected fibers) containing k > 1 non-degenerate focus-focus critical points. Our result shows that there is a one-to-one correspondence between such neighborhoods and k formal power series, up to a ($\mathbb{Z}_2 \times D_k$)-action, where D_k is the k-th dihedral group. This proves a conjecture of San Vũ Ngọc from 2002.

Integrable systems

An *integrable system* of two dimensions of freedom is a 3-tuple (M, ω, F) , where

• (M, ω) is a 4-dimensional symplectic manifold, and • $F = (f_1, f_2): M \to \mathbb{R}^2$ is a smooth map such that the Poisson bracket $\{f_1, f_2\}$ vanishes and df_1, df_2 are linearly independent almost everywhere. In the poster we assume *F* is proper and has connected fibers.

Local normal form

Eliasson gave a normal form of an integrable system in a neighborhood of a nondegenerate singular point.

Lemma (Eliasson). If $p \in M$ is a nondegenerate singular point of an integrable system (M, ω, F) of focus-focus type, then there exists local complex coordinates $(z, \zeta) \in \mathbb{C}^2$ about p, and $c \in \mathbb{C}^2$ about F(p) such that $\omega = \text{Im}(dz \wedge d\zeta)$ and

Theorem (Pelayo-T. 2018 [1]). *Germs of integrable systems at a focus-focus fiber with k singular points, one of which labeled, is 1-1 correspondent to the k-tuple*

 $(s_0, g_{0,1}, g_{1,2}, \ldots, g_{k-2,k-1})$

up to the action by $\mathbb{Z}_2 \times D_k$, where • $s_0 = \sum_{i,j=0}^{\infty} a_{ij} X^i Y^j$ with $a_{00} = 0$, $a_{10} \in \mathbb{R}/(2\pi\mathbb{Z})$, other $a_{ij} \in \mathbb{R}$; • $g_{\ell,\ell+1} = \sum_{i,j=0}^{\infty} a_{ij} X^i Y^j$ with $a_{00} = 0$, $a_{01} > 0$, other $a_{ij} \in \mathbb{R}$, $(\ell = 0, ..., k - 2)$. Our theorem generalized San Vũ Ngọc's result in [2] where he proved the classification in the case k = 1.

The $\mathbb{Z}_2 \times D_k$ **-action**

The power series are subject to an action by the symmetry group of k-pinched torus and the direction of the periodic Hamiltonian flow.

$$: (\mathbf{s}_0(X,Y),\ldots,\mathbf{g}_{\ell,\ell+1}(X,Y),\ldots);$$

$$\bullet : (-\mathsf{s}_0(-X,Y) + k\pi X, \dots, \mathsf{g}_{\ell,\ell+1}(X,Y), \dots);$$

•
$$(-\mathbf{s}_0(X,-Y),\ldots,-\mathbf{g}_{k-\ell-1,k-\ell}^{-1}(X,-Y),\ldots);$$

•
$$(\mathsf{s}_0(X,\mathsf{g}_{0,1}^{-1}(X,Y)),\ldots,\mathsf{g}_{\ell+1,\ell+2}(X,Y),\ldots).$$

 $c(F(p')) = z(p')\zeta(p')$ for p' in a neighborhood of p in M.

Singular and regular fibers

The singular fiber of *F* is a torus pinched at each focus-focus point.
The regular fibers of *F* are Lagrangian tori.

References

[1] Á. Pelayo and X. Tang. Vu Ngoc's Conjecture on focus-focus singular fibers with multiple pinched points. *ArXiv e-prints*, March 2018.

[2] San Vũ Ngọc. On semi-global invariants for focus-focus singularities. *Topology*, 42(2):365–380, 2003.