STACKY HAMILTONIAN ACTIONS AND THEIR MOMENT POLYTOPES

BENJAMIN HOFFMAN, CORNELL UNIVERSITY

INTRODUCTION

Given a Hamiltonian action of a Lie group G on a symplectic manifold (M, ω) , you can understand M via its image under the moment map $\mu : M \to \mathfrak{g}^*$, which is sometimes a rational convex polytope.

A natural question is to what spaces can be associated non-rational moment polytopes [3, 4, 5]. We answer this by describing Hamiltonian stacks, which are built by taking the stacky quotient of a presymplectic manifold by its null foliation. Hamiltonian stacks come with an action of a Lie group stack G, and a moment map taking values in the dual of the lie algebra of G.

EXAMPLE

The following extends an example of Prato [4]. Let $\mathbb{T} \cong \mathbb{R}^n / \mathbb{Z}^n$, and let $N \subset \mathbb{T}$ be an immersed subgroup. Consider a Hamiltonian \mathbb{T} -manifold $(M, \omega, \mathbb{T}, \mu)$, for instance

$$M = \mathbb{C}^n, \quad \omega = \frac{1}{2\pi i} \sum dz_j \wedge d\bar{z}_j, \quad \mu(z) = \sum |z_j|^2 e_j^* + \lambda$$

Let $\iota : \mathfrak{n} \to \mathfrak{t}$ be the inclusion of Lie algebras and $\iota^* : \mathfrak{t}^* \to \mathfrak{n}^*$ the dual projection. Then

 $(Z := (\iota^* \circ \mu)^{-1}(0), \omega|_Z, \mathbb{T}, \mu|_Z)$

is a presymplectic Hamiltonian \mathbb{T} -manifold. Taking the stacky quotient,

After developing the basic theory we:

- Construct the symplectic reduction of a Hamiltonian stack.
- Extend the Duistermaat-Heckman theorem.

Symplectic Stacks

We study differentiable étale stacks, which are stacks presented by *foliation groupoids*. A Lie groupoid $X_{\bullet} = (X_1 \implies X_0)$ is a foliation groupoid if it has discrete isotropy groups.

One can define the complex of differential forms of a foliation groupoid:

$(Z/N, \omega|_Z, \mathbb{T}/N, \mu|_Z)$

is a Hamiltonian \mathbb{T}/N -stack. Notice that \mathbb{T}/N is a Lie group stack (a *stacky torus*). We could have chosen to divide by any covering group of N, and doing so would have given a different Hamiltonian stack.

MAIN DEFINITION

Let (\mathcal{X}, ω) be a symplectic stack, and let \mathcal{G} be a Lie group stack. An action $a : \mathcal{G} \times \mathcal{X} \to \mathcal{X}$ is *Hamiltonian* if there is a *moment map* $\mu : \mathcal{X} \to (\operatorname{Lie}(\mathcal{G}))^*$. We require that (1) $d\mu^{\xi} = \iota_{\xi_{\mathcal{X}}} \omega$ for all $\xi \in \operatorname{Lie}(\mathcal{G})$, and (2) μ is \mathcal{G} -equivariant with respect to the coadjoint action of \mathcal{G} on $\operatorname{Lie}(\mathcal{G})^*$. In this case $(\mathcal{X}, \omega, \mathcal{G}, \mu)$ is a *Hamiltonian* \mathcal{G} -stack.

Assume there is a presentation $\mathcal{G} \cong BG_{\bullet}$, where G_0 is compact. Choose a maximal stacky torus \mathcal{T} of \mathcal{G} and a Weyl chamber C of $\text{Lie}(\mathcal{T})^*$. Define the *stacky moment body* as the pair $(\Delta(\mathcal{X}) = C \cap \mu(\mathcal{X}), \mathcal{T})$. In [3] the authors give conditions for $\Delta(\mathcal{X})$ to be convex. Even when these conditions hold, $\Delta(\mathcal{X})$ is not in general rational. The pair $(\Delta(\mathcal{X}), \mathcal{T})$ does not depend on the choices involved, up to isomorphism.

SYMPLECTIC REDUCTION

 $\Omega^k(X_\bullet) = \{\omega_0 \in \Omega^k(X_0) | s^* \omega_0 = t^* \omega_0\}$

This notion is invariant under Morita equivalence [2] and so describes differential forms on the stack BX_{\bullet} .

Given a manifold $X = X_0$ with a constant rank foliation \mathcal{F} , there are many different foliation groupoids which integrate \mathcal{F} . For example there is the monodromy groupoid $Mon(X, \mathcal{F})$ and the holonomy groupoid $Hol(X, \mathcal{F})$.

In our case: \mathcal{F} is the null foliation ker(ω) of a presymplectic form ω . There are then many ways to construct a stacky quotient X/\mathcal{F} . The form ω descends to a symplectic form on each of these stacky quotients.

LIE GROUP STACKS

Let $(\mathcal{X}, \omega, \mathcal{G}, \mu)$ be a Hamiltonian stack. Assume $0 \in \text{Lie}(\mathcal{G})$ is a regular value of μ . A stack \mathcal{Y} is the *symplectic reduction at* 0 of \mathcal{X} if there is a map of stacks $p : \mu^{-1}(0) \to \mathcal{Y}$ which is a principal \mathcal{G} -bundle, and if there is a symplectic form $\omega^{red} \in \Omega(\mathcal{Y})$ so that $p^* \omega^{red} = \omega|_{\mu^{-1}(0)}$. Under mild conditions one can find a presentation of \mathcal{G} by a crossed module $H \to G$ and construct an étale presentation R_{\bullet} of $\mu^{-1}(0)$ so that G acts freely on R_0 .

Theorem ([1]) In this situation, the symplectic reduction of X at 0 exists if and only if the action of H on R_1 is free. If the reduction exists, it is presented by the Lie groupoid $G \times^H R_1 \rightrightarrows R_0$.

DUISTERMAAT-HECKMAN THEOREM

Theorem ([1]) Let $(\mathcal{X}, \omega, \mathcal{G}, \mu)$ be a Hamiltonian stack presented by $(X_{\bullet}, \omega, G_{\bullet}, \mu)$. Assuming:

- G_0 is a torus;
- The action of G_{\bullet} on X_{\bullet} is leafwise transitive (i.e., orbits of H are leaves of ker (ω_0));
- The moment map μ is proper and 0 is a regular value.

If the symplectic reduction of X *exists at* 0*, then it exists at all points in a neighborhood* U. For $u \in U$, *there is an equivalence of symplectic stacks of the reduced spaces*

A group object \mathcal{G} in the category of étale differentiable stacks is a Lie group stack. It can be presented by a Lie 2-group G_{\bullet} , or equivalently a crossed Lie module $\partial : H \rightarrow$ G. If G_0 is compact, one can define the maximal stacky torus \mathcal{T} of \mathcal{G} , with presentation

 $\partial: Q \to \mathbb{R}^n$

where Q is a finitely generated group and $\mathbb{Z}^n \subset \partial(Q)$. The infinitesimal version of $\mathcal{G} \cong BG_{\bullet}$ is the Lie algebra $\text{Lie}(\mathcal{G}) = \mathfrak{g}_1/\mathfrak{g}_0$, which is a Morita invariant. $(\mu^{-1}(u)/\mathcal{G}, \omega^{red(u)}) \cong (\mu^{-1}(0)/\mathcal{G}, \omega^{red(0)} + \Gamma)$

where $\omega^{red(u)}, \omega^{red(0)}$ denote the symplectic forms on the reduced spaces at u and 0, respectively, and $\Gamma \in \Omega^2(\mu^{-1}(0)/\mathcal{G})$ varies linearly with $u \in \text{Lie}(\mathcal{G})^*$. After fixing the presentation X_{\bullet} , the cohomology of Γ with respect to the complex $\Omega^{\bullet}(\mu^{-1}(0)/\mathcal{G})$ does not depend on the choices involved.

REFERENCES

 B. Hoffman and R. Sjamaar, Stacky Hamiltonian actions and their moment polytopes. In preparation.
E. Lerman and A. Malkin, Hamiltonian group actions on symplectic Deligne-Mumford stacks and toric orbifolds. Adv. in Math. 229, pages 984-1000.

[3] Y. Lin and R. Sjamaar, Convexity properties of presymplectic moment maps. arXiv:1706.00520

[4] E. Prato, Simple Non-Rational Convex Polytopes via Symplectic Geometry Topology 40, pages 961-945.

[5] T. Ratiu and N. Zung, Presymplectic convexity and (ir)rational polytopes. arXiv:1705.11110