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Geodesic Flow on S3

Consider the sphere S3 as embedded in R4 with Cartesian coordinates Q = (x1, x2, x3, x4) and
momenta P = (y1, y2, y3, y3). We obtain a Dirac structure on T ∗S3 using the constraints
Q · Q = x2

1 + x2
2 + x2

3 + x2
4 = 1 and Q · P = x1y1 + x2y2 + x3y3 + x4y4 = 0. The geodesic

Hamiltonian on this phase space is given by H = P · P = y2
1 + y2

2 + y2
3 + y2

4. This system is
known to be superintegrable with a global Hamiltonian S1-action. Taking the quotient of T ∗S3

by this action gives the symplectic manifold S2 × S2. We perform this reduction by using
invariants.
The six angular momenta `ij = xiyj − xjyi form a closed set of invariants and the Hamiltonian
can be written in terms of them as H = 1

2
∑

j>i `
2
ij. Their Poisson algebra has 2 Casimirs:

C1 = 2H =
∑

j>i `
2
ij and C2 = `12`34 − `13`24 + `14`23 = 0. The �rst Casimir is the energy which

we �x to 1 and the second is the Plücker relation which is identically 0. Using the `ij’s as new
coordinates we obtain an explicit description of S2 × S2 as

C1 = C1 + 2C2 = (`12 + `34)
2 + (`13 − `24)

2 + (`14 + `23)
2 = 1

C2 = C1 + 2C2 = (`12 − `34)
2 + (`13 + `24)

2 + (`14 − `23)
2 = 1.

Making the coordinate transformation (X1,X2,X3) = (`12 + `34, `13 − `24, `14 + `23) and
(Y1, Y2, Y3) = (`12 − `34, `13 + `24, `14 − `23) yields a Poison matrix that is block-diagonal and
the Poisson algebra is isomorphic to so(3)× so(3). It is interesting to note that the Xi’s and
Yi’s generate the left and right isoclinic rotations in SO(4) respectively. The subgroups of left
and right isoclinic rotations are each isomorphic to SO(3), and they give a decomposition of
SO(4) as SO(4)/{±I} ∼= SO(3)L × SO(3)R.

Separable coordinates on S3

The Hamiltonian-Jacobi equation of the geodesic �ow on S3 separates in the general
spherical-elliptical coordinates as well as the 5 degenerate coordinates: prolate, oblate,
Lamé-subgroup reduction, spherical and cylindrical coordinates. Schöbel gave an algebraic
geometric classi�cation of these coordinates using the Stashe� polytope (Figure 1).

Figure 1: Stashe� polytope for S3 taken from [1]

The 5 degenerate coordinates can be described by appropriate limits of the general elliptical
coordinates. Each of these 6 orthogonal coordinate systems gives rise to a Stäckel integrable
system on S3. Since the �rst integrals (given by second-order Killing tensors) are quadratic
functions of the angular momenta `ij, each Stäckel system on S3 descends to an integrable
system on S2 × S2. In this poster, we attempt to classify these systems by studying features of
their integral and action maps.

The general elliptical coordinates
The general spherical-elliptical coordinates on S3, denoted (s1, s2, s3), are de�ned as the roots
of K(s) =

∑4
i=1

x2
i

s−ei = 0 where e1 ≤ s1 ≤ e2 ≤ s2 ≤ e3 ≤ s3 ≤ e4. The geodesic Hamiltonian in
these coordinate is

H = 2
3∑

i=1

∏4
j=1(si − ej)∏
k 6=i(sj − sk)

.

This system is Liouville integrable with the global polynomial integrals Fi given by

Fi =
4∑

j=1,j 6=i

(xiyj − xjyi)
2

ei − ej
=

4∑
j=1,j 6=i

`2
ij

ei − ej

where i ∈ {1, 2, 3, 4}. The Fi satisfy
∑4

i=1 Fi = 0 and are related to the separation constants
(�rst integrals) η1 and η2 by

4∑
i=1

Fi
z − ei

=

∑4
i=1 Fi

(∏
j 6=i (z − ej)

)
∏4

k=1 (z − ek)
=

2hz2 − η1z + η2∏4
k=1 (z − ek)

:=
R (z)
A (z)

with η1 =
∑

i<j (en + em) `2
ij and η2 =

∑
i<j eneml

2
ij where the indices m, n, i, j are all distinct.

The separated equations are then given by p2
i = −

R(si)
4A(si), where pi is the conjugate momentum

to si. We therefore have three actions:

Ii =
1

2π

∫ r2

r1

√
−R (si)
A (si)

dsi

for i ∈ {1, 2, 3}, with r1 and r2 being the 2 roots of R (z). Using a Möbius transformation, we
show that the sum I1 + I2 + I3 is a constant with value equals

√
2h.

Figure 2: General elliptical coordinate. (a) Roots diagram, (b) Integral map, (c) Action map

The general elliptical coordinates (cont.)
Figure 2 shows the roots diagram, the integral map and the action map. The integral map
consists of 4 lines Li with equations η2 = ei (η1 − ei) for i ∈ {1, 2, 3, 4} and the quadratic
curve 4η2 = η2

1 which intersects L2 and L3 tangentially at the points (e2
2, 2e2) and (e2

3, 2e3)
respectively. This integral map share resounding similarities to that of the geodesics on an
ellipsoid and the Neumann problem.
The corresponding action map in Figure 2(c) features the equilateral triangle resulting from
the intersection of the plane I1 + I2 + I3 = 1 and the positive quadrant. The projection of the
image of the action map onto any of the coordinate planes is a Delzant polytope, the inside of
which carries additional information in the form of graphs corresponding to the hyperbolic
singularities.

Prolate Lamé Coordinate
The prolate Lamé coordinates are best understood as a degeneration of the general elliptical
coordinates with e2 = e3. In this case, the angular momenta `23 (or `24) generates a global S1

action and we have a choice for the integral map (to use either `23 or `2
23). Figure 3(b) shows

the integral map using `2
23 and Figure 3(c) uses `23 (momentum map). This system is known to

be a semi-toric system with the existence of a focus-focus type singularity.

Figure 3: Prolate Lamé Coordinates. (a) Roots diagram, (b) Integral map, (c) Momentum map, (d) Action map

Oblate Lamé and Cylindrical Coordinates
The oblate Lamé coordinates are degenerations of the elliptical coordinates by setting either
e1 = e2 or e3 = e4. Again, in this case, we have a global action generated by one of the angular
momenta, and so we can “extract the square root” of the integral map to get the momentum
map shown in Figure 4.

Figure 4: Oblate Lamé. (a) Root diagram. (b) Integral map, (c) Momentum map, (d) Action map.

The cylindrical coordinates are a further degeneration of the oblate coordinates with both
e1 = e2 and e3 = e4. The system is toric with 2 global S1 actions generated by `14 and `23.

Figure 5: Cylindrical coordinates. (a) Roots diagram, (b) Integral map, (c) Momentum map, (d) Action map

Lamé reduction and Spherical Coordinates
Lamé reduction and spherical coordinates are extensions of coordinates on S2 onto S3. This is
essentially equivalent to setting 3 of the semi-major axes ei to be equal. Unfortunately, this
results in a degenerate root diagram and we no longer have a straightforward correspondence
between the roots and the integrals and actions. However, by viewing this as the limit of
e4 →∞ while keeping e1, e2, e3 relatively small, we produce the diagrams in Figure 6(a) and
6(b) for Lamé-reduction and Figure 6(c), 6(d) and 6(e) for spherical coordinates.

Figure 6: Lamé and Spherical Coordinates. (a) Lamé integral map, (b) Lamé action map, (c) Spherical integral
map, (d) Spherical momentum map, (e) Spherical action map
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