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Motivation

Exascale systems projection

• Data movement (communication) is much more expensive than flops
(computation) in terms of both time and energy
• Reducing time spent moving data/waiting for data will be essential for

exascale applications

⇒ Communication avoiding / Communication hiding
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Motivation

Communication hiding vs. communication avoiding

Communication cost has motivated several approaches to reducing global
synchronization cost in Krylov subspace methods:

Avoiding communication: s-step Krylov subspace methods ∗

[A. Chronopoulous, J. Demmel, M. Hoemmen, E. Carson, L. Grigori, J. Erhel, . . . ]

• Compute iterations in blocks of s (change of Krylov subspace basis)

• Reduces number of synchronizations per iteration by a factor of O(s)

Hiding communication: Pipelined Krylov subspace methods ∗

[P. Ghysels, W. Vanroose, S. C., P. Sanan, B. Gropp, I. Yamazaki, . . . ]

• Introduce auxiliary vectors to decouple SpMV and inner products

• Enables overlapping of communication and computation

∗
Both equivalent to corresponding Krylov subspace methods in exact arithmetic
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Krylov subspace methods

General concepts

Iteratively improve an approximate solution of linear system Ax = b,

xi ∈ x0 +Ki (A, r0) = x0 + span{r0,Ar0,A
2r0, . . . ,A

i−1r0}

I minimize certain error measure
over Krylov subspace Ki (A, r0)

I Krylov subspace methods:

Conjugate Gradients (CG),
Lanczos, GMRES, MinRES,
BiCG, CGS, BiCGStab, CGLS, ...

I Preconditioners:

AMG & GMG, Domain
Decomposition Methods, FETI,
BDDC, Incomplete factorization,
Physics based preconditioners, ...

I usually in combination with sparse
linear algebra/stencil application

I three algorithmic building blocks:
i. dot-product

• O(N) flops
• global synchronization

(MPI Allreduce)

ii. SpMV
• O(nnz) flops
• neighbor communication only

iii. axpy
• O(N) flops
• no communication
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Krylov subspace methods

Classical CG

Hestenes & Stiefel (1952)

i. dot-products
I 2 global reductions: latency dominated
I scales as log2(#partitions)

ii. SpMV
I computationally expensive
I good scaling (minor comm.)

iii. axpy’s
I vector operations (recurrence relations)
I perfect scaling (no comm.)
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Krylov subspace methods

Global reduction latency

T. Hoeffler, T. Schneider and A. Lumsdaine, SC10, 2010
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Krylov subspace methods

Pipelined CG

Ghysels & Vanroose (2014)

Pipelined CG = re-engineered version of
CG for improved parallel performance

I Re-ordering of operations requires
new auxiliary variables:
si = Api , wi = Ari , zi = Asi

I Derive recurrence relations to avoid
computing additional SpMV’s, e.g.:

si := Api

pi = ri + βipi−1

⇓

si = wi + βi si−1

with wi := Ari
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Krylov subspace methods

Pipelined CG

i. Communication avoiding:
dot-products grouped in one global
reduction phase per iteration

ii. Communication hiding:
overlap global synchronization with
SpMV (+ Prec) computation

iii. No free lunch: Additional recurrence
relations, i.e. axpy’s, for auxiliary var’s
si = Api , wi = Ari , zi = Asi
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Krylov subspace methods

Pipelined KSM with deep pipeline

Classic KSM:

Pipelined KSM:

Deep pipelined KSM:

Consider the Arnoldi relation

AVi = Vi+1Hi+1,i

with Vi the Krylov subspace basis and
Hi+1,i upper Hessenberg. Introduce the
auxiliary vectors Zi+1 = [z0, z1, . . . , zi ] as

zj :=


v0 j = 0,

Pj(A)v0 0 < j ≤ l ,

Pl(A)vj−l j > l ,

with polynomials Pl(t) of fixed order l ,
where l is the pipeline length

Pl(t) :=
l−1∏
j=0

(t − σj).
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Krylov subspace methods

Pipelined KSM with deep pipeline

Writing the Arnoldi relation AVi = Vi+1Hi+1,i for basis vector vj−l and applying
Pl(A) to both sides, we obtain recurrence relations for zj :

vj−l =
Avj−l−1 −

∑j−l−1
k=0 hk,j−l−1vk

hj−l,j−l−1
⇒ zj =

Azj−1 −
∑j−l−1

k=0 hk,j−l−1zk+l

hj−l,j−l−1
.

This implies an Arnoldi-like relation for the auxiliary variables

AZi = Zi+1Bi+1,i

with

Bi+1,i :=



σ0

1
. . .

. . . σl

1 h0,0 · · · h0,i−l

h1,0 h1,i−l

. . .
.
.
.

hi+1−1,i−l


.
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Krylov subspace methods

Pipelined KSM with deep pipeline

Basis transformation: Zi and Vi both span the i-th Krylov subspace, thus

Zi = ViGi ,

where Gi is an upper triangular matrix.

Recursive calculation of entries Gi :

gj,k−1 = (zk−1, vj) =

(
zk−1,

zj −
∑j−1

m=0 gm,jvm

gj,j

)

=
(zk−1, zj)−

∑j−1
m=0 gm,jgm,k−1

gj,j
(∀j = 0, 1, . . . , k − 1)

Diagonal element:

gj,j =
(zj , zj)−

∑j−1
m=0 gm,jgm,j

gj,j
⇒ gj,j =

√√√√(zj , zj)−
j−1∑
m=0

g 2
m,j .

Note that this can lead to breakdowns.
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Krylov subspace methods

Pipelined KSM with deep pipeline

Recursive calculation of the Hessenberg matrix Hi+1,i :

Hk+1,k = V T
k+1AVk

= V T
k+1 AZk︸︷︷︸G−1

k using Zk = VkGk

= V T
k+1Zk+1︸ ︷︷ ︸Bk+1,kG

−1
k using AZk = Zk+1Bk+1,k

= Gk+1Bk+1,kG
−1
k using Gk+1 = V T

k+1Zk+1

=

(
Gk g:,k+1

0 gk+1,k+1

)(
Bk,k−1 b:,k

0 bk+1,k

)(
Gk g:,k+1

0 gk+1,k+1

)−1

=

(
GkBk,k−1 Gkb:,k + g:,k+1bk+1,k

0 gk+1,k+1bk+1,k

)(
G−1

k−1 −G−1
k−1g:,kg

−1
k,k

0 g−1
k,k

)
=

(
GkBk,k−1G

−1
k−1

(
−GkBk,k−1G

−1
k−1g:,k + Gkb:,k + g:,k+1bk+1,k

)
g−1
k,k

0 gk+1,k+1bk+1,kg
−1
k,k

)
=

(
Hk,k−1 (Gkb:,k + g:,k+1bk+1,k − Hk,k−1g:,k) g−1

k,k

0 gk+1,k+1bk+1,kg
−1
k,k

)
Hk,k−1Gk−1 = GkBk,k−1
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Krylov subspace methods

Pipelined GMRES with deep pipeline

Ghysels & Vanroose (2013)

← SpMV Azi

← scalar update Gi

← scalar update Hi+1,i

← axpy’s vi−l , zi+1

← dot-prs (zi+1, vj),
(zi+1, zj)
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Krylov subspace methods

Pipelined GMRES with deep pipeline

Ghysels & Vanroose (2013)

Results of dot-
products needed
l iterations later
to update G:,i−l+1
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← scalar update Gi
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Krylov subspace methods

Pipelined CG with deep pipeline

In case of an SPD matrix A, the following observations simplify the algorithm:

I Hi+1,i is tridiagonal

I Gi has a (2l + 1)-nonzero diagonal band structure.
E.g. l = 2:

Cornelis et al. (2018)

I The solution xi can be constructed using a recursively computed search
direction pi , instead of using the entire Krylov basis Vi :

pj = (vj − δj−1pj−1)/ηj , xj = xj−1 + ξj−1pj−1.

Liesen & Strakos, Krylov Subspace Methods (2012)
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Krylov subspace methods

Pipelined CG with deep pipeline

Cornelis et al. (2018)

← SpMV Azi

← scalar update Gi

← scalar update Hi+1,i

← axpy’s vi−l+1, zi+1

← dot-prs (zi+1, vj),
(zi+1, zj)
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Krylov subspace methods

Pipelined CG with deep pipeline

Cornelis et al. (2018)

← SpMV Azi

← scalar update Gi

← scalar update Hi+1,i

← axpy’s vi−l+1, zi+1

← dot-prs (zi+1, vj),
(zi+1, zj)

Shorter recurrences
compared to p(l)-GMRES

• computation: 2l + 2 axpy’s

• storage: 3l + 2 basis vectors

Fewer dot-products
compared to p(l)-GMRES

• 2l + 1 band structure of Gi
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Krylov subspace methods

Parallel performance of pipelined CG

Strong scaling experiments - PETSc 3.6.3/3.7.6 library - MPICH 3.1.3/3.3a2

Two 6-core Intel Xeon X5660 Nehalem 2.80 GHz
per node - 2D Poisson (5pt) - 1 million unknowns

Two 14-core Intel E5-2680v4 Broadwell 2.40 GHz
per node - 2D Poisson (5pt) - 3 million unknowns
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Krylov subspace methods

Overview of pipelined Krylov methods

I Pipelined GMRES Ghysels et al. (2013)

• depth-one pipeline: p-GMRES
• deep pipelines: p(`)-GMRES: compute ` new Krylov subspace basis vectors

(SpMV’s) during global communication and orthogonalize after ` iterations.

Vi−`+1 = [v0, v1, . . . , vi−`]

Zi+1 = [z0, z1, . . . , zi−`, zi−`+1, . . . , zi︸ ︷︷ ︸
`

]

I Pipelined CG
• depth-one pipeline: p-CG Ghysels et al. (2014)

• deep pipelines: p(`)-CG Cornelis et al. (2018)

I Pipelined BiCGStab C. & Vanroose (2017)

I Pipelined Block-CG (work in progress)

I Pipelined BiCG/CGLS/LSQR (work in progress)

I Preconditioned pipelined variants

I Augmented/deflated/hybrid s-step pipelined methods Yamazaki et al. (2017)
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Pipelined Krylov subspace methods

Numerical stability in finite precision

Pipelined KSM produce identical iterates to classic KSM in exact arithmetic, but
finite precision computations introduce roundoff errors. This has two effects:

1. Delay of convergence, caused by loss of basis orthogonality
2. Loss of attainable accuracy, caused by local rounding errors in recurrences

Severity of loss of attainable accuracy depends strongly on

I pipeline length l
I system size N
I choice of polynomial Pl(A)

18/32



Pipelined Krylov subspace methods

Numerical stability in finite precision

Pipelined KSM produce identical iterates to classic KSM in exact arithmetic, but
finite precision computations introduce roundoff errors. This has two effects:

1. Delay of convergence, caused by loss of basis orthogonality
2. Loss of attainable accuracy, caused by local rounding errors in recurrences

Severity of loss of attainable accuracy depends strongly on

I pipeline length l
I system size N
I choice of polynomial Pl(A)

18/32



Pipelined Krylov subspace methods

Rounding error behavior in CG

Rounding errors due to recurrence relations for residual and auxiliary variables:

x̄i+1 = x̄i + ᾱi p̄i + ξxi+1, r̄i+1 = r̄i − ᾱiAp̄i + ξri+1.

Residual deviates from the true residual b − Ax̄i+1 in finite precision:

fi+1 = (b − Ax̄i+1)− r̄i+1

= b − A(x̄i + ᾱi p̄i + ξxi+1)− (r̄i − ᾱiAp̄i + ξri+1)

= fi − Aξxi+1 − ξri+1

= f0 −
i∑

k=0

(Aξxk+1 + ξrk+1) .

Sleijpen & van der Vorst (1995)

Greenbaum (1997)

Matrix notation: Fi+1 = [f0, . . . , fi ], Θx
i = [0, ξx1 , . . . , ξ

x
i−1], Θr

i = [f0, ξ
r
1, . . . , ξ

r
i−1]

Fi+1 = −(AΘx
i+1 + Θr

i+1)Ui+1,

with Ui+1 an upper triangular matrix with all entries one.

Only accumulation of local rounding errors in classical CG, no amplification.

Gutknecht & Strakos (2000)

van der Vorst & Ye (2000)
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= fi − Aξxi+1 − ξri+1

= f0 −
i∑

k=0

(Aξxk+1 + ξrk+1) .
Sleijpen & van der Vorst (1995)

Greenbaum (1997)

Matrix notation: Fi+1 = [f0, . . . , fi ], Θx
i = [0, ξx1 , . . . , ξ

x
i−1], Θr

i = [f0, ξ
r
1, . . . , ξ

r
i−1]

Fi+1 = −(AΘx
i+1 + Θr

i+1)Ui+1,

with Ui+1 an upper triangular matrix with all entries one.

Only accumulation of local rounding errors in classical CG, no amplification.

Gutknecht & Strakos (2000)

van der Vorst & Ye (2000)
19/32



Pipelined Krylov subspace methods

Rounding error behavior in pipelined CG

Additional recurrence relations in pipelined CG all introduce local rounding errors:

x̄i+1 = x̄i + ᾱi p̄i + ξxi+1, s̄i = w̄i + β̄i s̄i−1 + ξsi ,

r̄i+1 = r̄i − ᾱi s̄i + ξri+1, w̄i+1 = w̄i − ᾱi z̄i + ξwi+1,

p̄i = r̄i + β̄i p̄i−1 + ξpi , z̄i = Aw̄i + β̄i z̄i−1 + ξzi ,

Residual gap is coupled to the gaps on the other auxiliary variables:

fj = (b − Ax̄j )− r̄j = f0 −
j−1∑
k=0

ᾱkgk −
j−1∑
k=0

(
Aξxk+1 + ξ

r
k+1

)
,

gj = Ap̄j − s̄j =

 j∏
k=1

β̄k

 g0 +

j∑
k=1

 j∏
l=k+1

β̄l

(Aξp
k
− ξsk

)
+

j∑
k=1

 j∏
l=k+1

β̄l

 hk ,

hj = Ar̄j − w̄j = h0 −
j−1∑
k=0

ᾱk ek +

j−1∑
k=0

(
Aξrk+1 − ξ

w
k+1

)
,

ej = As̄j − z̄j =

 j∏
k=1

β̄k

 e0 +

j∑
k=1

 j∏
l=k+1

β̄l

(Aξsk − ξzk) .
Amplification of local rounding errors possible, depending on ᾱi ’s and β̄i ’s.

Carson et al. (2017)

C. & Vanroose (2017)
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p̄i = r̄i + β̄i p̄i−1 + ξpi , z̄i = Aw̄i + β̄i z̄i−1 + ξzi ,

Residual gap is coupled to the gaps on the other auxiliary variables:

fj = (b − Ax̄j )− r̄j = f0 −
j−1∑
k=0
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Residual gap is coupled to the gaps on the other auxiliary variables:

fj = (b − Ax̄j )− r̄j = f0 −
j−1∑
k=0

ᾱkgk −
j−1∑
k=0

(
Aξxk+1 + ξ

r
k+1

)
,

gj = Ap̄j − s̄j =

 j∏
k=1

β̄k

 g0 +

j∑
k=1

 j∏
l=k+1

β̄l

(Aξp
k
− ξsk

)
+

j∑
k=1

 j∏
l=k+1

β̄l

 hk ,

hj = Ar̄j − w̄j = h0 −
j−1∑
k=0

ᾱk ek +

j−1∑
k=0

(
Aξrk+1 − ξ

w
k+1

)
,

ej = As̄j − z̄j =

 j∏
k=1

β̄k

 e0 +

j∑
k=1

 j∏
l=k+1

β̄l

(Aξsk − ξzk) .
Amplification of local rounding errors possible, depending on ᾱi ’s and β̄i ’s.

Carson et al. (2017)
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Pipelined Krylov subspace methods

Rounding error behavior in pipelined CG

Additional recurrence relations in pipelined CG all introduce local rounding errors:
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Matrix notation:

Fj+1 = (AΘx
j+1 + Θr

j+1)Uj+1 − Gj+1Aj+1

Gj+1 = (AΘp
j+1 + Θs

j+1)B−1
j+1 +Hj+1B̃−1

j+1

Hj+1 = (AΘu
j+1 + Θw

j+1)Uj+1 − Ej+1Aj+1

Ej+1 = (AΘq
j+1 + Θz

j+1)B−1
j+1

Note:

βi βi+1 . . . βj =
‖rj‖2

‖ri−1‖2
⇒ arbitrarily large in CG!



0 ᾱ0 ᾱ0 · · · ᾱ0
0 ᾱ1 · · · ᾱ1

. . .
.
.
.

0 ᾱj−1
0




1 β̄1 β̄1β̄2 · · · β̄1β̄2 . . . β̄j
1 β̄2 β̄2 . . . β̄j

. . .
.
.
.

1 β̄j
1


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x̄i+1 = x̄i + ᾱi p̄i + ξxi+1, s̄i = w̄i + β̄i s̄i−1 + ξsi ,
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Pipelined Krylov subspace methods

Rounding error behavior in p(l)-CG

True basis vector v̄j+1 satisfies:

AV̄j = V̄j+1H̄j+1,j + (V̄j+1 − V̄j+1)∆̄j+1,j

Computed basis vector v̄j+1 satisfies:

Z̄j = V̄j Ḡj + Θv
j

Computed basis vector z̄j+1 satisfies:

AZ̄j = Z̄j+1B̄j+1,j + Θz
j

Thus the basis vector gap Fj+1 = V̄j+1 − V̄j+1 can be calculated as

Fj+1 = (Θz̄
j Ḡ
−1
j − AΘv̄

j Ḡ
−1
j + Θv̄

j+1B̄j+1,j Ḡ
−1
j )∆̄−1

j+1,j

Amplification of local rounding errors possible, depending on Ḡ−1
j .

Carson & Demmel (2014)

C. (2018)
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j

Computed basis vector z̄j+1 satisfies:

AZ̄j = Z̄j+1B̄j+1,j + Θz
j

Thus the basis vector gap Fj+1 = V̄j+1 − V̄j+1 can be calculated as

Fj+1 = (Θz̄
j Ḡ
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−1
j + Θv̄

j+1B̄j+1,j Ḡ
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Pipelined Krylov subspace methods

Rounding error behavior in p(l)-CG
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Pipelined Krylov subspace methods

Rounding error behavior in p(l)-CG

residual history ‖b − Ax̄i‖2 ‖G−1
i ‖max for different l

Maximum norm ‖G−1
i ‖max provides a measure for the impact of local rounding

error propagation on maximal attainable accuracy in p(l)-CG

Rounding error analysis explains loss of attainable accuracy with respect to
I pipeline length l
I system size N
I choice of polynomial Pl(A)
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Pipelined Krylov subspace methods

Residual replacement in pipelined CG

• Idea: improve accuracy by replacing r̄i , s̄i , w̄i and z̄i by their true values in
selected iterations:

r̄i+1 = fl(b − Ax̄i+1), w̄i+1 = fl(Ar̄i+1), s̄i = fl(Ap̄i ), z̄i = fl(As̄i ).

van der Vorst & Ye (2000)

• Choose when to replace based on estimate of ‖fi‖ = ‖(b − Ax̄i )− r̄i‖;
replacement criterion:

‖fi−1‖ ≤ τ‖r̄i−1‖ and ‖fi‖ > τ‖r̄i‖ with τ =
√
ε.

I Replace sufficiently often such that ‖fi‖ remains small
I Don’t replace too often to limit additional computation cost of SpMV’s
I Don’t replace when ‖r̄i‖ is too small, which may cause delay of convergence

Sleijpen & van der Vorst (1996)

Strakos & Tichy (2002)

• Estimate of ‖fi‖ is computed at runtime (inexpensive). Accuracy is
improved to comparable level as classical CG method in many cases.

C. & Vanroose (2017)
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Pipelined Krylov subspace methods

Residual replacement in pipelined CG

I PETSc implementation using MPICH-3.1.3 communication

I Benchmark problem: 2D Laplacian model, 1,000,000 unknowns

I System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG Accuracy i.f.o. total time spent
(12-240 cores) (240 cores)
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Pipelined Krylov subspace methods

Numerically stable variant of p(l)-CG

Use idea similar to residual replacement
to improve stability: replace recurrence
for vj+1 by the Arnoldi relation:

Original p(l)-CG:

vj+1 =

zj+1 −
j∑

k=j−2l+1

gk,j+1vk

/gj+1,j+1

Stabilized p(l)-CG:

vj+1 = (Avj − γjvj − δj−1vj−1)/δj

Attainable accuracy is improved for all
pipeline lengths l , but extra SpMV
increases computation time

⇒ trade-off between numerical stability
and performance
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Conclusions and takeaways

Wrap-up of this talk

• Pipelined Krylov subspace methods are a promising approach to reduce
synchronization cost in linear solvers for large-scale problems

I By adding auxiliary variables and recurrences it is possible to hide
communication latency behind computational kernels

I Deep pipelines allow to hide global reductions behind multiple SpMV’s

I Asynchronous implementation: dot-products can take multiple iterations to
complete, in an overlapping manner

I Improved scaling over classic KSMs in strong scaling limit, where global
reduction latencies rise and volume of computations per core diminishes

• Finite precision behavior of communication reducing and hiding algorithms
should be carefully monitored!

I Rounding error analysis allows to explain observed loss of attainable accuracy

I Residual replacement -type techniques can be applied to improve numerical
stability, but at a (slight) increase in computational cost
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Conclusions and takeaways

Related work

• Work in progress (not covered in this talk):

I Impact of hard faults & soft-errors on pipelined Krylov subspace methods
(INRIA Bordeaux)

I Resilience of pipelined Krylov subspace methods to system noise
(UChicago/ETHZ/Rice/UIllinois)

I Pipelined Blocked Krylov subspace methods for systems with multiple rhs
(UAntwerp/INRIA Bordeaux)

I Pipelined Lanczos for eigenvalue calculation in graph partitioning algorithms
(LBNL)

• Many interesting open problems and challenges remain as we push toward
exascale-level computing!
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Conclusions and takeaways

Contributions to PETSc

Open source HPC linear algebra toolkit: https://www.mcs.anl.gov/petsc/

I KSPPGMRES: pipelined GMRES (thanks to J. Brown)

I KSPPIPECG: pipelined CG

I KSPPIPECGRR: pipelined CG with automated residual replacement

I KSPPIPELCG: pipelined CG with deep pipelines

I KPPPIPECR: pipelined conjugate residuals

I KSPGROPPCG: asynchronous CG variant by W. Gropp and collaborators

I KSPPIPEBCGS: pipelined BiCGStab

We are soliciting for feedback from your applications!
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Conclusions and takeaways

Our main publications

P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose, Hiding Global
Communication Latency in the GMRES Algorithm on Massively Parallel Machines
SIAM J. Sci. Comput., 35(1), pp. C48C71, 2013.

P. Ghysels and W. Vanroose, Hiding global synchronization latency in the

preconditioned Conjugate Gradient algorithm, Parallel Computing, 40(7), pp.
224-238, 2014.

S. Cools, E.F. Yetkin, E. Agullo, L. Giraud, W. Vanroose, Analyzing the effect of
local rounding error propagation on the maximal attainable accuracy of the
pipelined Conjugate Gradient method. SIAM J. on Matrix Anal. Appl., 39(1), pp.
426-450, 2018.

S. Cools, W. Vanroose, The communication-hiding pipelined BiCGStab method for
the parallel solution of large unsymmetric linear systems. Parallel Computing, 65,
pp. 1-20, Elsevier, 2017.

J. Cornelis, S. Cools, W. Vanroose, The communication-hiding Conjugate Gradient
method with deep pipelines. Submitted to SIAM J. Sci. Comput., 2018, Preprint
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Thank you!
siegfried.cools@uantwerp.be

https://www.uantwerpen.be/en/staff/siegfried-cools
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