

Analyzing and Improving Attainable Accuracy for the Communication Hiding Pipelined Conjugate Gradient Method

SIAM Conference on Computational Science and Engineering (CSE'19)

Spokane Convention Center, WA, US, February 25 - March 1, 2019

University of Antwerp* [Belgium], LBNL[‡] [USA], INRIA Bordeaux[†] [France] <u>S. Cools</u>*, J. Cornelis*, W. Vanroose*, P. Ghysels[‡], E. F. Yetkin[†], E. Agullo[†], L. Giraud[†]

* E-mail: siegfried.cools@uantwerp.be

Universiteit Antwerpen

Motivation Communication is hard for humans

Introducing some buzzwords you will frequently hear during this talk ...

"synchronization bottleneck"

"communication latency" / "error propagation"

ANC

Motivation Communication is hard for computers

Data movement (communication) is much more time consuming than flops (computations), so reducing time spent communicating data is essential for HPC

 \Rightarrow Communication avoiding / Communication hiding

High communication cost has motivated several approaches to reducing the global synchronization bottleneck in Krylov subspace methods:

Avoiding communication: *s*-step Krylov subspace methods * [A. Chronopoulous, E. de Sturler, J. Demmel, M. Hoemmen, E. Carson, L. Grigori, J. Erhel, ...]

- Compute iterations in blocks of s, allows use of matrix power kernels
- Reduces number of synchronizations per iteration by a factor of $\mathcal{O}(s)$

Hiding communication: Pipelined Krylov subspace methods * [P. Ghysels, W. Vanroose, S. C., P. Sanan, B. Gropp, I. Yamazaki, P. Luszczek, ...]

- Introduce auxiliary (basis) vectors to decouple SpMV and inner products
- Enables overlapping of communication and computations

* All methods are equivalent to their corresponding Krylov subspace methods in exact arithmetic

Krylov subspace methods General concepts

Iteratively improve an approximate solution of the linear system Ax = b, with

 $x_i \in x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{r_0, Ar_0, A^2r_0, \dots, A^{i-1}r_0\}, \quad r_i = b - Ax_i.$

- minimize certain error measure over Krylov subspace K_i(A, r₀)
- Krylov subspace methods:

Conjugate Gradients (CG), Lanczos, GMRES, MinRES, BiCG, BiCGStab, CGLS, ...

Preconditioners:

AMG & GMG, Domain Decomposition Methods, FETI, BDDC, Incomplete factorization, Physics based preconditioners, ...

- usually in combination with sparse linear algebra/stencil application
- three algorithmic building blocks:
 i. dot-product
 - $\mathcal{O}(N)$ flops
 - global synchronization (MPI_Allreduce)
 - ii. SpMV
 - $\mathcal{O}(nnz)$ flops
 - neighbor communication only
 - iii. axpy
 - $\mathcal{O}(N)$ flops
 - no communication

Krylov subspace methods Classic Conjugate Gradients (CG)

Algorithm CC

1: procedure $CG(A, b, x_0)$ 2: $x_1 = b - Ax_1 + x_2 = x_1$	
3: for $i = 0, \dots$ do	
4: $s_i := Ap_i$ 5: $\alpha_i := (r_i, r_i) / (s_i, p_i)$	dot-pr
6: $x_{i+1} := x_i + \alpha_i p_i$ 7: $r_{i+1} := r_i - \alpha_i s_i$	SpMV
8: $\beta_{i+1} := (r_{i+1}, r_{i+1}) / (r_i, r_i)$	ахру
9: $p_{i+1} := r_{i+1} + \beta_{i+1}p_i$ 10: end for	
11: end procedure	

Hestenes & Stiefel (1952)

- i. dot-products
 - 2 global reductions: latency dominated
 - time scales as log₂(#partitions)
- ii. SpMV
 - computationally expensive
 - good scaling (minor communication)

iii. axpy's

- vector operations (recurrences)
- perfect scaling (no communication)

Essentially sequential operations (line-per-line execution)

Algorithm Pipelined CG 1: procedure PIPE-CG(A, b, x_0) $r_0 := b - Ax_0; w_0 := Ar_0$ 2: for $i = 0, \ldots$ do 3. 4: $\gamma_i := (r_i, r_i)$ 5: $\delta := (w_i, r_i)$ 6: $q_i := Aw_i$ if i > 0 then 7: $\beta_i := \gamma_i / \gamma_{i-1}; \alpha_i := (\delta / \gamma_i - \beta_i / \alpha_{i-1})^{-1}$ 8: ٩. else 10. $\beta_i := 0; \alpha := \gamma_i / \delta$ dot-pr end if 11. **SpMV** 12: _____ $z_i := q_i + \beta_i z_{i-1}$ 13: $s_i := w_i + \beta_i s_{i-1}$ 14: $p_i := r_i + \beta_i p_{i-1}$ axpy 15: _____ $x_{i+1} := x_i + \alpha_i p_i$ 16: $r_{i+1} := r_i - \alpha_i s_i$ 17: $w_{i+1} := w_i - \alpha_i z_i$ end for 18: 19: end procedure

Ghysels & Vanroose (2014)

Krylov subspace methods Pipelined Conjugate Gradients

- i. Communication avoiding: dot-products grouped in one global reduction phase per iteration
- ii. Communication hiding: overlap global synchronization with SpMV (+ Prec) computation
- iii. No free lunch: Additional recurrence relations (axpy's) for the auxiliary vectors $s_i = Ap_i$, $w_i = Ar_i$, $z_i = As_i$

Classic KSM:

Pipelined KSM:

Deep pipelined KSM:

$\label{eq:Krylov subspace methods} \ensuremath{\mathsf{Deep}}\ \ell\text{-length pipelined CG}$

Pipelined "D-Lanczos" Saad (2003)

Consider the Lanczos relation

$$AV_i = V_{i+1}T_{i+1,i}$$

with A symmetric, $V_{i+1} = [v_0, v_1, \dots, v_i]$ the Krylov subspace basis and $T_{i+1,i}$ a symmetric tridiagonal matrix

$$T_{i+1,i} = \begin{pmatrix} \gamma_0 & \delta_0 & & \\ \delta_0 & \gamma_1 & \ddots & \\ & \ddots & \ddots & \delta_{i-2} \\ & & \delta_{i-2} & \gamma_{i-1} \\ & & & \delta_{i-1} \end{pmatrix}.$$

Classic KSM:

Pipelined KSM:

Deep pipelined KSM:

$\label{eq:Krylov subspace methods} \ensuremath{\mathsf{Deep}}\ \ell\text{-length pipelined CG}$

Pipelined "D-Lanczos" Saad (2003)

Introduce the auxiliary Krylov subspace basis $Z_{i+1} = [z_0, z_1, \dots, z_i]$ that runs I SpMVs ahead of the basis V_{i-I+1} as

$$z_i := \begin{cases} v_0 & j = 0, \\ P_i(A)v_0 & 0 < i \le I, \\ P_l(A)v_{i-l} & i > I, \end{cases}$$

with polynomials $P_l(t)$ of fixed order l

$$P_l(t) := \prod_{j=0}^{l-1} (t - \sigma_j),$$

where *l* is the pipeline length. Ghysels et al. (2013)

▶ Applying P_l(A) to AV_i = V_{i+1}T_{i+1,i} yields a Lanczos-type relation

$$AZ_i = Z_{i+1}B_{i+1,i}$$

with $B_{i+1,i}$ shifted tridiagonal matrix.

 Auxiliary basis vectors are computed using a three-term recurrence relation

$$z_{i+1} = (\underbrace{Az_i}_{\text{SpMV}} - \gamma_{i-1} z_i - \delta_{i-l-1} z_{i-1}) / \delta_{i-l}$$

 $\label{eq:Krylov subspace methods} \ensuremath{\mathsf{Deep}}\ \ell\text{-length pipelined CG}$

► Basis transformation. Z_i and V_i both span *i*-th Krylov subspace, thus ∃ an upper triangular basis transformation matrix G_i with

$$Z_i = V_i G_i.$$

► Band structure of G_i. Matrix G_i has only 2l + 1 nonzero diagonals

$$g_{j,i} = (z_i, v_j) = (P_l(A)v_{i-1}, v_j)$$

= $(v_{i-1}, P_l(A)v_j) = g_{i-1,j+1}$.

▶ Original basis vectors are computed using a multi-term recurrence relation

$$\mathbf{v}_{i-l+1} = \left(z_{i-l+1} - \sum_{j=i-3l+1}^{i-l} g_{j,i-l+1} \mathbf{v}_j\right)/g_{i-l+1,i-l+1}.$$

Cornelis et al. (2018)

$\label{eq:Krylov subspace methods} \ensuremath{\mathsf{Deep}}\ \ell\text{-length pipelined CG}$

Algorithm 1 <i>l</i> -length pipelined $p(l)$ -CG	Input: A, b, x_0 , l, m, τ
1: $r_0 := b - Ax_0$; $v_0 := r_0/ r_0 _2$; $z_0 := v_0$; $g_{0,0} := 1$;	
2: for $i = 0,, m + l$ do	
3: $z_{i+1} := \begin{cases} (A - \sigma_i I)z_i, & i < l \\ Az_i, & i > l \end{cases}$	
4: if $i \ge l$ then	
5: $\overline{g}_{j,i-l+1} := (g_{j,i-l+1} - \sum_{k=i-3l+1}^{j-1} g_{k,j}g_{k,i-l+1})/g_{j,j};$	$j = i - 2l + 2, \dots, i - l$
6: $g_{i-l+1,i-l+1} := \sqrt{g_{i-l+1,i-l+1} - \sum_{k=i-3l+1}^{i-l} g_{k,i-l+1}^2};$	
 # Check for breakdown and restart if required 	
8: if $i < 2l$ then	
9: $\gamma_{i-l} := (g_{i-l,i-l+1} + \sigma_{i-l}g_{i-l,i-l} - g_{i-l-1,i-l}\delta_{i-l-l})$	$_{1})/g_{i-l,i-l};$
10: $\delta_{i-l} := g_{i-l+1,i-l+1}/g_{i-l,i-l};$	
11: else	
12: $\gamma_{i-l} := (g_{i-l,i-l}\gamma_{i-2l} + g_{i-l,i-l+1}\delta_{i-2l} - g_{i-l-1,i-l+1}\delta_{i-2l})$	$(\delta_{i-l-1})/g_{i-l,i-l};$
13: $\delta_{i-l} := (g_{i-l+1,i-l+1}\delta_{i-2l})/g_{i-l,i-l};$	
14: end if	
15: $v_{i-l+1} := (z_{i-l+1} - \sum_{j=i-3l+1}^{i-l} g_{j,i-l+1}v_j)/g_{i-l+1,i-l+1}$	1;
16: $z_{i+1} := (z_{i+1} - \gamma_{i-l}z_i - \delta_{i-l-1}z_{i-1})/\delta_{i-l};$	
17: end if	
18: $g_{j,i+1} := \begin{cases} (z_{i+1}, v_j); & j = \max(0, i-2l+1), \dots, i-l+1 \\ (z_{i+1}, z_j); & j = i-l+2, \dots, i+1 \end{cases}$	1
19: if $i = l$ then	
20: $\eta_0 := \gamma_0; \zeta_0 := r_0 _2; p_0 := v_0/\eta_0;$	
21: else if $i \ge l + 1$ then	
22: $\lambda_{i-l} := \delta_{i-l-1}/\eta_{i-l-1}$;	
23: $\eta_{i-l} := \gamma_{i-l} - \lambda_{i-l}\delta_{i-l-1}$;	
24: $\zeta_{i-l} = -\lambda_{i-l}\zeta_{i-l-1};$	
25: $p_{i-l} = (v_{i-l} - o_{i-l-1}p_{i-l-1})/\eta_{i-l};$	
20: $x_{i-l} = x_{i-l-1} + \zeta_{i-l-1}p_{i-l-1};$ 27. if $ \zeta_{i-1} / x_i \leq \pi$ then PETUPNi and if	
27: If $ \zeta_i - t / \tau_0 \leq \tau$ then RETORN; end if	
28: end II	
29: end for	

$\label{eq:Krylov subspace methods} \ensuremath{\mathsf{Deep}}\ \ell\text{-length pipelined CG}$

$\label{eq:Krylov subspace methods} \ensuremath{\mathsf{Deep}}\ \ell\text{-length pipelined CG}$

Krylov subspace methods Parallel performance of pipelined CG

Strong scaling experiments - PETSc 3.6.3/3.7.6 library - MPICH 3.1.3/3.3a2

Cornelis et al. (2018)

Pipelined CG produces identical iterates to classic CG in exact arithmetic; but ...

Finite precision computations introduce roundoff errors that may lead to

- 1. Delayed convergence due to loss of basis orthogonality
- 2. *Loss of attainable accuracy* due to propagation of local rounding errors introduced by the recurrence relations

Classic Conjugate Gradients Analyzing rounding error behavior in CG

Rounding errors due to recurrence relations for residual and solution update:

$$\bar{x}_{i+1} = \bar{x}_i + \bar{\alpha}_i \bar{p}_i + \xi_{i+1}^x, \qquad \bar{r}_{i+1} = \bar{r}_i - \bar{\alpha}_i A \bar{p}_i + \xi_{i+1}^r,$$

Computed residual \bar{r}_i deviates from the true residual $b - A\bar{x}_i$ in finite precision:

$$(b - A\bar{x}_{i+1}) - \bar{r}_{i+1} = b - A(\bar{x}_i + \bar{\alpha}_i \bar{p}_i + \xi_{i+1}^x) - (\bar{r}_i - \bar{\alpha}_i A \bar{p}_i + \xi_{i+1}^r)$$

$$= \sum_{k=0}^{i+1} (A\xi_k^x + \xi_k^r).$$
Greenbaum (1997)

<u>Matrix notation</u>: $\bar{R}_{i+1} = [\bar{r}_0, \dots, \bar{r}_i], \quad \bar{X}_{i+1} = [\bar{x}_0, \dots, \bar{x}_i], \quad \Theta_i^{\times}, \Theta_i^{\vee}$ rounding errors $(B - A\bar{X}_{i+1}) - \bar{R}_{i+1} = (A\Theta_{i+1}^{\times} + \Theta_{i+1}^{\vee}) E_{i+1},$

with E_{i+1} an upper triangular matrix with all entries one.

Accumulation of local rounding errors in classic CG, but no amplification.

Gutknecht & Strakos (2000) van der Vorst & Ye (2000)

Pipelined Conjugate Gradients Analyzing pipelined CG by Ghysels et al.

Additional recurrence relations in pipelined CG all introduce local rounding errors:

$$\begin{aligned} \bar{\mathbf{x}}_{i+1} &= \bar{\mathbf{x}}_i + \bar{\alpha}_i \bar{\mathbf{p}}_i + \xi_{i+1}^x, & \bar{\mathbf{s}}_i &= \bar{\mathbf{w}}_i + \bar{\beta}_i \bar{\mathbf{s}}_{i-1} + \xi_i^s, \\ \bar{\mathbf{r}}_{i+1} &= \bar{\mathbf{r}}_i - \bar{\alpha}_i \bar{\mathbf{s}}_i + \xi_{i+1}^r, & \bar{\mathbf{w}}_{i+1} &= \bar{\mathbf{w}}_i - \bar{\alpha}_i \bar{\mathbf{z}}_i + \xi_{i+1}^w, \\ \bar{\mathbf{p}}_i &= \bar{\mathbf{r}}_i + \bar{\beta}_i \bar{\mathbf{p}}_{i-1} + \xi_i^p, & \bar{\mathbf{z}}_i &= A \bar{\mathbf{w}}_i + \bar{\beta}_i \bar{\mathbf{z}}_{i-1} + \xi_i^z, \end{aligned}$$

The gap on the residual is coupled to the gaps on the auxiliary variables:

$$(B - A\bar{X}_i) - \bar{R}_i = (A\Theta_i^{\bar{x}} + \Theta_i^{\bar{r}}) E_i + (A\Theta_i^{\bar{\rho}} + \Theta_i^{\bar{s}}) \bar{\mathcal{B}}_i^{-1} \bar{\mathcal{A}}_i + (A\Theta_i^{\bar{\mu}} + \Theta_i^{\bar{w}}) E_i \bar{\mathcal{B}}_i^{-1} \bar{\mathcal{A}}_i + (A\Theta_i^{\bar{q}} + \Theta_i^{\bar{s}}) \bar{\mathcal{B}}_i^{-1} \bar{\mathcal{A}}_i \bar{\mathcal{B}}_i^{-1} \bar{\mathcal{A}}_i$$

with
$$\bar{\mathcal{A}}_{i} = \begin{pmatrix} 0 & \bar{\alpha}_{0} & \bar{\alpha}_{0} & \cdots & \bar{\alpha}_{0} \\ 0 & \bar{\alpha}_{1} & \cdots & \bar{\alpha}_{1} \\ & \ddots & & \vdots \\ & & 0 & \bar{\alpha}_{i-2} \\ & & & & 0 \end{pmatrix}, \ \bar{\mathcal{B}}_{i}^{-1} = \begin{pmatrix} 1 & \bar{\beta}_{1} & \bar{\beta}_{1}\bar{\beta}_{2} & \cdots & \bar{\beta}_{i-1} \\ 1 & \bar{\beta}_{2} & & \bar{\beta}_{2} & \cdots & \bar{\beta}_{i-1} \\ & \ddots & & \vdots \\ & & & 1 & \bar{\beta}_{i-1} \\ & & & & 1 \end{pmatrix}$$

<u>*Remark:*</u> $\beta_i \beta_{i+1} \dots \beta_j = ||r_j||^2 / ||r_{i-1}||^2$, so entries of $\overline{\mathcal{B}}_i^{-1}$ may be arbitrarily large.

Pipelined Conjugate Gradients Analyzing pipelined CG by Ghysels et al.

Additional recurrence relations in pipelined CG all introduce local rounding errors:

$$\begin{aligned} \bar{x}_{i+1} &= \bar{x}_i + \bar{\alpha}_i \bar{p}_i + \xi_{i+1}^x, & \bar{s}_i &= \bar{w}_i + \bar{\beta}_i \bar{s}_{i-1} + \xi_i^s, \\ \bar{r}_{i+1} &= \bar{r}_i - \bar{\alpha}_i \bar{s}_i + \xi_{i+1}^r, & \bar{w}_{i+1} &= \bar{w}_i - \bar{\alpha}_i \bar{z}_i + \xi_{i+1}^w, \\ \bar{p}_i &= \bar{r}_i + \bar{\beta}_i \bar{p}_{i-1} + \xi_i^p, & \bar{z}_i &= A \bar{w}_i + \bar{\beta}_i \bar{z}_{i-1} + \xi_i^z, \end{aligned}$$

The gap on the residual is coupled to the gaps on the auxiliary variables:

$$(B - A\bar{X}_i) - \bar{R}_i = (A\Theta_i^{\bar{x}} + \Theta_i^{\bar{r}}) E_i + (A\Theta_i^{\bar{p}} + \Theta_i^{\bar{s}}) \bar{\mathcal{B}}_i^{-1} \bar{\mathcal{A}}_i + (A\Theta_i^{\bar{u}} + \Theta_i^{\bar{w}}) E_i \bar{\mathcal{B}}_i^{-1} \bar{\mathcal{A}}_i + (A\Theta_i^{\bar{q}} + \Theta_i^{\bar{s}}) \bar{\mathcal{B}}_i^{-1} \bar{\mathcal{A}}_i \bar{\mathcal{B}}_i^{-1} \bar{\mathcal{A}}_i$$

$$\text{with } \bar{\mathcal{A}}_{i} = \begin{pmatrix} 0 & \bar{\alpha}_{0} & \bar{\alpha}_{0} & \cdots & \bar{\alpha}_{0} \\ 0 & \bar{\alpha}_{1} & \cdots & \bar{\alpha}_{1} \\ & \ddots & & \vdots \\ & & 0 & \bar{\alpha}_{i-2} \\ & & & & 0 \end{pmatrix}, \ \bar{\mathcal{B}}_{i}^{-1} = \begin{pmatrix} 1 & \bar{\beta}_{1} & \bar{\beta}_{1} \bar{\beta}_{2} & \cdots & \bar{\beta}_{i-1} \\ 1 & \bar{\beta}_{2} & & \bar{\beta}_{2} & \cdots & \bar{\beta}_{i-1} \\ & \ddots & & \vdots \\ & & & 1 & \bar{\beta}_{i-1} \\ & & & & 1 \end{pmatrix}$$

Amplification of local rounding errors possible, depending on values $\bar{\alpha}_i$ and $\bar{\beta}_i$.

Garson et al. (2018) C. et al. (2018)

$\begin{array}{c} \mbox{Pipelined Conjugate Gradients}\\ \mbox{Analyzing deep }\ell\mbox{-length pipelined CG} \end{array}$

The recurrence relations for \bar{x}_i and \bar{p}_i in finite precision p(1)-CG are

$$\begin{split} \bar{x}_i &= \bar{x}_{i-1} + \bar{\zeta}_{i-1}\bar{p}_{i-1} + \xi_i^{\bar{x}} & \Leftrightarrow & \bar{x}_i &= \bar{x}_0 + \bar{P}_i\bar{q}_i + \Xi_i^{\bar{x}} \mathbf{1}, \\ \bar{p}_i &= (\bar{v}_i - \bar{\delta}_{i-1}\bar{p}_{i-1})/\bar{\eta}_i + \xi_i^{\bar{p}} & \Leftrightarrow & \bar{V}_i &= \bar{P}_i\bar{U}_i + \Xi_i^{\bar{p}}, \end{split}$$

with $\bar{T}_i = \bar{L}_i \bar{U}_i$, implying the actual residual equals

$$b - A\bar{x}_{i} = \bar{r}_{0} - A\bar{V}_{i}\bar{U}_{i}^{-1}\bar{q}_{i} + A\Xi_{i}^{\bar{p}}\bar{U}_{i}^{-1}\bar{q}_{i} - A\Xi_{i}^{\bar{x}}\mathbf{1} + \xi_{0}^{\bar{r}}$$

$$= \bar{r}_{0} - \bar{V}_{i+1}\bar{T}_{i+1,i}\bar{U}_{i}^{-1}\bar{q}_{i} - (A\bar{V}_{i} - \bar{V}_{i+1}\bar{T}_{i+1,i})\bar{U}_{i}^{-1}\bar{q}_{i} + LRE$$

$$= \bar{r}_{i} - (A\bar{V}_{i} - \bar{V}_{i+1}\bar{T}_{i+1,i})\bar{U}_{i}^{-1}\bar{q}_{i} + LRE$$

$$\downarrow \qquad \downarrow$$
Computed residual tends to zero
$$Inexact \ Lanczos \ relation \ ("gap \ on \ \bar{V}_{i+1}")$$

$$determines \ maximal \ attainable \ accuracy$$

$\begin{array}{c} \mbox{Pipelined Conjugate Gradients}\\ \mbox{Analyzing deep }\ell\mbox{-length pipelined CG} \end{array}$

Basis vector recurrences in finite precision p(I)-CG

$$\bar{v}_{i+1} = \left(\bar{z}_{i+1} - \sum_{i=i-2l+1}^{i} \bar{g}_{j,i+1} \bar{v}_{i}\right) / \bar{g}_{i+1,i+1} + \xi_{i+1}^{\bar{v}}, \quad \Leftrightarrow \quad \bar{Z}_{i} = \bar{V}_{i} \bar{G}_{i} + \Xi_{i}^{\bar{v}}$$
(1)

 $\bar{z}_{i+1} = (A\bar{z}_i - \bar{\gamma}_{i-l}\bar{z}_i - \bar{\delta}_{i-l-1}\bar{z}_{i-1})/\bar{\delta}_{i-l} + \xi_{i+1}^{\bar{z}}, \quad \Leftrightarrow \ A\bar{Z}_i = \bar{Z}_{i+1}\bar{B}_{i+1,i} + \Xi_i^{\bar{z}}$ (2)

and the finite precision coefficient relation $\bar{G}_{i+1}\bar{B}_{i+1,i} = \bar{T}_{i+1,i}\bar{G}_i$ (3) allow to compute the gap on the basis \bar{V}_{i+1} as

$$\begin{aligned} \mathbf{A}\bar{\mathbf{V}}_{i} - \bar{\mathbf{V}}_{i+1}\bar{\mathbf{T}}_{i+1,i} \stackrel{(1)}{=} \mathbf{A}\bar{Z}_{i}\bar{\mathbf{G}}_{i}^{-1} - \bar{Z}_{i+1}\bar{\mathbf{G}}_{i+1}^{-1}\bar{\mathbf{T}}_{i+1,i} - \mathbf{A}\Xi_{i}^{\bar{\mathbf{v}}}\bar{\mathbf{G}}_{i}^{-1} + \Xi_{i+1}^{\bar{\mathbf{v}}}\bar{\mathbf{G}}_{i+1}^{-1}\bar{\mathbf{T}}_{i+1,i} \\ \stackrel{(3)}{=} (\mathbf{A}\bar{Z}_{i} - \bar{Z}_{i+1}\bar{B}_{i+1,i} - \mathbf{A}\Xi_{i}^{\bar{\mathbf{v}}} + \Xi_{i+1}^{\bar{\mathbf{v}}}\bar{B}_{i+1,i})\bar{\mathbf{G}}_{i}^{-1} \\ \stackrel{(2)}{=} (\Xi_{i}^{\bar{z}} - \mathbf{A}\Xi_{i}^{\bar{\mathbf{v}}} + \Xi_{i+1}^{\bar{\mathbf{v}}}\bar{B}_{i+1,i})\bar{\mathbf{G}}_{i}^{-1}. \end{aligned}$$

Amplification of local rounding errors possible, depending on \overline{G}_i^{-1} .

Cornelis et al. (2018)

$\begin{array}{c} \mbox{Pipelined Conjugate Gradients}\\ \mbox{Analyzing deep }\ell\mbox{-length pipelined CG} \end{array}$

- The norm $\|\bar{G}_i^{-1}\|_{\max}$ quantifies the impact of rounding error amplification on attainable accuracy in p(*I*)-CG.
- The Cholesky factorization Z_i^TZ_i = G_i^TG_i relates the conditioning of G_i and the auxiliary basis Z_i; numerical stability depends on the polynomial P_l(A).
 Hoemmen (2010)
 Ghysels et al. (2013)

speedup over CG on 1 node

0

Countermeasures against error propagation Residual replacement in p-CG by Ghysels et al.

- ▶ Replace $\bar{r}_i = fl(b A\bar{x}_i), \bar{w}_i = fl(A\bar{r}_i), \bar{s}_i = fl(A\bar{p}_i), \bar{z}_i = fl(A\bar{s}_i)$ in selected iterations Sleijpen et al. (1996) ■ van der Vorst & Ye (2000) ■ Strakos & Tichy (2002)
- ► Automated procedure based on estimate $||b A\bar{x}_i \bar{r}_i||$ (computed inexpensively) □ Carson & Demmel (2014) □ C. et al. (2018)
 - Replace sufficiently often such that residual gap remains small
 - Don't replace if $\|ar{r}_i\|$ is small, which may cause delay of convergence

10

nr of nodes (x12 MPI procs)

15

20

Introduce / auxiliary bases

$$Z_{i+1}^{(0)} = [v_0, \ldots v_i], \quad Z_{i+1}^{(1)} = [z_0^{(1)}, \ldots z_i^{(1)}], \quad \ldots \quad , \quad Z_{i+1}^{(I)} = [z_0, \ldots z_i],$$

and replace the multi-term recurrence relation for v_{i-l+1} (~ 2l terms) by l+1 coupled three-term recurrence relations

$$\begin{cases} v_{i-l+1} = (z_{i-l+1}^{(1)} + (\sigma_0 - \gamma_{i-l})v_{i-l} - \delta_{i-l-1}v_{i-l-1})/\delta_{i-l}, \\ z_{i-l+2}^{(1)} = (z_{i-l+2}^{(2)} + (\sigma_1 - \gamma_{i-l})z_{i-l+1}^{(1)} - \delta_{i-l-1}z_{i-1}^{(1)})/\delta_{i-l}, \\ \vdots & \vdots \\ z_i^{(l-1)} = (z_i + (\sigma_{l-1} - \gamma_{i-l})z_{i-1}^{(l-1)} - \delta_{i-l-1}z_{i-2}^{(l-1)})/\delta_{i-l}, \\ z_{i+1} = (Az_i - \gamma_{i-l}z_i - \delta_{i-l-1}z_{i-1})/\delta_{i-l}. \leftarrow 1 \text{ SpMV} \end{cases}$$

This modification causes (almost) no overhead

- the computational cost (#SpMVs and #axpy's) is identical to before,
- the storage cost increases by only l-2 vectors.

Introduce / auxiliary bases

$$ar{Z}_{i+1}^{(0)} = [ar{v}_0, \dots ar{v}_i], \quad ar{Z}_{i+1}^{(1)} = [ar{z}_0^{(1)}, \dots ar{z}_i^{(1)}], \quad \dots \quad , \quad ar{Z}_{i+1}^{(\prime)} = [ar{z}_0, \dots ar{z}_i],$$

and replace the multi-term recurrence relation for \bar{v}_{i-l+1} (~ 2*l* terms) by l+1 coupled three-term recurrence relations that all introduce local rounding errors

$$\begin{cases} \bar{v}_{i-l+1} = (\bar{z}_{i-l+1}^{(1)} + (\sigma_0 - \bar{\gamma}_{i-l})\bar{v}_{i-l} - \bar{\delta}_{i-l-1}\bar{v}_{i-l-1})/\bar{\delta}_{i-l} + \xi_{i-l+1}^{(0)}, \\ \bar{z}_{i-l+2}^{(1)} = (\bar{z}_{i-l+2}^{(2)} + (\sigma_1 - \bar{\gamma}_{i-l})\bar{z}_{i-l+1}^{(1)} - \bar{\delta}_{i-l-1}\bar{z}_{i-l}^{(1)})/\bar{\delta}_{i-l} + \xi_{i-l+2}^{(1)}, \\ \vdots & \vdots \\ \bar{z}_{i}^{(l-1)} = (\bar{z}_i + (\sigma_{l-1} - \bar{\gamma}_{i-l})\bar{z}_{i-1}^{(l-1)} - \bar{\delta}_{i-l-1}\bar{z}_{i-2}^{(l-1)})/\bar{\delta}_{i-l} + \xi_{i}^{(l-1)}, \\ \bar{z}_{i+1} = (A\bar{z}_i - \bar{\gamma}_{i-l}\bar{z}_i - \bar{\delta}_{i-l-1}\bar{z}_{i-1})/\bar{\delta}_{i-l} + \xi_{i+1}^{(l)}. \end{cases}$$

Introduce / auxiliary bases

$$ar{Z}_{i+1}^{(0)} = [ar{v}_0, \dots ar{v}_i], \quad ar{Z}_{i+1}^{(1)} = [ar{z}_0^{(1)}, \dots ar{z}_i^{(1)}], \quad \dots \quad , \quad ar{Z}_{i+1}^{(\prime)} = [ar{z}_0, \dots ar{z}_i],$$

and replace the multi-term recurrence relation for \bar{v}_{i-l+1} ($\sim 2l$ terms) by l+1 coupled three-term recurrence relations that are written in matrix notation as

$$\begin{cases} \bar{Z}_{2:i-l+1}^{(1)} = \bar{Z}_{i-l+1}^{(0)} \bar{T}_{i-l+1,i-l} - \sigma_0 \bar{Z}_{i-l}^{(0)} - \Xi_{i-l+1}^{(0)} \bar{\Delta}_{i-l+1,i-l}, \\ \bar{Z}_{2:i-l+2}^{(2)} = \bar{Z}_{i-l+2}^{(1)} \bar{T}_{i-l+2,i-l+1} - \sigma_1 \bar{Z}_{i-l+1}^{(1)} - \Xi_{i-l+2}^{(1)} \bar{\Delta}_{i-l+2,i-l+1}, \\ \vdots & \vdots \\ \bar{Z}_{2:i}^{(l)} = \bar{Z}_{i}^{(l-1)} \bar{T}_{i,i-1} - \sigma_{l-1} \bar{Z}_{i-1}^{(l-1)} - \Xi_{i}^{(l-1)} \bar{\Delta}_{i,i-1}, \\ A \bar{Z}_{i}^{(l)} = \bar{Z}_{i+1}^{(l)} \bar{T}_{i+1,i} - \Xi_{i+1}^{(l)} \bar{\Delta}_{i+1,i}. \end{cases}$$

Introduce / auxiliary bases

$$ar{Z}_{i+1}^{(0)} = [ar{v}_0, \dots, ar{v}_i], \quad ar{Z}_{i+1}^{(1)} = [ar{z}_0^{(1)}, \dots, ar{z}_i^{(1)}], \quad \dots, \quad ar{Z}_{i+1}^{(\prime)} = [ar{z}_0, \dots, ar{z}_i],$$

and replace the multi-term recurrence relation for \bar{v}_{i-l+1} ($\sim 2l$ terms) by l+1 coupled three-term recurrence relations that are written in matrix notation as

$$\left\{ \begin{array}{l} \bar{Z}_{2:i-l+1}^{(1)} = \bar{Z}_{i-l+1}^{(0)} \bar{T}_{i-l+1,i-l} - \sigma_0 \bar{Z}_{i-l}^{(0)} - \Xi_{i-l+1}^{(0)} \bar{\Delta}_{i-l+1,i-l}, \\ \bar{Z}_{2:i-l+2}^{(2)} = \bar{Z}_{i-1}^{(1)} \bar{T}_{i-l+2,i-l+1} - \sigma_1 \bar{Z}_{i-l+1}^{(1)} - \Xi_{i-l+2}^{(1)} \bar{\Delta}_{i-l+2,i-l+1}, \\ \vdots & \vdots \\ \bar{Z}_{2:i}^{(l)} = \bar{Z}_{i}^{(l-1)} \bar{T}_{i,i-1} - \sigma_{l-1} \bar{Z}_{i-1}^{(l-1)} - \Xi_{i}^{(l-1)} \bar{\Delta}_{i,i-1}, \\ A \bar{Z}_{i}^{(l)} = \bar{Z}_{i+1}^{(l)} \bar{T}_{i+1,i} - \Xi_{i+1}^{(l)} \bar{\Delta}_{i+1,i}. \end{array} \right.$$

For $\overline{Z}_{i+1}^{(l)}$ the gap is given by

 $\bar{\Delta}_{i+1,i}$ diagonal matrix

$$A\bar{Z}_{i}^{(l)} - \bar{Z}_{i+1}^{(l)}\bar{T}_{i+1,i} = -\Xi_{i+1}^{(l)}\bar{\Delta}_{i+1,i}$$

Introduce / auxiliary bases

$$ar{Z}_{i+1}^{(0)} = [ar{v}_0, \dots ar{v}_i], \quad ar{Z}_{i+1}^{(1)} = [ar{z}_0^{(1)}, \dots ar{z}_i^{(1)}], \quad \dots \quad , \quad ar{Z}_{i+1}^{(\prime)} = [ar{z}_0, \dots ar{z}_i],$$

and replace the multi-term recurrence relation for $\bar{\nu}_{i-l+1}$ (~ 2l terms) by l+1 coupled three-term recurrence relations that are written in matrix notation as

$$\rightarrow \begin{cases} \bar{z}_{2:i-l+1}^{(0)} = \bar{z}_{i-l+1}^{(0)} \bar{T}_{i-l+1,i-l} - \sigma_0 \bar{z}_{i-l}^{(0)} - \Xi_{i-l+1}^{(0)} \bar{\Delta}_{i-l+1,i-l}, \\ \bar{z}_{2:i-l+2}^{(2)} = \bar{z}_{i-l+2}^{(1)} \bar{T}_{i-l+2,i-l+1} - \sigma_1 \bar{z}_{i-l+1}^{(1)} - \Xi_{i-l+2}^{(1)} \bar{\Delta}_{i-l+2,i-l+1}, \\ \vdots & \vdots \\ \bar{z}_{2:i}^{(l)} = \bar{z}_{i}^{(l-1)} \bar{T}_{i,i-1} - \sigma_{l-1} \bar{z}_{i-1}^{(l-1)} - \Xi_{i}^{(l-1)} \bar{\Delta}_{i,i-1}, \\ A \bar{z}_{i}^{(l)} = \bar{z}_{i+1}^{(l)} \bar{T}_{i+1,i} - \Xi_{i+1}^{(l)} \bar{\Delta}_{i+1,i}. \end{cases}$$

For $\bar{Z}_{i+1}^{(l-1)}$ the gap is given by $A\bar{Z}_{i}^{(l-1)} - \bar{Z}_{i+1}^{(l-1)} \bar{T}_{i+1,i} = (A\bar{Z}_{i}^{(l)} - \bar{Z}_{i+1}^{(l)} \bar{T}_{i+1,i}) \bar{\Delta}_{i,i}^{+} + \Xi_{i}^{(l)} - \Xi_{i+1}^{(l-1)} \bar{\Delta}_{i+1,i}$

Introduce / auxiliary bases

$$ar{Z}_{i+1}^{(0)} = [ar{v}_0, \dots ar{v}_i], \quad ar{Z}_{i+1}^{(1)} = [ar{z}_0^{(1)}, \dots ar{z}_i^{(1)}], \quad \dots \quad , \quad ar{Z}_{i+1}^{(\prime)} = [ar{z}_0, \dots ar{z}_i],$$

and replace the multi-term recurrence relation for $\bar{\nu}_{i-l+1}$ (~ 2l terms) by l+1 coupled three-term recurrence relations that are written in matrix notation as

$$\rightarrow \begin{cases} \bar{z}_{2:i-l+1}^{(1)} = \bar{z}_{i-l+1}^{(0)} \bar{T}_{i-l+1,i-l} - \sigma_0 \bar{z}_{i-l}^{(0)} - \Xi_{i-l+1}^{(0)} \bar{\Delta}_{i-l+1,i-l}, \\ \bar{z}_{2:i-l+2}^{(2)} = \bar{z}_{i-l+2}^{(1)} \bar{T}_{i-l+2,i-l+1} - \sigma_1 \bar{z}_{i-l+1}^{(1)} - \Xi_{i-l+2}^{(1)} \bar{\Delta}_{i-l+2,i-l+1}, \\ \vdots & \vdots \\ \bar{z}_{2:i}^{(l)} = \bar{z}_{i}^{(l-1)} \bar{T}_{i,i-1} - \sigma_{l-1} \bar{z}_{i-1}^{(l-1)} - \Xi_{i}^{(l-1)} \bar{\Delta}_{i,i-1}, \\ A \bar{z}_{i}^{(l)} = \bar{z}_{i+1}^{(l)} \bar{T}_{i+1,i} - \Xi_{i+1}^{(l)} \bar{\Delta}_{i+1,i}. \end{cases}$$

For general $\bar{Z}_{i+1}^{(k)}$ the gap is given by $k \in \{0, 1, \dots, l-1\}$ $A\bar{Z}_{i}^{(k)} - \bar{Z}_{i+1}^{(k)} \bar{T}_{i+1,i} = (A\bar{Z}_{i}^{(k+1)} - \bar{Z}_{i+1}^{(k+1)} \bar{T}_{i+1,i})\bar{\Delta}_{i,i}^{+} + \Xi_{i}^{(k+1)} - \Xi_{i+1}^{(k)} \bar{\Delta}_{i+1,i}$

Introduce / auxiliary bases

$$ar{Z}_{i+1}^{(0)} = [ar{v}_0, \dots ar{v}_i], \quad ar{Z}_{i+1}^{(1)} = [ar{z}_0^{(1)}, \dots ar{z}_i^{(1)}], \quad \dots \quad , \quad ar{Z}_{i+1}^{(\prime)} = [ar{z}_0, \dots ar{z}_i],$$

and replace the multi-term recurrence relation for $\bar{\nu}_{i-l+1}$ (~ 2l terms) by l+1 coupled three-term recurrence relations that are written in matrix notation as

$$\Rightarrow \begin{cases} \bar{Z}_{2i-l+1}^{(1)} = \bar{Z}_{i-l+1}^{(0)} \bar{T}_{i-l+1,i-l} - \sigma_0 \bar{Z}_{i-l}^{(0)} - \Xi_{i-l+1}^{(0)} \bar{\Delta}_{i-l+1,i-l}, \\ \bar{Z}_{2i-l+2}^{(2)} = \bar{Z}_{i-l+2}^{(1)} \bar{T}_{i-l+2,i-l+1} - \sigma_1 \bar{Z}_{i-l+1}^{(1)} - \Xi_{i-l+2}^{(1)} \bar{\Delta}_{i-l+2,i-l+1}, \\ \vdots & \vdots \\ \bar{Z}_{2i}^{(l)} = \bar{Z}_{i}^{(l-1)} \bar{T}_{i,i-1} - \sigma_{l-1} \bar{Z}_{i-1}^{(l-1)} - \Xi_{i}^{(l-1)} \bar{\Delta}_{i,i-1}, \\ A \bar{Z}_{i}^{(l)} = \bar{Z}_{i+1}^{(l)} \bar{T}_{i+1,i} - \Xi_{i+1}^{(l)} \bar{\Delta}_{i+1,i}. \end{cases}$$

Accumulation of local rounding errors, but no amplification, similar to classic CG. The method thus attains the same accuracy as classic CG!

C. et al. (2019)

Numerical experiments Deep ℓ -length pipelined CG

- Strong scaling on up to 32 14-core Intel E5-2680v4 Broadwell CPU nodes
- EDR Infiniband, Intel MPI 2018v3, PETSc v3.8.3, KSP ex2 •
- 2D 5-pt Poisson, 3 million unknowns, 1,500 iterations, no preconditioner

Accuracy (vs. total CPU time)

2

2.5

Numerical experiments Deep ℓ -length pipelined CG

- Strong scaling on up to 128 14-core Intel E5-2680v4 Broadwell CPU nodes
- EDR Infiniband, Intel MPI 2018v3, PETSc v3.8.3, SNES ex48
- 3D Hydrostatic Ice Sheet Flow, 2.25 million FE, Newton-Krylov solver, 7 Newton steps, 4,500 total inner iter, block Jacobi preconditioner, inner tolerance: 1.0e-10, outer tolerance: 1.0e-8

Numerical experiments Deep ℓ -length pipelined CG

- Strong scaling on up to 128 14-core Intel E5-2680v4 Broadwell CPU nodes
- EDR Infiniband, Intel MPI 2018v3, PETSc v3.8.3, SNES ex48
- 3D Hydrostatic Ice Sheet Flow, 2.25 million FE, Newton-Krylov solver, 7 Newton steps, 4,500 total inner iter, block Jacobi preconditioner, inner tolerance: 1.0e-10, outer tolerance: 1.0e-8

Accuracy (vs. total number of inner iterations)

Conclusions Takeaway messages

- Pipelined Krylov subspace methods are a promising approach
 - Hide communication latency behind computational kernels by adding auxiliary variables and recurrence relations
 - ▶ p(ℓ)-CG: Deep pipelines allow to hide global reduction phases behind multiple SpMV's/iterations
 - Asynchronous implementation: dot-products can take multiple iterations to complete; global reductions are implemented in an overlapping manner
 - Improved scaling over classic KSMs in strong scaling limit, where global reduction latencies rise and volume of computations per core diminishes
- The finite precision behavior of communication avoiding- and hiding Krylov subspace algorithms should be carefully monitored
 - ► Local rounding error analysis allows to explain loss of attainable accuracy
- Insights to construct a more stable method are obtained from the analysis
 - Fully restore attainable accuracy in p(1)-CG at no increase in computational costs or storage costs through residual replacement-type techniques
 - The issue of loss of orthogonality has not been addressed by the modifications to p(1)-CG proposed in this talk

Conclusions Contributions to PETSc

Open source HPC linear algebra toolkit: https://www. We are soliciting C petso petsc / PETSc / petsc Overview for feedback from Correction git@bitbucket.org;petsc/petsc.g O Source our applications Branches Website http://mcsanl.gov/petso Pull requests Access level Read Forks C Pipelipes

- ► KSPPGMRES: pipelined GMRES (thanks to J. Brown)
- ► KSPPIPECG: pipelined Conjugate Gradients
- ► KPPPIPECR: pipelined Conjugate Residuals
- ▶ KSPPIPECGRR: pipelined CG with automated residual replacement
- ► KSPPIPELCG: pipelined CG with deep pipelines
- ► KSPGROPPCG: asynchronous CG variant by W. Gropp and collaborators
- KSPPIPEBCGS: pipelined BiCGStab

Thank you!

siegfried.cools@uantwerp.be
 https://www.uantwerpen.be/en/staff/siegfried-cools

Related publications

jeffrey.cornelis@uantwerp.be
 https://www.uantwerpen.be/en/staff/jeffrey-cornelis

wim.vanroose@uantwerp.be https://www.uantwerpen.be/en/staff/wim-vanroose

P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose, *Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines* SIAM J. Sci. Comput., 35(1), pp. C48–C71, 2013.

P. Ghysels and W. Vanroose, *Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm*, Parallel Computing, 40(7), pp. 224-238, 2014.

- S. Cools, E.F. Yetkin, E. Agullo, L. Giraud, W. Vanroose, *Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined Conjugate Gradient method.* SIAM J. on Matrix Anal. Appl., 39(1), pp. 426-450, 2018.

J. Cornelis, S. Cools, W. Vanroose, *The communication-hiding Conjugate Gradient method with deep pipelines.* Submitted to SIAM J. Sci. Comput., 2018, Preprint: ArXiv 1801.04728.

S. Cools, J. Cornelis, W. Vanroose, *Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method*. Submitted to IEEE Transactions on Parallel and Distributed Systems., 2019, Preprint: ArXiv 1902.03100.