Analyzing and Improving Attainable Accuracy for the Communication Hiding Pipelined Conjugate Gradient Method

SIAM Conference on Computational Science and Engineering (CSE’19)
Spokane Convention Center, WA, US, February 25 - March 1, 2019

University of Antwerp* [Belgium], LBNL‡ [USA], INRIA Bordeaux† [France]

S. Cools*, J. Cornelis*, W. Vanroose*, P. Ghysels‡, E. F. Yetkin†, E. Agullo†, L. Giraud†

*E-mail: siegfried.cools@uantwerp.be

Universiteit Antwerpen
Motivation

Communication is hard for humans

Introducing some buzzwords you will frequently hear during this talk ...

“synchronization bottleneck”

“communication latency” / “error propagation”
Motivation

Communication is hard for computers

Data movement (communication) is much more time consuming than flops (computations), so reducing time spent communicating data is essential for HPC

⇒ Communication avoiding / Communication hiding
High communication cost has motivated several approaches to reducing the global synchronization bottleneck in Krylov subspace methods:

Avoiding communication: **s-step Krylov subspace methods** *
[A. Chronopoulous, E. de Sturler, J. Demmel, M. Hoemmen, E. Carson, L. Grigori, J. Erhel, ...]
- Compute iterations in blocks of s, allows use of matrix power kernels
- Reduces number of synchronizations per iteration by a factor of $O(s)$

Hiding communication: **Pipelined Krylov subspace methods** *
[P. Ghysels, W. Vanroose, S. C., P. Sanan, B. Gropp, I. Yamazaki, P. Luszczek, ...]
- Introduce auxiliary (basis) vectors to decouple SpMV and inner products
- Enables overlapping of communication and computations

* All methods are equivalent to their corresponding Krylov subspace methods in exact arithmetic
Krylov subspace methods
General concepts

Iteratively improve an approximate solution of the linear system $Ax = b$, with

$$x_i \in x_0 + \mathcal{K}_i(A, r_0) = x_0 + \text{span}\{r_0, Ar_0, A^2r_0, \ldots, A^{i-1}r_0\}, \quad r_i = b - Ax_i.$$

- minimize certain error measure over Krylov subspace $\mathcal{K}_i(A, r_0)$
- Krylov subspace methods:
 - Conjugate Gradients (CG), Lanczos, GMRES, MinRES, BiCG, BiCGStab, CGLS, ...
- Preconditioners:
 - AMG & GMG, Domain Decomposition Methods, FETI, BDDC, Incomplete factorization, Physics based preconditioners, ...
- usually in combination with sparse linear algebra/stencil application
- three algorithmic building blocks:
 i. dot-product
 - $O(N)$ flops
 - global synchronization (MPI_Allreduce)
 ii. SpMV
 - $O(\text{nnz})$ flops
 - neighbor communication only
 iii. axpy
 - $O(N)$ flops
 - no communication
Krylov subspace methods

Classic Conjugate Gradients (CG)

i. dot-products
 - 2 global reductions: latency dominated
 - time scales as $\log_2(\#\text{partitions})$

ii. SpMV
 - computationally expensive
 - good scaling (minor communication)

iii. axpy's
 - vector operations (recurrences)
 - perfect scaling (no communication)

Essentially sequential operations (line-per-line execution)
Krylov subspace methods
Pipelined Conjugate Gradients

i. Communication avoiding:
dot-products grouped in one global reduction phase per iteration

ii. Communication hiding:
overlap global synchronization with SpMV (+ Prec) computation

iii. No free lunch: Additional recurrence relations (axpy's) for the auxiliary vectors $s_i = Ap_i$, $w_i = Ar_i$, $z_i = As_i$

Algorithm Pipelined CG

1: procedure PIPE-CG(A, b, x_0)
2: $r_0 := b - Ax_0$; $w_0 := Ar_0$
3: for $i = 0, \ldots$ do
4: $\gamma_i := (r_i, r_i)$
5: $\delta := (w_i, r_i)$
6: $q_i := Aw_i$
7: if $i > 0$ then
8: $\beta_i := \gamma_i / \gamma_{i-1}$; $\alpha_i := (\delta / \gamma_i - \beta_i / \alpha_{i-1})^{-1}$
9: else
10: $\beta_i := 0$; $\alpha := \gamma_i / \delta$
11: end if
12: $z_i := q_i + \beta_i z_{i-1}$
13: $s_i := w_i + \beta_i s_{i-1}$
14: $p_i := r_i + \beta_i p_{i-1}$
15: $x_{i+1} := x_i + \alpha_i p_i$
16: $r_{i+1} := r_i - \alpha_i s_i$
17: $w_{i+1} := w_i - \alpha_i z_i$
18: end for
19: end procedure

Ghysels & Vanroose (2014)
Krylov subspace methods

Deep \(\ell \)-length pipelined CG

Classic KSM:

\[
\begin{align*}
\text{SpMV} & \quad \text{GiRed} & \quad \text{Prec} & \quad \text{GiRed} \\
\text{SpMV} & \quad \text{Prec} & \quad \text{GiRed} & \quad \text{SpMV}
\end{align*}
\]

Pipelined KSM:

\[
\begin{align*}
\text{GiRed} & \quad \text{SpMV} & \quad \text{Prec} & \quad \text{GiRed} \\
\text{SpMV} & \quad \text{Prec} & \quad \text{GiRed} & \quad \text{SpMV} & \quad \text{Prec} & \quad \text{GiRed}
\end{align*}
\]

Deep pipelined KSM:

\[
\begin{align*}
\text{SpMV} & \quad \text{Prec} & \quad \text{GiRed} \\
\text{SpMV} & \quad \text{Prec} & \quad \text{GiRed} & \quad \text{SpMV} & \quad \text{Prec} & \quad \text{GiRed}
\end{align*}
\]

Pipelined “D-Lanczos” \cite{saad2003}:

Consider the Lanczos relation

\[
AV_i = V_{i+1} T_{i+1,i}
\]

with \(A \) symmetric, \(V_{i+1} = [v_0, v_1, \ldots, v_i] \) the Krylov subspace basis and \(T_{i+1,i} \) a symmetric tridiagonal matrix

\[
T_{i+1,i} = \begin{pmatrix}
\gamma_0 & \delta_0 & & \\
\delta_0 & \gamma_1 & & \\
& \delta_0 & \gamma_2 & \\
& & \ddots & \ddots & \ddots \end{pmatrix}
\begin{pmatrix}
\delta_{i-2} & \\
\gamma_{i-1} & \\
\delta_{i-1}
\end{pmatrix}
\]
Krylov subspace methods

Deep ℓ-length pipelined CG

Classic KSM:

Pipelined KSM:

Deep pipelined KSM:

Pipelined “D-Lanczos” \(\text{Saad (2003)} \)

Introduce the auxiliary Krylov subspace basis \(Z_{i+1} = [z_0, z_1, \ldots, z_i] \) that runs \(l \) SpMVs ahead of the basis \(V_{i-l+1} \) as

\[
 z_i := \begin{cases}
 v_0 & j = 0, \\
 P_i(A)v_0 & 0 < i \leq l, \\
 P_i(A)v_{i-l} & i > l,
 \end{cases}
\]

with polynomials \(P_i(t) \) of fixed order \(l \)

\[
P_i(t) := \prod_{j=0}^{l-1} (t - \sigma_j),
\]

where \(l \) is the pipeline length. \(\text{Ghysels et al. (2013)} \)
Krylov subspace methods
Deep ℓ-length pipelined CG

- Applying $P_l(A)$ to $AV_i = V_{i+1}T_{i+1,i}$ yields a Lanczos-type relation

$$AZ_i = Z_{i+1}B_{i+1,i}$$

with $B_{i+1,i}$ shifted tridiagonal matrix.

- Auxiliary basis vectors are computed using a three-term recurrence relation

$$z_{i+1} = \left(Az_i - \gamma_{i-1}z_i - \delta_{i-1}z_{i-1} \right) / \delta_{i-1}$$

- Original basis vectors are computed using a multi-term recurrence relation

$$v_{i-l+1} = \left(z_{i-l+1} - \sum_{j=i-3l+1}^{i-l} g_{j,i-l+1} v_j \right) / g_{i-l+1,i-l+1}.$$
Algorithm 1 \(l \)-length pipelined \(p(l) \)-CG

\(\textbf{Input:} \ A, \ b, \ x_0, \ l, \ m, \ \tau \)

1: \(r_0 := b - Ax_0; \ v_0 := r_0 / \|r_0\|_2; \ z_0 := v_0; \quad g_{0,0} := 1; \)
2: \textbf{for} \(i = 0, \ldots, m + l \) \textbf{do}
3: \quad \begin{aligned}
& z_{i+1} := \begin{cases} (A - \sigma_i I) z_i, & i < l \\ Az_i, & i \geq l \end{cases} \\
& \text{if} \ i \geq l \text{ then} \\
& \quad g_{j,i-l+1} := (g_{j,i-l+1} - \sum_{k=i-3l+1}^{j-1} g_{j,k} g_{k,i-l+1})/g_{j,j}; \\& \quad g_{i-l+1,i-l+1} := \sqrt{g_{i-l+1,i-l+1} - \sum_{k=i-3l+1}^{i-l} g_{k,i-l+1}^2}; \\
& \quad \text{# Check for breakdown and restart if required} \\
& \quad \text{if} \ i < 2l \text{ then} \\
& \quad \quad \gamma_{i-l} := (g_{i-l,i-l+1} + \sigma_{i-l} g_{i-l,i-l} - g_{i-l-1,i-l-1} \delta_{i-l-1})/g_{i-l,i-l}; \\
& \quad \quad \delta_{i-l} := g_{i-l+1,i-l+1}/g_{i-l,i-l}; \\
& \quad \text{else} \\
& \quad \quad \gamma_{i-l} := (g_{i-l,i-l} \gamma_{i-2l} + g_{i-l,i-l} \delta_{i-2l} - g_{i-l-1,i-l-1} \delta_{i-2l-1})/g_{i-l,i-l}; \\
& \quad \quad \delta_{i-l} := (g_{i-l+1,i-l+1} \delta_{i-2l})/g_{i-l,i-l}; \\
& \quad \text{end if} \\
& \quad \quad \psi_{i-l+1} := (z_{i-l+1} - \sum_{j=i-3l+1}^{i-l} g_{j,i-l+1} v_j)/g_{i-l+1,i-l+1}; \\
& \quad \quad z_{i+1} := (z_{i+1} - \gamma_{i-1} z_i - \delta_{i-1} z_{i-1})/\delta_{i-1}; \\
& \quad \text{end if} \\
& \quad g_{j,i+1} := \begin{cases} (z_{i+1}, v_j); & j = \max(0, i - 2l + 1), \ldots, i + l + 1 \\ (z_{i+1}, z_j); & j = i - l + 2, \ldots, i + 1 \end{cases} \\
& \quad \text{if} \ i = l \text{ then} \\
& \quad \quad \gamma_0 := \gamma_0; \quad \zeta_0 := \|r_0\|_2; \quad p_0 := v_0 / \gamma_0; \\
& \quad \text{else if} \ i \geq l + 1 \text{ then} \\
& \quad \quad \lambda_{i-l} := \delta_{i-l-1}/\eta_{i-l-1}; \\
& \quad \quad \eta_{i-l} := \gamma_{i-l} - \lambda_{i-l} \delta_{i-l-1}; \\
& \quad \quad \zeta_{i-l} := -\lambda_{i-l} \zeta_{i-l-1}; \\
& \quad \quad \pi_{i-l} := (\psi_{i-l} - \delta_{i-l} \pi_{i-l-1})/\eta_{i-l}; \\
& \quad \quad \xi_{i-l} := x_{i-l-1} + \zeta_{i-l} \pi_{i-l-1}; \\
& \quad \quad \text{if} \ |z_{i-l}|/\|r_0\| < \tau \text{ then RETURN; end if} \\
& \quad \text{end if} \\
& \text{end for}
Krylov subspace methods

Deep ℓ-length pipelined CG

Algorithm 1 l-length pipelined p(l)-CG

Input: A, b, x_0, l, m, τ

1: $r_0 := b - Ax_0$; $v_0 := r_0/\|r_0\|_2$; $z_0 := v_0$; $g_{0,0} := 1$
2: for $i = 0, \ldots, m + l$ do

3: \[
 z_{i+1} := \begin{cases}
 (A - \sigma_i I)z_i, & i < l \\
 Az_i, & i \geq l
 \end{cases}
\]

4: if $i \geq l$ then

5: \[
 g_{j,i-l+1} := (g_{j,i-l+1} - \sum_{k=i-3l+1}^{i-1} g_{k,j} g_{k,i-l+1})/g_{j,j}; \quad j = i - 2l + 2, \ldots, i
\]

6: \[
 g_{i-l+1,i-l+1} := \sqrt{g_{i-l+1,i-l+1} - \sum_{k=i-3l+1}^{i-l} g_{k,i-l+1}^2};
\]

7: $\#$ Check for breakdown and restart if required
8: if $i < 2l$ then

9: \[
 \gamma_{i-l} := (g_{i-l,i-l+1} + \sigma_{i-l} g_{i-l,i-l} - g_{i-l-1,i-l-1} \delta_{i-l-1})/g_{i-l,i-l};
\]

10: \[
 \delta_{i-l} := (g_{i-l+1,i-l+1} - g_{i-l,i-l})/g_{i-l,i-l};
\]

else

11: \[
 \gamma_{i-l} := (g_{i-l,i-l} \gamma_{i-2l} + g_{i-l,i-l+1} \delta_{i-2l} - g_{i-l-1,i-l-1} \delta_{i-l-1})/g_{i-l,i-l};
\]

12: \[
 \delta_{i-l} := (g_{i-l+1,i-l+1} \delta_{i-2l})/g_{i-l,i-l};
\]

end if

15: \[
 v_{i-l+1} := (z_{i-l+1} - \sum_{j=i-3l+1}^{i-l} g_{j,i-l+1} v_j)/g_{i-l+1,i-l+1};
\]

16: \[
 z_{i+1} := (z_{i+1} - \gamma_{i-l} z_i - \delta_{i-l} z_{i-l+1})/\delta_{i-l};
\]

end if

18: \[
 g_{j,i+1} := \begin{cases}
 (z_{i+1}, v_j); & j = \max(0, i-2l+1), \ldots, i-l+1 \\
 (z_{i+1}, z_j); & j = i-l+2, \ldots, i+1
 \end{cases}
\]

19: if $i = l$ then

20: \[
 \eta_{0} := \gamma_{0}; \quad \zeta_{0} := \|r_0\|_2; \quad p_0 := v_0/\eta_{0};
\]

21: else if $i \geq l + 1$ then

22: \[
 \lambda_{i-l} := \delta_{i-l-1}/\eta_{i-l-1};
\]

23: \[
 \eta_{i-l} := \gamma_{i-l} - \lambda_{i-l} \delta_{i-l-1};
\]

24: \[
 \zeta_{i-l} := -\lambda_{i-l} \zeta_{i-l-1};
\]

25: \[
 p_{i-l} := (v_{i-l} - \delta_{i-l-1} p_{i-l-1})/\eta_{i-l};
\]

26: \[
 x_{i-l} := x_{i-l-1} + \zeta_{i-l-1} p_{i-l-1};
\]

27: if $|\zeta_{i-l}|/\|r_0\| < \tau$ then RETURN; end if

28: end if

29: end for

SpMV (+ preconditioner)
- 1 SpMV on z_i per iteration

Recurrence relations for V_{i-1+l} and Z_{i+1} basis vectors
- computation: $2l + 2$ axpy’s
- storage: $3l + 2$ basis vectors

Dot-products
- $2l + 1$ band structure of G_i
- one global reduction phase is initiated per iteration
Krylov subspace methods

Deep ℓ-length pipelined CG

Algorithm 1 l-length pipelined p(l)-CG

\[\begin{align*}
1: & \quad r_0 := b - Ax_0; \quad v_0 := r_0/\|r_0\|_2; \quad z_0 := v_0; \quad g_{0,0} := 1; \\
2: & \quad \text{for } i = 0, \ldots, m + l \text{ do} \\
3: & \quad z_{i+1} := \begin{cases}
(A - \sigma_i I)z_i, & i < l \\
Az_i, & i \geq l
\end{cases} \\
4: & \quad \text{if } i \geq l \text{ then} \\
5: & \quad g_{j,l+1} := (g_{j,l+1} - \sum_{k=1}^{j-1} g_{k,j}g_{k,l+1})/g_{j,l}; \\
6: & \quad g_{i-l+1,l+1} := \sqrt{g_{i-l+1,l+1} - \sum_{k=1}^{l-1} g_{k,l+1}^2}; \\
7: & \quad \# \text{ Check for breakdown and restart if required} \\
8: & \quad \text{if } i < 2l \text{ then} \\
9: & \quad \gamma_{l-i} := (g_{i-l+1} + \sigma_{l-i}g_{i-l+1})/g_{i-l+1}; \\
10: & \quad \delta_{i-l} := g_{i-l+1}; \\
11: & \quad \text{else} \\
12: & \quad \gamma_{l-i} := g_{l-i}; \\
13: & \quad \delta_{i-l} := g_{l-i}; \\
14: & \quad \text{end if} \\
15: & \quad \nu_{i-l+1} := (z_{i-l+1} - \sum_{j} v_j); \\
16: & \quad z_{i+1} := z_{i+1} - \gamma_{l-i}z_i; \\
17: & \quad \text{end if} \\
18: & \quad g_{i+l+1} := \begin{cases}
(z_{i+1}, v_j); & j < l \\
(z_{i+1}, z_j); & j \geq l
\end{cases} \\
19: & \quad \text{if } i \geq l \text{ then} \\
20: & \quad \eta_0 := \gamma_0; \quad \zeta_0 := \|r_0\|_2; \quad p_0 := v_0/\eta_0; \\
21: & \quad \text{else if } i \geq l + 1 \text{ then} \\
22: & \quad \lambda_{i-l} := \delta_{i-l}/\eta_{i-l}; \\
23: & \quad \eta_{i-l} := \gamma_{i-l} - \lambda_{i-l}\delta_{i-l}; \\
24: & \quad \zeta_{i-l} := -\lambda_{i-l}\zeta_{i-l}; \\
25: & \quad p_{i-l} := (v_{i-l} - \delta_{i-l}p_{i-l-1})/\eta_{i-l}; \\
26: & \quad x_{i-l} = x_{i-l-1} + \zeta_{i-l}p_{i-l-1}; \\
27: & \quad \text{if } \|z_{i-l}\|/\|r_0\| < \tau \text{ then RETURN; end if} \\
28: & \quad \text{end if} \\
29: & \quad \text{end for}
\end{align*} \]

Results of global sync. are needed l iterations later to update G_{i-l+1}.

Each global reduction is overlapped by ℓ SpMVs.

Recurrence relations for V_{i-l+1} and Z_{i+1} basis vectors

- computation: $2l + 2$ axpy’s
- storage: $3l + 2$ basis vectors

Dot-products

- $2l + 1$ band structure of G_i
- one global reduction phase is initiated per iteration
Krylov subspace methods
Parallel performance of pipelined CG

Strong scaling experiments - PETSc 3.6.3/3.7.6 library - MPICH 3.1.3/3.3a2

Per node: Two 6-core Intel Xeon X5660 Nehalem 2.80 GHz - 2D Poisson (5pt) - 1 million unknowns

Per node: Two 14-core Intel E5-2680v4 Broadwell 2.40 GHz - 2D Poisson (5pt) - 3 million unknowns

Cornelis et al. (2018)
Pipelined Conjugate Gradients
Numerical stability in finite precision

Pipelined CG produces identical iterates to classic CG in exact arithmetic; but ...

Finite precision computations introduce roundoff errors that may lead to
1. *Delayed convergence* due to loss of basis orthogonality
2. *Loss of attainable accuracy* due to propagation of local rounding errors introduced by the recurrence relations
Rounding errors due to recurrence relations for residual and solution update:

\[\tilde{x}_{i+1} = \bar{x}_i + \bar{\alpha}_i \bar{p}_i + \xi_{i+1}^x, \quad \tilde{r}_{i+1} = \bar{r}_i - \bar{\alpha}_i A \bar{p}_i + \xi_{i+1}^r, \]

Computed residual \(\tilde{r}_i \) deviates from the true residual \(b - A \bar{x}_i \) in finite precision:

\[
(b - A \tilde{x}_{i+1}) - \tilde{r}_{i+1} = b - A(\bar{x}_i + \bar{\alpha}_i \bar{p}_i + \xi_{i+1}^x) - (\bar{r}_i - \bar{\alpha}_i A \bar{p}_i + \xi_{i+1}^r) = \sum_{k=0}^{i+1} (A \xi_k^x + \xi_k^r).
\]

Matrix notation: \(\tilde{R}_{i+1} = [\tilde{r}_0, \ldots, \tilde{r}_i] \), \(\tilde{X}_{i+1} = [\bar{x}_0, \ldots, \bar{x}_i] \), \(\Theta_i^x, \Theta_i^r \) rounding errors

\[
(B - A \tilde{X}_{i+1}) - \tilde{R}_{i+1} = (A \Theta_{i+1}^x + \Theta_{i+1}^r) E_{i+1},
\]

with \(E_{i+1} \) an upper triangular matrix with all entries one.

Accumulation of local rounding errors in classic CG, but no amplification.
Pipelined Conjugate Gradients
Analyzing pipelined CG by Ghysels et al.

Additional recurrence relations in pipelined CG all introduce local rounding errors:

\[
\bar{x}_{i+1} = \bar{x}_i + \bar{\alpha}_i \bar{p}_i + \xi_{i+1}, \quad \bar{s}_i = \bar{w}_i + \bar{\beta}_i \bar{s}_{i-1} + \xi_s,
\]

\[
\bar{r}_{i+1} = \bar{r}_i - \bar{\alpha}_i \bar{s}_i + \xi_{i+1}, \quad \bar{w}_{i+1} = \bar{w}_i - \bar{\alpha}_i \bar{z}_i + \xi_w,
\]

\[
\bar{p}_i = \bar{r}_i + \bar{\beta}_i \bar{p}_{i-1} + \xi_p, \quad \bar{z}_i = A\bar{w}_i + \bar{\beta}_i \bar{z}_{i-1} + \xi_z,
\]

The gap on the residual is coupled to the gaps on the auxiliary variables:

\[
(B - A\bar{X}_i) - \bar{R}_i = (A\Theta_i^\bar{x} + \Theta_i^\bar{r}) E_i + (A\Theta_i^\bar{p} + \Theta_i^\bar{s}) \bar{B}_i^{-1} \bar{A}_i
\]

\[
+ (A\Theta_i^\bar{q} + \Theta_i^\bar{w}) E_i \bar{B}_i^{-1} \bar{A}_i + (A\Theta_i^\bar{q} + \Theta_i^\bar{z}) \bar{B}_i^{-1} \bar{A}_i \bar{B}_i^{-1} \bar{A}_i
\]

with \(\bar{A}_i = \begin{pmatrix} 0 & \bar{\alpha}_0 & \bar{\alpha}_0 & \cdots & \bar{\alpha}_0 \\ 0 & \bar{\alpha}_1 & \bar{\alpha}_1 & \cdots & \bar{\alpha}_1 \\ \vdots & \ddots & \ddots & \cdots & \vdots \\ 0 & \bar{\alpha}_{i-2} & 0 \\ 0 & 0 & \bar{\alpha}_{i-2} \end{pmatrix} \), \(\bar{B}_i^{-1} = \begin{pmatrix} 1 & \bar{\beta}_1 & \bar{\beta}_1 \bar{\beta}_2 & \cdots & \bar{\beta}_1 \bar{\beta}_2 \cdots \bar{\beta}_{i-1} \\ 1 & \bar{\beta}_2 & \bar{\beta}_2 \bar{\beta}_3 & \cdots & \bar{\beta}_2 \bar{\beta}_3 \cdots \bar{\beta}_{i-1} \\ \vdots & \ddots & \ddots & \cdots & \vdots \\ 1 & \bar{\beta}_{i-1} \\ 1 & 1 \end{pmatrix} \)

Remark: \(\beta_i \beta_i+1 \cdots \beta_j = \| r_j \|^2 / \| r_{i-1} \|^2 \), so entries of \(\bar{B}_i^{-1} \) may be arbitrarily large.
Additional recurrence relations in pipelined CG all introduce local rounding errors:

\[
\begin{align*}
\bar{x}_{i+1} &= \bar{x}_i + \bar{\alpha}_i \bar{p}_i + \xi_{i+1}, \\
\bar{r}_{i+1} &= \bar{r}_i - \bar{\alpha}_i \bar{s}_i + \xi_{i+1}, \\
\bar{p}_i &= \bar{r}_i + \bar{\beta}_i \bar{p}_{i-1} + \xi_i, \\
\bar{s}_i &= \bar{w}_i + \bar{\beta}_i \bar{s}_{i-1} + \xi_i, \\
\bar{w}_{i+1} &= \bar{w}_i - \bar{\alpha}_i \bar{z}_i + \xi_{i+1}, \\
\bar{z}_i &= A\bar{w}_i + \bar{\beta}_i \bar{z}_{i-1} + \xi_i.
\end{align*}
\]

The gap on the residual is coupled to the gaps on the auxiliary variables:

\[
(B - A\bar{X}_i) - \bar{R}_i = (A\Theta_i \bar{\bar{x}}_i + \Theta_i \bar{\bar{r}}_i) E_i + (A\Theta_i \bar{\bar{p}}_i + \Theta_i \bar{\bar{s}}_i) B_i \bar{\bar{B}}^{-1} \bar{\bar{A}}_i \\
+ (A\Theta_i \bar{\bar{w}}_i + \Theta_i \bar{\bar{w}}_i) E_i \bar{\bar{B}}^{-1} \bar{\bar{A}}_i + (A\Theta_i \bar{\bar{q}}_i + \Theta_i \bar{\bar{z}}_i) \bar{\bar{B}}^{-1} \bar{\bar{A}}_i \bar{\bar{B}}^{-1} \bar{\bar{A}}_i
\]

with \(\bar{\bar{A}}_i = \begin{pmatrix}
0 & \bar{\alpha}_0 & \bar{\alpha}_0 & \cdots & \bar{\alpha}_0 \\
0 & \bar{\alpha}_1 & \cdots & \bar{\alpha}_1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \bar{\alpha}_{i-2} & \cdots & 0 \\
\end{pmatrix} \)

\(\bar{\bar{B}}^{-1} = \begin{pmatrix}
1 & \bar{\beta}_1 & \bar{\beta}_2 & \cdots & \bar{\beta}_{i-1} \\
1 & \bar{\beta}_2 & \cdots & \bar{\beta}_{i-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \bar{\beta}_{i-1} & \cdots & 1 \\
\end{pmatrix} \)

Amplification of local rounding errors possible, depending on values \(\bar{\alpha}_i \) and \(\bar{\beta}_i \).
Analyzing deep ℓ-length pipelined CG

The recurrence relations for \bar{x}_i and \bar{p}_i in finite precision $p(l)$-CG are

$$\bar{x}_i = \bar{x}_{i-1} + \zeta_{i-1} \bar{p}_{i-1} + \xi_i$$

$$\bar{p}_i = (\bar{v}_i - \bar{\delta}_{i-1} \bar{p}_{i-1})/\bar{\eta}_i + \xi_i^p$$

with $\bar{T}_i = \bar{L}_i \bar{U}_i$, implying the actual residual equals

$$b - A\bar{x}_i = \bar{r}_0 - A\bar{V}_i \bar{U}_i^{-1} \bar{q}_i + A\Xi_i^\bar{p} \bar{U}_i^{-1} \bar{q}_i - A\Xi_i^\bar{x} \mathbf{1} + \xi_0$$

$$= \bar{r}_0 - \bar{V}_{i+1} \bar{T}_{i+1,i} \bar{U}_i^{-1} \bar{q}_i - (A\bar{V}_i - \bar{V}_{i+1} \bar{T}_{i+1,i}) \bar{U}_i^{-1} \bar{q}_i + \text{LRE}$$

$$= \bar{r}_i - (A\bar{V}_i - \bar{V}_{i+1} \bar{T}_{i+1,i}) \bar{U}_i^{-1} \bar{q}_i + \text{LRE}$$

Computed residual tends to zero

Inexact Lanczos relation ("gap on \bar{V}_{i+1}") determines maximal attainable accuracy
Basis vector recurrences in finite precision \(p(l) \)-CG

\[
\bar{v}_{i+1} = \left(\bar{z}_{i+1} - \sum_{j=i-2l+1}^{i} \bar{g}_{j,i+1} \bar{v}_i \right) / \bar{g}_{i+1,i+1} + \xi_{i+1}^{\bar{v}}, \quad \Leftrightarrow \quad \bar{Z}_i = \bar{V}_i \bar{G}_i + \Xi_i^{\bar{v}} \quad (1)
\]

\[
\bar{z}_{i+1} = (A\bar{Z}_i - \bar{\gamma}_{i-1} \bar{Z}_i - \bar{\delta}_{i-l} \bar{Z}_{i-1}) / \bar{\delta}_{i-l} + \xi_{i+1}^{\bar{z}}, \quad \Leftrightarrow \quad A\bar{Z}_i = \bar{Z}_{i+1} \bar{B}_{i+1,i} + \Xi_i^{\bar{z}} \quad (2)
\]

and the finite precision coefficient relation \(\bar{G}_{i+1} \bar{B}_{i+1,i} = \bar{T}_{i+1,i} \bar{G}_i \) allow to compute the gap on the basis \(\bar{V}_{i+1} \) as

\[
A\bar{V}_i - \bar{V}_{i+1} \bar{T}_{i+1,i} \overset{(1)}{=} A\bar{Z}_i \bar{G}_i^{-1} - \bar{Z}_{i+1} \bar{G}_{i+1,i}^{-1} \bar{T}_{i+1,i} - A\Xi_i^{\bar{v}} \bar{G}_i^{-1} + \Xi_{i+1}^{\bar{v}} \bar{G}_{i+1,i}^{-1} \bar{T}_{i+1,i} \]

\[
\overset{(2)}{=} (A\bar{Z}_i - \bar{Z}_{i+1} \bar{B}_{i+1,i} - A\Xi_i^{\bar{v}} + \Xi_{i+1}^{\bar{v}} \bar{B}_{i+1,i}) \bar{G}_i^{-1} \]

\[
\overset{(3)}{=} (\Xi_i^{\bar{z}} - A\Xi_i^{\bar{v}} + \Xi_{i+1}^{\bar{v}} \bar{B}_{i+1,i}) \bar{G}_i^{-1}.
\]

Amplification of local rounding errors possible, depending on \(\bar{G}_i^{-1} \).

Cornelis et al. (2018)
Pipelined Conjugate Gradients

Analyzing deep ℓ-length pipelined CG

- The norm $\|\tilde{G}^{-1}_i\|_{\text{max}}$ quantifies the impact of rounding error amplification on attainable accuracy in p(ℓ)-CG.

- The Cholesky factorization $Z_i^T Z_i = G_i^T G_i$ relates the conditioning of G_i and the auxiliary basis Z_i; numerical stability depends on the polynomial $P_{\ell}(A)$.

Countermeasures against error propagation

Residual replacement in p-CG by Ghysels et al.

- Replace $\bar{r}_i = \text{fl}(b - A\bar{x}_i)$, $\bar{w}_i = \text{fl}(A\bar{r}_i)$, $\bar{s}_i = \text{fl}(A\bar{p}_i)$, $\bar{z}_i = \text{fl}(A\bar{s}_i)$ in selected iterations
- Automated procedure based on estimate $\|b - A\bar{x}_i - \bar{r}_i\|$ (computed inexpensively)
 - Replace sufficiently often such that residual gap remains small
 - Don’t replace if $\|\bar{r}_i\|$ is small, which may cause delay of convergence

Speedup over single-node CG (12-240 cores) Accuracy vs. total time spent (240 cores)
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

Introduce l auxiliary bases

$$Z^{(0)}_{i+1} = [v_0, \ldots v_i], \quad Z^{(1)}_{i+1} = [z^{(1)}_0, \ldots z^{(1)}_i], \quad \ldots , \quad Z^{(l)}_{i+1} = [z_0, \ldots z_i],$$

and replace the multi-term recurrence relation for v_{i-l+1} ($\sim 2l$ terms) by $l + 1$ coupled three-term recurrence relations

$$\begin{align*}
v_{i-l+1} &= (z^{(1)}_{i-l+1} + (\sigma_0 - \gamma_{i-l})v_{i-l} - \delta_{i-l-1}v_{i-l-1})/\delta_{i-l}, \\
z^{(1)}_{i-l+2} &= (z^{(2)}_{i-l+2} + (\sigma_1 - \gamma_{i-l})z^{(1)}_{i-l+1} - \delta_{i-l-1}z^{(1)}_{i-l})/\delta_{i-l}, \\
&\vdots \\
z^{(l-1)}_{i} &= (z_{i} + (\sigma_{l-1} - \gamma_{i-l})z^{(l-1)}_{i-1} - \delta_{i-l-1}z^{(l-1)}_{i-2})/\delta_{i-l}, \\
z_{i+1} &= (Az_{i} - \gamma_{i-l}z_{i} - \delta_{i-l-1}z_{i-1})/\delta_{i-l}. & \quad \leftarrow \text{1 SpMV}
\end{align*}$$

This modification causes (almost) no overhead

- the computational cost (#SpMVs and #axpy’s) is identical to before,
- the storage cost increases by only $l - 2$ vectors.
Introduce l auxiliary bases

$$
\bar{Z}_{i+1}^{(0)} = [\bar{v}_0, \ldots, \bar{v}_i], \quad \bar{Z}_{i+1}^{(1)} = [\bar{Z}_0^{(1)}, \ldots, \bar{Z}_i^{(1)}], \quad \ldots, \quad \bar{Z}_{i+1}^{(l)} = [\bar{Z}_0, \ldots, \bar{Z}_i],
$$

and replace the multi-term recurrence relation for \bar{v}_{i-l+1} ($\sim 2l$ terms) by $l + 1$ coupled three-term recurrence relations that all introduce local rounding errors

$$
\begin{align*}
\bar{v}_{i-l+1} &= (\bar{Z}_{i-l+1}^{(1)} + (\sigma_0 - \bar{\gamma}_{i-l})\bar{v}_{i-l} - \bar{\delta}_{i-l-1} \bar{v}_{i-l-1})/\bar{\delta}_{i-l} + \xi_{i-l+1}^{(0)}, \\
\bar{Z}_{i-l+2}^{(1)} &= (\bar{Z}_{i-l+2}^{(2)} + (\sigma_1 - \bar{\gamma}_{i-l})\bar{Z}_{i-l+1}^{(1)} - \bar{\delta}_{i-l-1} \bar{Z}_{i-l}^{(1)})/\bar{\delta}_{i-l} + \xi_{i-l+2}^{(1)}, \\
&\vdots \\
\bar{Z}_{i}^{(l-1)} &= (\bar{Z}_{i} + (\sigma_{l-1} - \bar{\gamma}_{i-l})\bar{Z}_{i-l}^{(l-1)} - \bar{\delta}_{i-l-1} \bar{Z}_{i-2}^{(l-1)})/\bar{\delta}_{i-l} + \xi_{i}^{(l-1)}, \\
\bar{Z}_{i+1} &= (A\bar{Z}_{i} - \bar{\gamma}_{i-l} \bar{Z}_{i} - \bar{\delta}_{i-l-1} \bar{Z}_{i-1})/\bar{\delta}_{i-l} + \xi_{i+1}^{(l)}.
\end{align*}
$$
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

INFINITE PRECISION ARITHMETIC

Introduce l auxiliary bases

\[
\bar{Z}_{i+1}^{(0)} = [\bar{v}_0, \ldots, \bar{v}_i], \quad \bar{Z}_{i+1}^{(1)} = [\bar{z}_0^{(1)}, \ldots, \bar{z}_i^{(1)}], \quad \ldots, \quad \bar{Z}_{i+1}^{(l)} = [\bar{z}_0, \ldots, \bar{z}_i],
\]

and replace the multi-term recurrence relation for \bar{v}_{i-l+1} ($\sim 2l$ terms) by $l + 1$ coupled three-term recurrence relations that are written in matrix notation as

\[
\begin{align*}
\bar{Z}_{2:i-l+1}^{(1)} &= \bar{Z}_{i-l+1}^{(0)} \bar{T}_{i-l+1,i-1} - \sigma_0 \bar{Z}_{i-l}^{(0)} - \Xi_{i-l+1}^{(0)} \bar{\Delta}_{i-l+1,i-1}, \\
\bar{Z}_{2:i-l+2}^{(2)} &= \bar{Z}_{i-l+2}^{(1)} \bar{T}_{i-l+2,i-1} - \sigma_1 \bar{Z}_{i-l+1}^{(1)} - \Xi_{i-l+2}^{(1)} \bar{\Delta}_{i-l+2,i-1}, \\
&\vdots \\
\bar{Z}_{2:i}^{(l)} &= \bar{Z}_{i-1}^{(l-1)} \bar{T}_{i-1,i-1} - \sigma_{l-1} \bar{Z}_{i-1}^{(l-1)} - \Xi_{i-1}^{(l-1)} \bar{\Delta}_{i,i-1}, \\
A\bar{Z}_{i}^{(l)} &= \bar{Z}_{i+1}^{(l)} \bar{T}_{i+1,i} - \Xi_{i+1}^{(l)} \bar{\Delta}_{i+1,i}.
\end{align*}
\]

This modification causes very limited overhead

\longrightarrow computational cost (= SpMVs and axpy's) is identical to before,

\longrightarrow storage costs increase slightly, but only by $l - 2$ vectors.
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

in finite precision arithmetic

Introduce \(l \) auxiliary bases

\[
\tilde{Z}_{i+1}^{(0)} = [\tilde{v}_0, \ldots \tilde{v}_i], \quad \tilde{Z}_{i+1}^{(1)} = [\tilde{z}_0^{(1)}, \ldots \tilde{z}_i^{(1)}], \quad \ldots \quad \tilde{Z}_{i+1}^{(l)} = [\tilde{z}_0, \ldots \tilde{z}_i],
\]

and replace the multi-term recurrence relation for \(\tilde{v}_{i-l+1} \) (\(\sim 2l \) terms) by \(l+1 \) coupled three-term recurrence relations that are written in matrix notation as

\[
\begin{align*}
\tilde{Z}_{2:i-l+1}^{(1)} &= \tilde{Z}_{i-l+1}^{(0)} \tilde{T}_{i-l+1,i-l} - \sigma_0 \tilde{Z}_{i-l}^{(0)} - \Xi_{i-l+1,i-l}, \\
\tilde{Z}_{2:i-l+2}^{(2)} &= \tilde{Z}_{i-l+2}^{(1)} \tilde{T}_{i-l+2,i-l+1} - \sigma_1 \tilde{Z}_{i-l+1}^{(1)} - \Xi_{i-l+2,i-l+1}, \\
&\vdots \\
\tilde{Z}_{2:i}^{(l)} &= \tilde{Z}_{i}^{(l-1)} \tilde{T}_{i,i-1} - \sigma_{l-1} \tilde{Z}_{i-1}^{(l-1)} - \Xi_{i}^{(l-1)} \Delta_{i,i-1}, \\
A\tilde{Z}_{i}^{(l)} &= \tilde{Z}_{i+1}^{(l)} \tilde{T}_{i+1,i} - \Xi_{i+1}^{(l)} \Delta_{i+1,i}.
\end{align*}
\]

For \(\tilde{Z}_{i+1}^{(l)} \) the gap is given by

\[
A\tilde{Z}_{i}^{(l)} - \tilde{Z}_{i+1}^{(l)} \tilde{T}_{i+1,i} = -\Xi_{i+1}^{(l)} \Delta_{i+1,i}
\]
Introduce l auxiliary bases

$$Z_{i+1}^{(0)} = [\bar{v}_0, \ldots \bar{v}_i], \quad Z_{i+1}^{(1)} = [\bar{z}_0^{(1)}, \ldots \bar{z}_i^{(1)}], \quad \ldots \quad , \quad Z_{i+1}^{(l)} = [\bar{z}_0, \ldots \bar{z}_i],$$

and replace the multi-term recurrence relation for $\bar{v}_{i-1} (\sim 2l$ terms) by $l + 1$ coupled three-term recurrence relations that are written in matrix notation as

$$\begin{cases}
Z_{2:i-1+l+1}^{(1)} = Z_{i-l+1}^{(0)} T_{i-l+1,i-l} - \sigma_0 Z_{i-l+1}^{(0)} - \Xi_{i-l+1,i-l}, \\
Z_{2:i-1+l+2}^{(2)} = Z_{i-l+2}^{(1)} T_{i-l+2,i-l+1} - \sigma_1 Z_{i-l+1}^{(1)} - \Xi_{i-l+2,i-l+1}, \\
\vdots \\
Z_{2:i}^{(l)} = Z_{i-l}^{(l-1)} T_{i,i-1} - \sigma_{l-1} Z_{i-1}^{(l-1)} - \Xi_{i,i-1}, \\
A Z_{i}^{(l)} = Z_{i+1}^{(l)} T_{i+1,i} - \Xi_{i+1,i} \bigl(\Delta_{i+1,i} \bigr).
\end{cases}$$

For $\bar{Z}_{i+1}^{(l-1)}$ the gap is given by $\bar{\Delta}_{i+1,i}$ diagonal matrix

$$A \bar{Z}_{i}^{(l-1)} - \bar{Z}_{i+1}^{(l-1)} \bar{T}_{i+1,i} = (A \bar{Z}_{i}^{(l)} - \bar{Z}_{i+1}^{(l)} \bar{T}_{i+1,i}) \bar{\Delta}_{i}^{+} + \Xi_{i} - \Xi_{i+1}^{(l-1)} \bar{\Delta}_{i+1,i}.$$
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

INFINITE PRECISION ARITHMETIC

Introduce l auxiliary bases

$$
\bar{Z}^{(0)}_{i+1} = [\bar{v}_0, \ldots, \bar{v}_i], \quad \bar{Z}^{(1)}_{i+1} = [\bar{z}^{(1)}_{i+1}, \ldots, \bar{z}^{(1)}_i], \quad \ldots, \quad \bar{Z}^{(l)}_{i+1} = [\bar{z}_0, \ldots, \bar{z}_i],
$$

and replace the multi-term recurrence relation for \bar{v}_{i-l+1} ($\sim 2l$ terms) by $l+1$ coupled three-term recurrence relations that are written in matrix notation as

$$
\begin{aligned}
\bar{Z}^{(1)}_{2:i-l+1} &= \bar{Z}^{(0)}_{i-l+1} \bar{T}_{i-l+1,i-l} - \sigma_0 \bar{Z}^{(0)}_{i-l} - \Xi^{(0)}_{i-l+1} \bar{\Delta}_{i-l+1,i-l}, \\
\bar{Z}^{(2)}_{2:i-l+2} &= \bar{Z}^{(1)}_{i-l+2} \bar{T}_{i-l+2,i-l+1} - \sigma_1 \bar{Z}^{(1)}_{i-l+1} - \Xi^{(1)}_{i-l+2} \bar{\Delta}_{i-l+2,i-l+1}, \\
&\vdots \\
\bar{Z}^{(l)}_{2:i} &= \bar{Z}^{(l-1)}_{i,i-1} \bar{T}_{i,i-1} - \sigma_{l-1} \bar{Z}^{(l-1)}_{i-1} - \Xi^{(l-1)}_{i} \bar{\Delta}_{i,i-1}, \\
A \bar{Z}^{(l)}_{i+1} &= \bar{Z}^{(l)}_{i+1} \bar{T}_{i+1,i} - \Xi^{(l)}_{i+1} \bar{\Delta}_{i+1,i}.
\end{aligned}
$$

For general $\bar{Z}^{(k)}_{i+1}$ the gap is given by $k \in \{0, 1, \ldots, l - 1\}$

$$
A \bar{Z}^{(k)}_{i} - \bar{Z}^{(k)}_{i+1} \bar{T}_{i+1,i} = (A \bar{Z}^{(k+1)}_{i} - \bar{Z}^{(k+1)}_{i+1} \bar{T}_{i+1,i}) \bar{\Delta}^+_{i,i} + \Xi^{(k+1)}_{i} - \Xi^{(k)}_{i+1} \bar{\Delta}_{i+1,i}.
$$
Introduce \(l \) auxiliary bases

\[
\bar{Z}_{i+1}^{(0)} = [\bar{v}_0, \ldots, \bar{v}_i], \quad \bar{Z}_{i+1}^{(1)} = [\bar{z}_0^{(1)}, \ldots, \bar{z}_i^{(1)}], \quad \ldots, \quad \bar{Z}_{i+1}^{(l)} = [\bar{z}_0, \ldots, \bar{z}_i],
\]

and replace the multi-term recurrence relation for \(\bar{v}_{i-l+1} \) (\(\sim 2l \) terms) by \(l + 1 \) coupled three-term recurrence relations that are written in matrix notation as

\[
\begin{align*}
\bar{Z}_{2:i-l+1}^{(1)} & = \bar{Z}_{i-l+1}^{(0)} \bar{T}_{i-l+1,i-l} - \sigma_0 \bar{Z}_{i-l+1}^{(0)} - \Xi_{i-l+1,i-l+1}^{(0)} \Delta_{i-l+1,i-l}, \\
\bar{Z}_{2:i-l+2}^{(2)} & = \bar{Z}_{i-l+2}^{(1)} \bar{T}_{i-l+2,i-l+1} - \sigma_1 \bar{Z}_{i-l+2}^{(1)} - \Xi_{i-l+2,i-l+1}^{(1)} \Delta_{i-l+2,i-l+1}, \\
& \vdots \\
\bar{Z}_{2:i}^{(l)} & = \bar{Z}_{i}^{(l-1)} \bar{T}_{i,i-1} - \sigma_{l-1} \bar{Z}_{i-1}^{(l-1)} - \Xi_{i}^{(l-1)} \Delta_{i,i-1}, \\
\bar{A} \bar{Z}_{i}^{(l)} & = \bar{Z}_{i+1}^{(l)} \bar{T}_{i+1,i} - \Xi_{i+1,i}^{(l)} \Delta_{i+1,i}.
\end{align*}
\]

Accumulation of local rounding errors, but no amplification, similar to classic CG. The method thus attains the same accuracy as classic CG!

C. et al. (2019)
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

Classic CG

![Graph showing residual norm vs iterations for Classic CG](image-url)
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

Pipelined CG by Ghysels et al.
Countermeasures against error propagation
Stable recurrences for deep ℓ-length pipelined CG

Pipelined p(1)-CG “unstable”
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

Pipelined p(2)-CG “unstable”
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

Pipelined p(5)-CG “unstable”
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

Pipelined p(1)-CG “stable”
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG
Countermeasures against error propagation

Stable recurrences for deep ℓ-length pipelined CG

Pipelined p(3)-CG “stable”
Countermeasures against error propagation
Stable recurrences for deep ℓ-length pipelined CG

Pipelined p(5)-CG “stable”
Numerical experiments

Deep ℓ-length pipelined CG

- Strong scaling on up to 32 14-core Intel E5-2680v4 Broadwell CPU nodes
- EDR Infiniband, Intel MPI 2018v3, PETSc v3.8.3, KSP ex2
- 2D 5-pt Poisson, 3 million unknowns, 1,500 iterations, no preconditioner

Speedup (over CG on 1 node)

![Speedup graph](image)

Accuracy (vs. total CPU time)

![Accuracy graph](image)
Numerical experiments

Deep ℓ-length pipelined CG

- Strong scaling on up to 128 14-core Intel E5-2680v4 Broadwell CPU nodes
- EDR Infiniband, Intel MPI 2018v3, PETSc v3.8.3, SNES ex48
- 3D Hydrostatic Ice Sheet Flow, 2.25 million FE, Newton-Krylov solver, 7 Newton steps, 4,500 total inner iter, block Jacobi preconditioner, inner tolerance: 1.0×10^{-10}, outer tolerance: 1.0×10^{-8}

Speedup (over CG on 1 node)

![Graph showing speedup over CG on 1 node](image)
Numerical experiments

Deep ℓ-length pipelined CG

- Strong scaling on up to 128 14-core Intel E5-2680v4 Broadwell CPU nodes
- EDR Infiniband, Intel MPI 2018v3, PETSc v3.8.3, SNES ex48
- 3D Hydrostatic Ice Sheet Flow, 2.25 million FE, Newton-Krylov solver, 7 Newton steps, 4,500 total inner iter, block Jacobi preconditioner, inner tolerance: 1.0×10^{-10}, outer tolerance: 1.0×10^{-8}

Accuracy (vs. total number of inner iterations)
Conclusions

Takeaway messages

- Pipelined Krylov subspace methods are a promising approach
 - *Hide communication latency* behind computational kernels by adding auxiliary variables and recurrence relations
 - \(p(\ell)\)-CG: Deep pipelines allow to hide global reduction phases behind multiple SpMV’s/iterations
 - *Asynchronous implementation*: dot-products can take multiple iterations to complete; global reductions are implemented in an overlapping manner
 - *Improved scaling* over classic KSMs in strong scaling limit, where global reduction latencies rise and volume of computations per core diminishes

- The finite precision behavior of communication avoiding- and hiding Krylov subspace algorithms should be carefully monitored
 - *Local rounding error analysis* allows to explain loss of attainable accuracy

- Insights to construct a more stable method are obtained from the analysis
 - *Fully restore attainable accuracy* in \(p(I)\)-CG at *no increase in computational costs or storage costs* through residual replacement-type techniques
 - The issue of *loss of orthogonality* has not been addressed by the modifications to \(p(I)\)-CG proposed in this talk
Conclusions

Contributions to PETSc

Open source HPC linear algebra toolkit: https://www.mcs.anl.gov/petsc/

- KSPPGMRES: pipelined GMRES (thanks to J. Brown)
- KSPPPIPECG: pipelined Conjugate Gradients
- KPPPPPIPECGR: pipelined Conjugate Residuals
- KSPPPIPECGRR: pipelined CG with automated residual replacement
- KSPPPIPELCEG: pipelined CG with deep pipelines
- KSPPGROPPCGB: asynchronous CG variant by W. Gropp and collaborators
- KSPPPIPEBCGS: pipelined BiCGStab

We are soliciting for feedback from your applications!
Related publications

- siegfried.cools@uantwerp.be

- jeffrey.cornelis@uantwerp.be

- wim.vanroose@uantwerp.be

Thank you!

