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Introduction

Recent work by Dullin and Waalkens showed that the Hydrogen
atom in prolate spheroidal coordinates has quantum monodromy [1].
Our first main result deals with this phenomena; we show that the
quantum integrable system obtained by separating the Laplacian in
prolate spheroidal coordinates also has quantum monodromy. We
call this the spheroidal harmonics system.
Our second main result deals with the semi-global symplectic inva-
riants. Introduced by Vu Ngoc in 2003, these invariants describe
the behaviour of the actions near the Focus-Focus point [5]. The
work of Pelayo and Vu Ngoc led to a global classification system of
2 dimensional semi toric systems [3, 4]. The semi-global symplectic
invariants, along with 4 other symplectic invariants were shown to
globally classify this class of integrable systems. We compute the
semi-global symplectic invariants for the spheroidal harmonics sy-
stem.

The Spheroidal Harmonics Integrable System

We study the Laplacian in 3 degrees of freedom:

H =
1

2

(
p2x + p2y + p2z

)
.

We set Q =
(
qx, qy, qz

)
and P =

(
px, py, pz

)
as the positions and

linear momentum respectively. Define L = Q × P =
(
lx, ly, lz

)
as

the vector of angular momenta. We perform a symplectic reduction
that identifies the straight lines of the flow of H to points and fixes
H = 1/2. The system is reduced by using the linear and angular
momenta as new coordinates. The associated Poisson matrix is

B =

(
0 P̂

P̂ L̂

)
(1)

For a vector v ∈ R3, the corresponding hat matrix is the anti-
symmetric matrix v̂ defined by

v̂u = v × u ∀u ∈ R3.

This system has 2 Casimirs:
I C1 = P 2 means the linear momentum space is compact. For

simplicity, we set C1 = 1.
I C2 = P ·L. Since L = Q×P , this means C2 = 0. Consequently,

the tangent space of the P sphere is the L space.
The reduced phase space is therefore T ∗S2.
Prolate spheroidal coordintes are defined by the transformation

x = a
√(

ξ2 − 1
) (

1− η2
)
cos(φ)

y = a
√(

ξ2 − 1
) (

1− η2
)
sin(φ)

z = aξη

(2)

where η ∈ [−1, 1], ξ ∈ [0,∞) and φ ∈ [0, 2π). We may re-write H in
prolate spheroidal coordinates as

H =
1

2a2

((
η2 − 1

)
p2η −

(
ξ2 − 1

)
p2ξ

(η − ξ) (η + ξ)
−

p2φ(
η2 − 1

) (
ξ2 − 1

)) . (3)

Separating the Hamilton-Jacobi Equation for (3) gives Lz = lz and

G =
1

2

(
l2x + l2y + l2z − a2

(
p2x + p2y

))
(4)

as separation constants. We call the integrable system (G,Lz) the
spheroidal harmonics integrable system.

Quantum Monodromy in the Spheroidal Harmonics System

Separating the Schrödinger equation in prolate spheroidal
coordinates yields 2 ordinary differential equations. The
eigenvalues of these ODES define a quantum integrable system
when written in the (P ,L) coordinates. The first of these
equations gives Lz; the second is the spheroidal wave equation:

ψν

(
g − l2

1− ν2
+
2µ

~2
Ea2

(
1− ν2

))
+
(
1− ν2

)
ψ′′ν − 2νψ′ν = 0 (5)

Thus, G is the eigenvalue of the spheroidal wave equation. Using
the SpheroidalEigenvalue function in Mathematica, we produce
the lattice of the joint spectrum (G,Lz) in Figure (1), which
possesses quantum monodromy about the origin. If 2 basis
vectors are v1 (vertical) and v2 (horizontal), then over one cycle,
we have a basis transformation(

v′1
v′2

)
=

(
1 0
k 1

)(
v1
v2

)
(6)

where in this case k = 2; implying the existence of a doubly
pinched torus in the phase space.
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Figure 1: Joint spectrum of the spheroidal harmonics system (G,Lz). When
transported around the Focus-Focus point, the unit cell is transformed according
to (6).

Critical Points

Critical points of the combined system are found by solving

B∇G + βB∇Lz = 0

where β ∈ R \ {0}. For a given Lz = l, the critical points of the
combined (G,Lz) system are:
1. P = (0, 0,±1) and L = (0, 0, 0) with β free. The critical value is
(G,Lz) = (0, 0).
2. P =

(
px, py, 0

)
and L = (0, 0, l) with β = l. The critical value is

(G,Lz) =

(
1

2

(
l2 − a2

)
, l

)
.

I The Poles of the P sphere are Focus-Focus points with
eigenvalues λ = ±apz ± iβ where β ∈ R\ {0} is a free
parameter.

I The family of critical points along the equator are
elliptic-transversal critical points.

I We show the critical points on the P sphere and the bifurcation
diagram of the energy momentum map in Figure (2)

Lz

G

Figure 2: (a) Bifurcation diagram of the energy momentum map. (b) P sphere
with the Focus-Focus (red) and elliptic-transversal (blue) critical points.

Singular Reduction

To prove the existence of quantum monodromy, we show that the
pre-image of the Focus-Focus critical value is a doubly pinched
torus in the (P ,L) phase space.
I To do this, we use singular reduction with respect to the flow of
Lz.

I The invariants of this symmetry are

b1 := pz b2 := l2x + l2y b3 :=lxpy − lypx
I The Poisson structure of these 3 invariants is encapsulated by

the matrix

Binv =

 0 2b3 1− b21
−2b3 0 2b1l

2 + 2b1b2
b21 − 1 −2b1l2 − 2b1b2 0

 .

I This structure has one further Casimir, C3, due to the bi’s being
functionally dependent:

C3 =
(
1− b21

)(
b2 + l2

)
− l2 − b23. (7)

By solving ∇C3 = 0, we find the critical points of C3 are (±1, 0, 0)
with l = 0 and the critical value is C3 = 0.

Figure 3: Blue: G = 0 and Orange: C3 = 0 for l = 0. Note the singular points at
(±1, 0, 0) .

Reconstruction

Plotting the surfaces G = 0 and C3 = 0 in Figure (3), we observe
that the intersection is the union of two parabolic sections which
are symmetric around the planes b1 = 0 and b3 = 0.
I The pre-image of each point on the intersection corresponds to

a circle on the P sphere with the same pz value and radius

r (pz) =
√

1− p2z.
I For a given P , we find lx and ly such that P ·L = 0 and
lxpy − lypx = b3. These are linear equations in lx and ly which
we can solve.

I Doing so, we find the (doubly pinched) Liouville torus
parameterised by pz and φ as

P = (r (pz) cos (φ) , r (pz) sin (φ) , pz)

L = (±r (pz) sinφ,∓r (pz) cosφ, 0)
(8)

where φ = arctan

(
py
px

)
.

This means that each point on the P sphere (other than the
poles) has 2 values of L associated with it.

Local Symplectic Coordinates and Action Variables

We introduce local symplectic coordinates on the P sphere

q1 = pz q2 = arctan

(
py
px

)
p1 =

lxpy − lypx
1− p2z

p2 = lz.

I In these new coordinates, we re-write G from (4) as

p21 =
1(

1− q21
)2 (a2 (1− q21)2 + 2g

(
1− q21

)
− l2

)
. (9)

I We find that the Caustics on the P sphere are located at

r1± = ±

√
1 +

g −
√
g2 + a2l2

a2
r2± = ±

√
1 +

g +
√
g2 + a2l2

a2

I Due to the singularity at q1 = 1, we consider q1 and p1 as
complex variables.

I In the complex q1 plane, we define the β cycle to encircle the
interval [r1−, r1+] and the α cycle to encircle the interval
[r1+, r2+].

I These are fundamental paths on the Riemann torus defined by
the numerator of (9).

I Plotting (9) in Figure (5), we see that over the β cycle, p1 is real
(blue). Over the α cycle p1 is imaginary (orange).

I Integrating p1 over these cycles gives the real and imaginary
actions respectively:

I =
1

2π

∮
β
p1dq1 J =

1

2πi

∮
α
p1dq1. (10)
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Re(q1)

Im(p1)

Figure 4: Complex q1 plane with the β (blue) and α (orange) cycles.
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Figure 5: Phase portrait of (9) with real values of p1 in blue and imaginary values
in orange.

Discrete Symmetry Reduction

I We use discrete symmetry reduction to identify the two
Focus-Focus points. We find the following 3 canonical
symmetries that preserve the Casimirs

S1
(
pz, lx, ly

)
→
(
−pz,−lx,−ly

)
S2
(
px, py, lx, ly

)
→
(
−px,−py,−lx,−ly

)
S3
(
px, py, pz

)
→
(
−px,−py,−pz

)
.

(11)

I We only quotient by S3, otherwise the resulting space will not
be smooth. The reduced phase space is T ∗

(
RP2

)
. This

reduces the β cycle by half, but leaves the α cycle unaffected.

The Semi Global Symplectic Invariants

Following [2], expanding J in the Focus-Focus Limit and inverting
the series with respect to g gives the Birkhoff Normal Form:

g (J, l) = J +
1

4

(
J2 + l2

)
− J

16

(
J2 + l2

)
+

1

128

(
5J4 + 6J2l2 + l4

)
+ . . . .

(12)
Expanding I (g, l) in the Focus-Focus limit and substituting in the
Birkhoff Normal form for g gives

2πI (J, l) = 2πI0 −R
(
ĵ ln
(
ĵ
)
− ĵ
)
+ σ (J, l)

where I0 is a constant, ĵ = J + il and σ (J, l) is the semi-global
symplectic invariant. We therefore have the Semi-Global
Symplectic Invariants of the Spheroidal Harmonics System:

σ (J, l) = J log (8) +
1

8

(
3J2 + l2

)
− 1

32

(
5J3 + 3Jl2

)
+

165J4 + 138J2l2 + 13l4

1536
+ . . . .

Conclusion and Further Work

I We have shown that the spheroidal harmonics system has
quantum monodromy and computed its Taylor series invariants.

I Future work: We can use the invariants to obtain higher order
approximations to the spheroidal eigenvalues using the Bohr
Sommerfeld quantisation of the actions.
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