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Motivation

Communication is hard for humans

Introducing some buzzwords you will frequently hear during this talk ...

“synchronization bottleneck” “communication latency” / “error propagation”
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Motivation

Communication is hard for computers

Data movement (communication) is much more time consuming than flops
(computations), so reducing time spent communicating data is essential for HPC

⇒ Communication avoiding / Communication hiding
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Krylov subspace methods

Communication reducing methods

High communication cost has motivated several approaches to reducing the
global synchronization bottleneck in Krylov subspace methods:

Avoiding communication: s-step Krylov subspace methods ∗

[A. Chronopoulous, E. de Sturler, J. Demmel, M. Hoemmen, E. Carson, L. Grigori, J. Erhel, . . . ]

• Compute iterations in blocks of s, allows use of matrix power kernels

• Reduces number of synchronizations per iteration by a factor of O(s)

Hiding communication: Pipelined Krylov subspace methods ∗

[P. Ghysels, W. Vanroose, S. C., P. Sanan, B. Gropp, I. Yamazaki, P. Luszczek, . . . ]

• Introduce auxiliary (basis) vectors to decouple SpMV and inner products

• Enables overlapping of communication and computations

∗
All methods are equivalent to their corresponding Krylov subspace methods in exact arithmetic
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Krylov subspace methods

General concepts

Iteratively improve an approximate solution of the linear system Ax = b, with

xi ∈ x0 +Ki (A, r0) = x0 + span{r0,Ar0,A
2r0, . . . ,A

i−1r0}, ri = b − Axi .

I minimize certain error measure
over Krylov subspace Ki (A, r0)

I Krylov subspace methods:

Conjugate Gradients (CG),
Lanczos, GMRES, MinRES,
BiCG, BiCGStab, CGLS, ...

I Preconditioners:

AMG & GMG, Domain
Decomposition Methods, FETI,
BDDC, Incomplete factorization,
Physics based preconditioners, ...

I usually in combination with sparse
linear algebra/stencil application

I three algorithmic building blocks:
i. dot-product

• O(N) flops
• global synchronization

(MPI Allreduce)

ii. SpMV
• O(nnz) flops
• neighbor communication only

iii. axpy
• O(N) flops
• no communication
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Krylov subspace methods

Classic Conjugate Gradients (CG)

Hestenes & Stiefel (1952)

i. dot-products
I 2 global reductions: latency dominated
I time scales as log2(#partitions)

ii. SpMV
I computationally expensive
I good scaling (minor communication)

iii. axpy’s
I vector operations (recurrences)
I perfect scaling (no communication)

Essentially sequential operations (line-per-line execution)
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Krylov subspace methods

Pipelined Conjugate Gradients

Ghysels & Vanroose (2014)

i. Communication avoiding:
dot-products grouped in one global
reduction phase per iteration

ii. Communication hiding:
overlap global synchronization with
SpMV (+ Prec) computation

iii. No free lunch: Additional recurrence
relations (axpy’s) for the auxiliary
vectors si = Api , wi = Ari , zi = Asi
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Krylov subspace methods

Deep `-length pipelined CG

Classic KSM:

Pipelined KSM:

Deep pipelined KSM:

Pipelined “D-Lanczos” Saad (2003)

Consider the Lanczos relation

AVi = Vi+1Ti+1,i

with A symmetric, Vi+1 = [v0, v1, . . . , vi ]
the Krylov subspace basis and Ti+1,i a
symmetric tridiagonal matrix

Ti+1,i =



γ0 δ0

δ0 γ1

. . .

. . .
. . . δi−2

δi−2 γi−1

δi−1

 .
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Krylov subspace methods

Deep `-length pipelined CG

Classic KSM:

Pipelined KSM:

Deep pipelined KSM:

Pipelined “D-Lanczos” Saad (2003)

Introduce the auxiliary Krylov subspace
basis Zi+1 = [z0, z1, . . . , zi ] that runs l
SpMVs ahead of the basis Vi−l+1 as

zi :=


v0 j = 0,

Pi (A)v0 0 < i ≤ l ,

Pl(A)vi−l i > l ,

with polynomials Pl(t) of fixed order l

Pl(t) :=
l−1∏
j=0

(t − σj),

where l is the pipeline length.
Ghysels et al. (2013)
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Krylov subspace methods

Deep `-length pipelined CG

I Applying Pl(A) to AVi = Vi+1Ti+1,i

yields a Lanczos-type relation

AZi = Zi+1Bi+1,i

with Bi+1,i shifted tridiagonal matrix.

I Auxiliary basis vectors are computed
using a three-term recurrence relation

zi+1 = ( Azi︸︷︷︸
SpMV

−γi−lzi−δi−l−1zi−1)/δi−l

I Basis transformation. Zi and Vi

both span i-th Krylov subspace,
thus ∃ an upper triangular basis
transformation matrix Gi with

Zi = ViGi .

I Band structure of Gi . Matrix Gi

has only 2l + 1 nonzero diagonals

gj,i = (zi , vj) = (Pl(A)vi−l , vj)

= (vi−l ,Pl(A)vj) = gi−l,j+l .

I Original basis vectors are computed using a multi-term recurrence relation

vi−l+1 =

(
zi−l+1 −

i−l∑
j=i−3l+1

gj,i−l+1 vj

)
/gi−l+1,i−l+1.

Cornelis et al. (2018)
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Krylov subspace methods

Deep `-length pipelined CG
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Krylov subspace methods

Deep `-length pipelined CG

Results of dot-products
are needed l iterations
later to update G:,i−l+1

Each global reduction is
overlapped by ` SpMVs

Recurrence relations for
Vi−l+1 and Zi+1 basis vectors

• computation: 2l + 2 axpy’s

• storage: 3l + 2 basis vectors

Dot-products

• 2l + 1 band structure of Gi

• one global reduction phase
is initiated per iteration

SpMV (+ preconditioner)

• 1 SpMV on zi per iteration
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Krylov subspace methods

Deep `-length pipelined CG

Results of global sync.
are needed l iterations
later to update G:,i−l+1

Each global reduction is
overlapped by ` SpMVs

Recurrence relations for
Vi−l+1 and Zi+1 basis vectors

• computation: 2l + 2 axpy’s

• storage: 3l + 2 basis vectors

Dot-products

• 2l + 1 band structure of Gi

• one global reduction phase
is initiated per iteration

SpMV (+ preconditioner)

• 1 SpMV on zi per iteration
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Krylov subspace methods

Parallel performance of pipelined CG

Strong scaling experiments - PETSc 3.6.3/3.7.6 library - MPICH 3.1.3/3.3a2

Per node: Two 6-core Intel Xeon X5660 Nehalem
2.80 GHz - 2D Poisson (5pt) - 1 million unknowns

Per node: Two 14-core Intel E5-2680v4 Broadwell
2.40 GHz - 2D Poisson (5pt) - 3 million unknowns

Cornelis et al. (2018)
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Pipelined Conjugate Gradients

Numerical stability in finite precision

Pipelined CG produces identical iterates to classic CG in exact arithmetic; but ...

Finite precision computations introduce roundoff errors that may lead to

1. Delayed convergence due to loss of basis orthogonality

2. Loss of attainable accuracy due to propagation of local rounding errors
introduced by the recurrence relations
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Classic Conjugate Gradients

Analyzing rounding error behavior in CG

Rounding errors due to recurrence relations for residual and solution update:

x̄i+1 = x̄i + ᾱi p̄i + ξxi+1, r̄i+1 = r̄i − ᾱiAp̄i + ξri+1,

Computed residual r̄i deviates from the true residual b − Ax̄i in finite precision:

(b − Ax̄i+1)− r̄i+1 = b − A(x̄i + ᾱi p̄i + ξxi+1)− (r̄i − ᾱiAp̄i + ξri+1)

=
i+1∑
k=0

(Aξxk + ξrk) .
Sleijpen et al. (1995)

Greenbaum (1997)

Matrix notation: R̄i+1 = [r̄0, . . . , r̄i ], X̄i+1 = [x̄0, . . . , x̄i ], Θx
i ,Θ

r
i rounding errors

(B − AX̄i+1)− R̄i+1 = (AΘx
i+1 + Θr

i+1)Ei+1,

with Ei+1 an upper triangular matrix with all entries one.

Accumulation of local rounding errors in classic CG, but no amplification.

Gutknecht & Strakos (2000) van der Vorst & Ye (2000)
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Pipelined Conjugate Gradients

Analyzing pipelined CG by Ghysels et al.

Additional recurrence relations in pipelined CG all introduce local rounding errors:

x̄i+1 = x̄i + ᾱi p̄i + ξxi+1, s̄i = w̄i + β̄i s̄i−1 + ξsi ,

r̄i+1 = r̄i − ᾱi s̄i + ξri+1, w̄i+1 = w̄i − ᾱi z̄i + ξwi+1,

p̄i = r̄i + β̄i p̄i−1 + ξpi , z̄i = Aw̄i + β̄i z̄i−1 + ξzi ,

The gap on the residual is coupled to the gaps on the auxiliary variables:

(B − AX̄i )− R̄i = (AΘx̄
i + Θr̄

i )Ei + (AΘp̄
i + Θs̄

i ) B̄−1
i Āi

+ (AΘū
i + Θw̄

i )Ei B̄−1
i Āi + (AΘq̄

i + Θz̄
i ) B̄−1

i Āi B̄−1
i Āi

with Āi =


0 ᾱ0 ᾱ0 · · · ᾱ0

0 ᾱ1 · · · ᾱ1

. . .
.
.
.

0 ᾱi−2

0

, B̄−1
i =


1 β̄1 β̄1β̄2 · · · β̄1β̄2 . . . β̄i−1

1 β̄2 β̄2 . . . β̄i−1

. . .
.
.
.

1 β̄i−1

1


Remark: βi βi+1 . . . βj = ‖rj‖2/‖ri−1‖2, so entries of B̄−1

i may be arbitrarily large.

Amplification of local rounding errors possible, depending on values ᾱi and β̄i .

Carson et al. (2018) C. et al. (2018)
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Pipelined Conjugate Gradients
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i Āi B̄−1
i Āi
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. . .
.
.
.

0 ᾱi−2
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Pipelined Conjugate Gradients

Analyzing deep `-length pipelined CG

The recurrence relations for x̄i and p̄i in finite precision p(l)-CG are

x̄i = x̄i−1 + ζ̄i−1p̄i−1 + ξx̄i ⇔ x̄i = x̄0 + P̄i q̄i + Ξx̄
i 1,

p̄i = (v̄i − δ̄i−1p̄i−1)/η̄i + ξp̄i ⇔ V̄i = P̄i Ūi + Ξp̄
i ,

with T̄i = L̄i Ūi , implying the actual residual equals

b − Ax̄i = r̄0 − AV̄i Ū
−1
i q̄i +

Local Rounding Errors (LRE)︷ ︸︸ ︷
AΞp̄

i Ū
−1
i q̄i − AΞx̄

i 1 + ξ r̄0

= r̄0 − V̄i+1T̄i+1,i Ū
−1
i q̄i − (AV̄i − V̄i+1T̄i+1,i )Ū

−1
i q̄i + LRE

= r̄i − (AV̄i − V̄i+1T̄i+1,i )Ū
−1
i q̄i + LRE

Computed residual
tends to zero

Inexact Lanczos relation (“gap on V̄i+1”)
determines maximal attainable accuracy
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Pipelined Conjugate Gradients

Analyzing deep `-length pipelined CG

Basis vector recurrences in finite precision p(l)-CG

v̄i+1 =

(
z̄i+1 −

i∑
j=i−2l+1

ḡj,i+1v̄i

)
/ḡi+1,i+1 + ξv̄i+1, ⇔ Z̄i = V̄i Ḡi + Ξv̄

i (1)

z̄i+1 = (Az̄i − γ̄i−l z̄i − δ̄i−l−1z̄i−1)/δ̄i−l + ξz̄i+1, ⇔ AZ̄i = Z̄i+1B̄i+1,i + Ξz̄
i (2)

and the finite precision coefficient relation Ḡi+1B̄i+1,i = T̄i+1,i Ḡi (3)
allow to compute the gap on the basis V̄i+1 as

AV̄i − V̄i+1T̄i+1,i
(1)
= AZ̄i Ḡ

−1
i − Z̄i+1Ḡ

−1
i+1T̄i+1,i − AΞv̄

i Ḡ
−1
i + Ξv̄

i+1Ḡ
−1
i+1T̄i+1,i

(3)
= (AZ̄i − Z̄i+1B̄i+1,i − AΞv̄

i + Ξv̄
i+1B̄i+1,i )Ḡ

−1
i

(2)
= (Ξz̄

i − AΞv̄
i + Ξv̄

i+1B̄i+1,i ) Ḡ
−1
i .

Amplification of local rounding errors possible, depending on Ḡ−1
i .

Cornelis et al. (2018)
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Pipelined Conjugate Gradients

Analyzing deep `-length pipelined CG

Residual history ‖b − Ax̄i‖2 Norm ‖Ḡ−1
i ‖max

• The norm ‖Ḡ−1
i ‖max quantifies the impact of rounding error amplification on

attainable accuracy in p(l)-CG.

• The Cholesky factorization ZT
i Zi = GT

i Gi relates the conditioning of Gi and
the auxiliary basis Zi ; numerical stability depends on the polynomial Pl(A).

Hoemmen (2010) Ghysels et al. (2013)
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Countermeasures against error propagation

Residual replacement in p-CG by Ghysels et al.

I Replace r̄i = fl(b − Ax̄i ), w̄i = fl(Ar̄i ), s̄i = fl(Ap̄i ), z̄i = fl(As̄i ) in selected iterations

Sleijpen et al. (1996) van der Vorst & Ye (2000) Strakos & Tichy (2002)

I Automated procedure based on estimate ‖b − Ax̄i − r̄i‖ (computed inexpensively)

Carson & Demmel (2014) C. et al. (2018)

• Replace sufficiently often such that residual gap remains small
• Don’t replace if ‖r̄i‖ is small, which may cause delay of convergence

Speedup over single-node CG (12-240 cores) Accuracy vs. total time spent (240 cores)
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Countermeasures against error propagation

Stable recurrences for deep `-length pipelined CG

Introduce l auxiliary bases

Z
(0)
i+1 = [v0, . . . vi ], Z

(1)
i+1 = [z

(1)
0 , . . . z

(1)
i ], . . . , Z

(l)
i+1 = [z0, . . . zi ],

and replace the multi-term recurrence relation for vi−l+1 (∼ 2l terms) by l + 1
coupled three-term recurrence relations

vi−l+1 = (z
(1)
i−l+1 + (σ0 − γi−l )vi−l − δi−l−1vi−l−1)/δi−l ,

z
(1)
i−l+2 = (z

(2)
i−l+2 + (σ1 − γi−l )z

(1)
i−l+1 − δi−l−1z

(1)
i−l )/δi−l ,

...
...

z
(l−1)
i = (zi + (σl−1 − γi−l )z

(l−1)
i−1 − δi−l−1z

(l−1)
i−2 )/δi−l ,

zi+1 = (Azi − γi−lzi − δi−l−1zi−1)/δi−l . ← 1 SpMV

This modification causes (almost) no overhead

• the computational cost (#SpMVs and #axpy’s) is identical to before,

• the storage cost increases by only l − 2 vectors.
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Countermeasures against error propagation

Stable recurrences for deep `-length pipelined CG
IN FINITE PRECISION ARITHMETIC

Introduce l auxiliary bases

Z̄
(0)
i+1 = [v̄0, . . . v̄i ], Z̄

(1)
i+1 = [z̄

(1)
0 , . . . z̄

(1)
i ], . . . , Z̄

(l)
i+1 = [z̄0, . . . z̄i ],

and replace the multi-term recurrence relation for v̄i−l+1 (∼ 2l terms) by l + 1
coupled three-term recurrence relations that all introduce local rounding errors

v̄i−l+1 = (z̄
(1)
i−l+1 + (σ0 − γ̄i−l )v̄i−l − δ̄i−l−1v̄i−l−1)/δ̄i−l + ξ

(0)
i−l+1,

z̄
(1)
i−l+2 = (z̄

(2)
i−l+2 + (σ1 − γ̄i−l )z̄

(1)
i−l+1 − δ̄i−l−1z̄

(1)
i−l )/δ̄i−l + ξ

(1)
i−l+2,

...
...

z̄
(l−1)
i = (z̄i + (σl−1 − γ̄i−l )z̄

(l−1)
i−1 − δ̄i−l−1z̄

(l−1)
i−2 )/δ̄i−l + ξ

(l−1)
i ,

z̄i+1 = (Az̄i − γ̄i−l z̄i − δ̄i−l−1z̄i−1)/δ̄i−l + ξ
(l)
i+1.

← 1 SpMV

This modification causes very limited overhead

I computational cost (= SpMVs and axpy’s) is identical to before,

I storage costs increase slightly, but only by l − 2 vectors.
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Countermeasures against error propagation

Stable recurrences for deep `-length pipelined CG
IN FINITE PRECISION ARITHMETIC
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coupled three-term recurrence relations that are written in matrix notation as

Z̄
(1)
2:i−l+1 = Z̄

(0)
i−l+1T̄i−l+1,i−l − σ0Z̄

(0)
i−l − Ξ

(0)
i−l+1∆̄i−l+1,i−l ,

Z̄
(2)
2:i−l+2 = Z̄

(1)
i−l+2T̄i−l+2,i−l+1 − σ1Z̄

(1)
i−l+1 − Ξ

(1)
i−l+2∆̄i−l+2,i−l+1,

...
...

Z̄
(l)
2:i = Z̄

(l−1)
i T̄i,i−1 − σl−1Z̄

(l−1)
i−1 − Ξ

(l−1)
i ∆̄i,i−1,

AZ̄
(l)
i = Z̄

(l)
i+1T̄i+1,i − Ξ

(l)
i+1∆̄i+1,i .

← 1 SpMV

This modification causes very limited overhead

I computational cost (= SpMVs and axpy’s) is identical to before,

I storage costs increase slightly, but only by l − 2 vectors.
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← 1 SpMV

This modification causes very limited overhead

I computational cost (= SpMVs and axpy’s) is identical to before,

I storage costs increase slightly, but only by l − 2 vectors.

For Z̄
(l)
i+1 the gap is given by ∆̄i+1,i diagonal matrix

AZ̄
(l)
i − Z̄

(l)
i+1T̄i+1,i = −Ξ

(l)
i+1∆̄i+1,i
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Countermeasures against error propagation
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coupled three-term recurrence relations that are written in matrix notation as

Z̄
(1)
2:i−l+1 = Z̄

(0)
i−l+1T̄i−l+1,i−l − σ0Z̄

(0)
i−l − Ξ

(0)
i−l+1∆̄i−l+1,i−l ,

Z̄
(2)
2:i−l+2 = Z̄

(1)
i−l+2T̄i−l+2,i−l+1 − σ1Z̄

(1)
i−l+1 − Ξ

(1)
i−l+2∆̄i−l+2,i−l+1,

...
...

Z̄
(l)
2:i = Z̄

(l−1)
i T̄i,i−1 − σl−1Z̄

(l−1)
i−1 − Ξ

(l−1)
i ∆̄i,i−1,

AZ̄
(l)
i = Z̄

(l)
i+1T̄i+1,i − Ξ

(l)
i+1∆̄i+1,i .

← 1 SpMV

This modification causes very limited overhead

I computational cost (= SpMVs and axpy’s) is identical to before,

I storage costs increase slightly, but only by l − 2 vectors.

For Z̄
(l−1)
i+1 the gap is given by ∆̄i+1,i diagonal matrix

AZ̄
(l−1)
i − Z̄

(l−1)
i+1 T̄i+1,i = (AZ̄

(l)
i − Z̄

(l)
i+1T̄i+1,i )∆̄+

i,i + Ξ
(l)
i − Ξ

(l−1)
i+1 ∆̄i+1,i
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(1)
i ], . . . , Z̄

(l)
i+1 = [z̄0, . . . z̄i ],

and replace the multi-term recurrence relation for v̄i−l+1 (∼ 2l terms) by l + 1
coupled three-term recurrence relations that are written in matrix notation as

Z̄
(1)
2:i−l+1 = Z̄

(0)
i−l+1T̄i−l+1,i−l − σ0Z̄

(0)
i−l − Ξ

(0)
i−l+1∆̄i−l+1,i−l ,

Z̄
(2)
2:i−l+2 = Z̄

(1)
i−l+2T̄i−l+2,i−l+1 − σ1Z̄

(1)
i−l+1 − Ξ

(1)
i−l+2∆̄i−l+2,i−l+1,

...
...

Z̄
(l)
2:i = Z̄

(l−1)
i T̄i,i−1 − σl−1Z̄

(l−1)
i−1 − Ξ

(l−1)
i ∆̄i,i−1,

AZ̄
(l)
i = Z̄

(l)
i+1T̄i+1,i − Ξ

(l)
i+1∆̄i+1,i .

← 1 SpMV

This modification causes very limited overhead

I computational cost (= SpMVs and axpy’s) is identical to before,

I storage costs increase slightly, but only by l − 2 vectors.

For general Z̄
(k)
i+1 the gap is given by k ∈ {0, 1, . . . , l − 1}

AZ̄
(k)
i − Z̄

(k)
i+1T̄i+1,i = (AZ̄

(k+1)
i − Z̄

(k+1)
i+1 T̄i+1,i )∆̄+

i,i + Ξ
(k+1)
i − Ξ

(k)
i+1∆̄i+1,i
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Countermeasures against error propagation

Stable recurrences for deep `-length pipelined CG
IN FINITE PRECISION ARITHMETIC

Introduce l auxiliary bases

Z̄
(0)
i+1 = [v̄0, . . . v̄i ], Z̄

(1)
i+1 = [z̄

(1)
0 , . . . z̄

(1)
i ], . . . , Z̄

(l)
i+1 = [z̄0, . . . z̄i ],

and replace the multi-term recurrence relation for v̄i−l+1 (∼ 2l terms) by l + 1
coupled three-term recurrence relations that are written in matrix notation as

Z̄
(1)
2:i−l+1 = Z̄

(0)
i−l+1T̄i−l+1,i−l − σ0Z̄

(0)
i−l − Ξ

(0)
i−l+1∆̄i−l+1,i−l ,

Z̄
(2)
2:i−l+2 = Z̄

(1)
i−l+2T̄i−l+2,i−l+1 − σ1Z̄

(1)
i−l+1 − Ξ

(1)
i−l+2∆̄i−l+2,i−l+1,

...
...

Z̄
(l)
2:i = Z̄

(l−1)
i T̄i,i−1 − σl−1Z̄

(l−1)
i−1 − Ξ

(l−1)
i ∆̄i,i−1,

AZ̄
(l)
i = Z̄

(l)
i+1T̄i+1,i − Ξ

(l)
i+1∆̄i+1,i .

← 1 SpMV

This modification causes very limited overhead

I computational cost (= SpMVs and axpy’s) is identical to before,

I storage costs increase slightly, but only by l − 2 vectors.

Accumulation of local rounding errors, but no amplification, similar to classic CG.
The method thus attains the same accuracy as classic CG!

C. et al. (2019)
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Countermeasures against error propagation

Stable recurrences for deep `-length pipelined CG

Classic CG
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Countermeasures against error propagation

Stable recurrences for deep `-length pipelined CG

Pipelined CG by Ghysels et al.
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Pipelined p(1)-CG “unstable”
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Pipelined p(2)-CG “unstable”
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Pipelined p(3)-CG “unstable”
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Stable recurrences for deep `-length pipelined CG

Pipelined p(5)-CG “unstable”
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Pipelined p(1)-CG “stable”
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Countermeasures against error propagation

Stable recurrences for deep `-length pipelined CG

Pipelined p(5)-CG “stable”
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Numerical experiments

Deep `-length pipelined CG

• Strong scaling on up to 32 14-core Intel E5-2680v4 Broadwell CPU nodes

• EDR Infiniband, Intel MPI 2018v3, PETSc v3.8.3, KSP ex2

• 2D 5-pt Poisson, 3 million unknowns, 1,500 iterations, no preconditioner

Speedup (over CG on 1 node) Accuracy (vs. total CPU time)
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• 3D Hydrostatic Ice Sheet Flow, 2.25 million FE, Newton-Krylov solver, 7 Newton steps, 4,500
total inner iter, block Jacobi preconditioner, inner tolerance: 1.0e-10, outer tolerance: 1.0e-8

Accuracy (vs. total number of inner iterations)
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Conclusions

Takeaway messages

• Pipelined Krylov subspace methods are a promising approach

I Hide communication latency behind computational kernels by adding
auxiliary variables and recurrence relations

I p(`)-CG: Deep pipelines allow to hide global reduction phases behind
multiple SpMV’s/iterations

I Asynchronous implementation: dot-products can take multiple iterations to
complete; global reductions are implemented in an overlapping manner

I Improved scaling over classic KSMs in strong scaling limit, where global
reduction latencies rise and volume of computations per core diminishes

• The finite precision behavior of communication avoiding- and hiding Krylov
subspace algorithms should be carefully monitored

I Local rounding error analysis allows to explain loss of attainable accuracy

• Insights to construct a more stable method are obtained from the analysis

I Fully restore attainable accuracy in p(l)-CG at no increase in computational
costs or storage costs through residual replacement-type techniques

I The issue of loss of orthogonality has not been addressed by the modifications
to p(l)-CG proposed in this talk
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Conclusions

Contributions to PETSc

Open source HPC linear algebra toolkit: https://www.mcs.anl.gov/petsc/

I KSPPGMRES: pipelined GMRES (thanks to J. Brown)

I KSPPIPECG: pipelined Conjugate Gradients

I KPPPIPECR: pipelined Conjugate Residuals

I KSPPIPECGRR: pipelined CG with automated residual replacement

I KSPPIPELCG: pipelined CG with deep pipelines

I KSPGROPPCG: asynchronous CG variant by W. Gropp and collaborators

I KSPPIPEBCGS: pipelined BiCGStab

We are still soliciting
for feedback from
your applications!

We are soliciting
for feedback from
your applications
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