Poisson-Lie dual and Langlands dual

via Cluster Theory and Tropicalization

Yanpeng Li

Joint work with A. Alekseev, A. Berenstein, and B. Hoffman

Introduction

Goals: For compact real form K of semisimple Lie group G, we introduce the 'tropical' version of dual Poisson-Lie group K^* , and show that 'tropicalization' preserves symplectic leaves and their symplectic volume.

Tools: Cluster algebras on the double Bruhat cells G^{e,w_0} and $G^{\vee;e,w_0}$; Potential; Langlands dual G^{\vee} of G.

Positivity Theory and Tropicalization

A toric chart of variety *X* is an open embedding $\theta: S \to X$ of a split torus *S*. The tropicalization of *X*:

$$(X, heta)^t:=\mathsf{Hom}(\mathbb{C}^ imes,S).$$

Tropicalization of a positive functions: replacing \cdot by +, + by max. **Ex:**

$$f(x_1, x_2, x_3) = \frac{x_1^2}{x_2 x_3 + x_1} \Rightarrow f^t(\xi_1, \xi_2, \xi_3) = 2\xi_1 - \max\{\xi_2 + \xi_3, \xi_1\}.$$

A positive function f is dominated by g if their tropical cones satisfy:

$$C_g := \{ \xi \in (X, \theta)^t \mid g^t(\xi) \leqslant 0 \} \subset C_f.$$

Toric Charts on G^{e,w_0}

Two kinds of charts on $G^{e,w_0} = B \cap B_- w_0 B_-$ for a reduced word i of w_0 :

- ▶ seed $\sigma(i)$ of cluster algebra $\mathbb{C}[G^{e,w_0}]$ Using for 'duality' to G^{\vee} ;
- \blacktriangleright factorization z_i Using for the crystal structure.

Ex: For SL_3^{e,w_0} , 1) Cluster variables of seed $\sigma(i)$: Minors $\Delta_{\omega_{i_k},u_k\omega_{i_k}}$

2) Factorization: Let $L^{e,w_0} = B \cap U_-w_0U_-$. Then $z_i(a_i, t_i) =$

$$\begin{bmatrix} a_1 & 0 & 0 \\ & a_2 & 0 \\ & & a_3 \end{bmatrix} \cdot \begin{bmatrix} t_1^{-1} & 1 & 0 \\ & t_1 & 0 \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ & t_2^{-1} & 1 \\ & & t_2 \end{bmatrix} \begin{bmatrix} t_3^{-1} & 1 & 0 \\ & t_3 & 0 \\ & & 1 \end{bmatrix} \in H \times L^{e,w_0}.$$

Potentials? Weakly log-canonical Poisson Brackets!

Given the following Poisson bracket:

$$\{x_1, x_2\} = x_1x_2 + x_1^2 + x_1x_2^2 = x_1x_2(1 + \frac{x_1}{x_2} + x_2).$$

Changing the variables: $x_i \mapsto e^{t\xi_i}$,

$$\{\xi_1,\xi_2\}_t := t^2\{\xi_1,\xi_2\} = 1 + e^{t(\xi_1-\xi_2)} + e^{t\xi_2}.$$

As $t \to +\infty$, it has limit 1 on $C_f = \{\xi_1 < \xi_2 < 0\}$ where

$$f = \frac{x_1}{x_2} + x_2$$
 and $f^t = \max\{\xi_1 - \xi_2, \xi_2\}.$

On G^{e,w_0} , the BK potential is:

$$\Phi_{BK} = rac{E \cdot \Delta_{w_0
ho,
ho} + \Delta_{w_0
ho,
ho} \cdot E}{\Lambda}.$$

Ex: For GL_n

 $C_{BK} \cong$ Gelfand-Zeitlin cone.

Theorem: Weakly log-canonical brackets on G^*

Let $G^* \subset G \times G$ be the dual Poisson Lie group of G. On the positive variety $(G^*, \sigma(i))$, the standard Poisson structure is weakly log-canonical, i.e. for cluster variables x_i, x_j , we have:

$$\{x_i, x_i\}_{\pi_{G^*}} = x_i x_i (\pi_{ii} + f_{ii}),$$

where π_{ij} is a constant and f_{ij} is dominated by Φ_{BK} .

References

[1] A. Berenstein, D. Kazhdan, Geometric and unipotent crystals II: From unipotent bicrystals to crystal bases quantum groups, 2007.

Partial Tropicalization $PT(K^*)$ of Real Form K^*

View $K^* \subset B$. Define $PT(K^*) := \mathcal{C}_{BK} \otimes \mathbb{R} \times (S^1)^m$ with a constant Poisson bracket π_{PT} from π_{ij} . Let hw be the projection of $G^{e,w_0} = H \times L^{e,w_0} \to H$.

Proposition

- $ightharpoonup rank(\pi_{PT}) = rank(\pi_{K^*});$
- ► The symplectic leaves of $PT(K^*)$ are the fibers of $hw^t \circ pr_1$.

$$(k^*, \pi_{KKS}) \xrightarrow{\text{GW iso}} (K^*, \pi_{K^*}) \xrightarrow{\text{Partial Trop}} (\mathcal{C}_{BK} \times (S^1)^m, \pi_{PT})$$
 $\mathcal{O}_{\lambda^{\vee}} \qquad \mathcal{O}_{\exp \lambda^{\vee}} \qquad \text{hw}^{-t}(\lambda^{\vee})$

Theorem [1]: Crystal structure on BK cone

To chart z_i , \exists a direct decomposition over dominant weight of G^{\lor} :

$$\mathcal{C}^G_{BK} = \bigsqcup \mathsf{hw}^{-t}(\lambda^{\vee}), \text{ and } \mathsf{hw}^{-t}(\lambda^{\vee}) \cong B_{\lambda^{\vee}},$$

where $B_{\lambda^{\vee}}$ is the crystal of the irreducible rep of G^{\vee} with highest weight λ^{\vee} .

Duality of BK cone for G and G^{\vee} : Example

Let $G = SL_2$ and H be the subgroup of diagonal matrices, then

$$x = \begin{bmatrix} a & 0 \\ 0 & a^{-1} \end{bmatrix} \begin{bmatrix} t^{-1} & 1 \\ 0 & t \end{bmatrix} = \begin{bmatrix} at^{-1} & a \\ 0 & a^{-1}t \end{bmatrix}; \quad \Phi_{BK} = \frac{1}{a^2}t + t^{-1}.$$

Then

$$\mathcal{C}_{BK}^{\mathsf{SL}_2} = \{ (x\alpha^{\vee}, \xi_1 e_1) \in X_*(H) \times \mathbb{Z} \mid 2x \geqslant \xi_1 \geqslant 0 \}.$$

For $G^{\vee} = \mathsf{PSL}_2$,

$$\mathcal{C}^{\mathsf{PSL}_2}_{\mathsf{BK}} = \{(x\omega, \xi_1 e_1) \in X^*(H) \times \mathbb{Z} \mid x \geqslant \xi_1 \geqslant 0\}.$$

The encircled points in $C_{BK}^{SL_2}$ are sent to the one in $C_{BK}^{PSL_2}$, and arrows to arrows.

Poisson-Lie Dual and Langlands Dual

Let $A = [a_{ij}]_r$ be a Cartan matrix, with symmetrizer $d = \{d_1, \ldots, d_r\} \in \mathbb{Z}_+^r$. A choice of d defines a bilinear form on Lie algebra Lie(G), and induces an isomorphism:

$$\psi: h \to h^*: \alpha_i^{\vee} \mapsto d_i \alpha_i.$$

which extends to $\mathcal{L} := (G^{w_0,e}, z_i)^t = X_*(H) \times \mathbb{Z}^m$:

$$\psi_{\boldsymbol{i}} \colon \mathcal{L} \to \mathcal{L}^{\vee} \colon (\lambda^{\vee}, v_1, \dots, v_m) \mapsto (\psi(\lambda^{\vee}), d_{i_1}v_1, \dots, d_{i_m}v_m),$$

The symmetrizer d induced a duality of the cluster algebra on G and G^{\vee} :

$$\Psi_{\pmb{i}}^* \colon \mathbb{C}[G^{ee;e,w_0}] o \mathbb{C}[G^{e,w_0}] \ \colon \ \Delta_{\omega_{i_k}^ee,u_k\omega_{i_k}^ee} o \Delta_{\omega_{i_k},u_k\omega_{i_k}}^{d_{i_k}}.$$

Let ν be the tropical change of coordinates, we have

$$\psi_{\mathbf{i}} = (\nu^{\vee})^{-1} \circ \Psi_{\mathbf{i}}^{\vee} \circ \nu.$$

On the space $hw^{-t}(\lambda^{\vee})$, there are two natural lattices:

- ► lattice Λ given by the symplectic structure on $hw^{-t}(λ^{\lor})$;
- ightharpoonup crystal structure on $B_{\lambda^{\vee}}$.

Theorem

The map
$$(\Psi_i^t)_{\mathbb{R}} \colon \mathcal{C}^G_{BK}(\mathbb{R}) \to \mathcal{C}^{G^{\vee}}_{BK}(\mathbb{R})$$
 gives $(\Psi_i^t)_{\mathbb{R}}(\Lambda) = (\mathsf{hw}^{\vee})^{-t}(\psi(\lambda^{\vee}))$.

Symplectic Volume

The symplectic volume of the symplectic leaf $\mathcal{O}_{\psi^{-1}(\lambda)}$ is equal to the dimension of the highest weight representation of G with highest weight $\lambda - \rho$.