

27 - 30 MAY CONFERENCE AND EXHIBITION 31 MAY TECHNICAL TOURS LISBON - PORTUGAL LISBON CONGRESS CENTER CCL

Natural deep eutectic solvents

1 Choline chloride

2 Urea

Natural deep eutectic solvents

Advantages

Low volatility Non-flammable Low toxicity Biodegradable Low price

NADES as designer solvent

Abbott et al., 2011.

The applied NADES determines the reaction parameters

Changes in initial activity and conversion rate in lipase catalyzed reactions in different NADES

7

Reaction coordinate

Michaelis-Menten kinetics

$$v_0 = k_{cat}[E_0] \frac{[S]}{K_M + [S]}$$

$$k_{cat} = Ae^{-E_a/RT}$$

Assumed effect of NADES

Kinetic parameter	: Affected by:
K_M	Solvation
$[E_0]$	Enzyme inactivation
k_{cat}	Mass transfer limitation
Ea	Solvation/Conformation change of the enzyme

NADES could stabilize the enzyme structure

Hydrogen bonding network: prevents denaturation and promotes stabilization

Mannosylerythritol lipids

Enzymatic deacetylation of MELs

Water: negative effect on reaction

Conversion rate after 24 h

Effect of viscosity

Effect of decreasing viscosity on the reaction rate of biocatalysis

Source of data: Gorke *et al.*, 2008. Durand *et al.*, 2013. Kleiner and Schörken, 2015. Zhao *et al.*, 2011.

Effect of solubility

Modelling solubility: no proper model

Hansen solubility parameters? COSMO-RS?

Own model: Artifical neural network

Classification model

Input: molecular properties of NADES constituents Output: solubility classes

Solubility [g/g]	Classes
<0.002	Poor
0.002-0.1	Sufficient
0.1-0.5	Good
0.5<	Superb

	Baseline of prediction	Artificial neural network
Total Number of Instances		62
Correctly Classified Instances	27	53
Percentage of Correct Classification	44%	85%

Modelling NADES effect: How to?

Further investigation

Identify and quantify these effects

$$v_0 = k_{cat}[E_0] \frac{[S]}{K_M + [S]}$$
 $k_{cat} = Ae^{-E_a/RT}$

	Affected by:
K_M	Solvation
$[E_0]$	Enzyme inactivation
k _{cat}	Mass transfer limitation
Ea	Solvation/Conformation change of the enzyme

Articles in preparation – Fall 2019:

Review article on NADES modelling

Kinetic parameters of MELs deacetylation

Determination of kinetic parameters

Calculation of activation energy

Computational chemistry

Take home message

NADES as reaction media for MELs deacetylation is proven

Determination of kinetic parameters is essential to determine NADES effect on reaction

Modelling solubility is feasible, but quantiative model is not yet available

EUBCE 2019 27TH EUROPEAN BIOMASS CONFERENCE & EXHIBITION

27 - 30 MAY CONFERENCE AND EXHIBITION 31 MAY TECHNICAL TOURS LISBON - PORTUGAL LISBON CONGRESS CENTER - CCL

Thank you for your attention!

Further information:

Attila Kovács Research Gate Acknowledgement:

This research was supported by BOF-STIMPRO 36493

