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Introduction
1. Outline

It is known ([1]) that focus-focus singularities do not imply non-trivial
Hamiltonian monodromy [2] in the case of integrable systems with
non-compact fibers. On the other hand, in the case of the so-called
scattering systems, there are other invariants, such as Knauf’s index
[7], which are non-trivial. We show that in the case of systems that
are both scattering and integrable, one can define invariants that are
similar to both Hamiltonian monodromy and Knauf’s index. Our main
example is scattering monodromy, which was originally introduced in
[1] for a planar hyperbolic oscillator and in [3] for scattering systems
in the plane (with a repulsive rotationally symmetric potential).

2. Deflection angle

Let us recall the deflection angle definition of scattering monodromy
given in [1, 3].
Consider a repulsive rotationally symmetric potential V : R2→ R that
decays at infinity sufficiently fast. For instance, one can take

V = W (‖q‖), W (r) = 1/(r2 + 1).

Observe that the corresponding Hamiltonian system is integrable since
the angular momentum L = xpy − ypx is conserved.

Definition 1. The deflection angle of a scattering orbit q(t) is defined
by δ =

∫ +∞
−∞ ϕ̇dt− π, where ϕ = Arg(q1 + iq2) is the polar angle.

Definition 2. ([1, 3]) Scattering monodromy along the path γ is
defined as the variation of the deflection angle

δ = 2

∞∫
rmin

ldr

r2
√

2(E − l2/2r2 −W (r))
− π

along γ. Here E is the energy, l is the momentum and rmin is the
turning point.

Theorem 1. ([3]) Scattering monodromy along γ is given by

1

2π

∫
γ

dδ = 1.

3. Non-compact monodromy

In [5] it was observed that rotational symmetry allows to compactify
the non-compact fibration in a neighborhood of a focus-focus fiber.
The notion of non-compact monodromy was then defined in [5] as
the standard monodromy of any such S1-invariant compactification.
(Here the scattering assumption is not important.)
The fact that the result is well-defined does not directly follow from
the classical result on focus-focus singularities since the compactified
fibration is not Lagrangian. One way that allows to prove this is to
apply the topological results of [6, 8].
We present a new approach to scattering monodromy, which does not
assume the existence of a circle action and which is based on scattering
theory.

Scattering invariants

4. Scattering map

We consider a pair of Hamiltonians on P = T ∗Rn given by

H =
1

2
‖p‖2 + V (q) and Hr =

1

2
‖p‖2 + Vr(q),

where the (singular) potentials V and Vr are assumed to decay at
infinity sufficiently fast.
Consider the set of the scattering states

s = {x | H(x) > 0, supt∈R‖gtH(x)‖ =∞}.

For x ∈ s, the limits p̂±(x) = limt→±∞ p(t, x) and

q±⊥(x) = lim
t→±∞

q(t, x)− 〈q(t, x), p̂±(x)〉p̂
±(x)
2h

,

are defined and depend continuously on x ∈ s. Due to the gtH-

invariance of p̂± and q±⊥, we have the maps

A± = (p̂±, q±⊥) : s/g
t
H → Rn × Rn.

Similarly, one constructs the maps A±r for the ‘reference’ Hamiltonian
Hr =

1
2p

2 + Vr(q).

Definition 3. Let R be a gtH-invariant submanifold of s and B =

R/gtH . Assume that the composition map

S = (A−)−1 ◦ A−r ◦ (A+
r )
−1 ◦ A+

is well defined and maps B to itself. The map S is called the scattering
map (w.r.t. H,Hr and B).

Definition 4. ([7]) Let Vr = 0 and E be such that H−1(E) ⊂ s.
Then H−1(E)/gtH can be identified with the cotangent bundle T ∗Sn.
Knauf’s index deg(E) is then defined as the topological degree of the
map Pr ◦S : (T ∗pSn) ∪∞ → Sn.

5. Scattering monodromy

Assume that the Hamiltonian system given by H is integrable. Let
F : P → Rn be the corresponding integral (also called the energy-
momentum) map. The scattering map S gives rise to a new fibration

Fc : sc→ Rn.

Invariants of the fibration Fc contain essential information about the
scattering dynamics; we get scattering invariants.

Definition 5. Assume that

Fc : sc→ Rn

is a torus bundle. The standard monodromy of this bundle will be
called scattering monodromy of the fibration F .

Proposition 1. In the case when Hr = H, the scattering and the
Hamiltonian monodromy matrices of F coincide.

Theorem 2. In the case of planar systems with a rotational symmetry,
scattering monodromy along γ is given by the matrix

Mγ =

(
1 mγα
0 1

)
.

In the case when the reference Hamiltonian Hr =
1
2‖p‖

2, the following
statements hold.

• The scattering and the non-compact monodromy along γ coincide;

• The index mγ is minus the variation of the deflection angle;

• The index mγ = deg(Elow) − deg(Ehigh), where deg(E) denotes
Knauf’s index.

Euler’s two-center problem

Preliminaries

The Euler two-center problem can be defined as a Hamiltonian system
on T ∗(R3 \ {o1, o2}) with a Hamiltonian function H given by

H =
‖p‖2

2
+ V (q), V (q) = −µ1

r1
− µ2
r2
,

where ri : R3→ R is the distance to the center oi.
In [9] it was shown that Hamiltonian monodromy is non-trivial in the
gravitational problem in case of negative energies (the motion is then
bounded). In [4] it was shown that non-trivial Hamiltonian monodromy
is present also in the Kepler problem.
We consider the problem in the case of positive energies (the motion
is scattering in this case). We show that the problem has scattering
monodromy of two different types: purely scattering monodromy and
another type, where both scattering and Hamiltonian monodromy are
non-trivial. The latter type appears only if the number of degrees of
freedom n ≥ 3. We note that it is present also in the Kepler problem.

Bifurcation diagram

The Euler problem is Liouville integrable. The corresponding integral
map F = (H,L,G) comes from the separation in elliptic coordinates.
A positive energy slice of the bifurcation diagram is shown in the
following figure.

Following the construction given in Sections 5, we can define scattering
monodromy of F with respect to the reference Hamiltonian

Hr =
‖p‖2

2
− µ1 − µ2

r1

Let γi be the path shown in the bifurcation diagram.

Scattering monodromy

Theorem 3. The monodromy matrices Mi along γi (with respect to
the natural basis) have the form

M1 =

 1 0 −1
0 1 1
0 0 1

 , M2 =

 1 0 0
0 1 1
0 0 1

 and M3 =

 1 0 1
0 1 0
0 0 1

 .

In the limiting cases, as the Kepler problem, the scattering monodromy
is given by the product of some of these matrices.

Theorem 4. The scattering map S : B3→ B3, B3 = F−1(γ3)/gtH ,
is a Dehn twist. The push-forward map of S is conjugate in SL(3,Z)
to

S? =

 1 0 1
0 1 0
0 0 1

 .
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