

Latency hiding of global reductions in pipelined Krylov methods

On Parallel Performance and Numerical Accuracy of Communication Hiding Pipelined Krylov Subspace Methods for Solving Large Scale Linear Systems

Lawrence Berkeley National Laboratory, CA, US, August 7, 2017

University of Antwerp* [BE] & INRIA Bordeaux[†] [FR]

Siegfried Cools*, J. Cornelis*, W. Vanroose*, E. F. Yetkin^{\dagger}, E. Agullo^{\dagger}, L. Giraud^{\dagger}

Contact: siegfried.cools@uantwerp.be

Universiteit Antwerpen

ð

Introduction What are we working on?

6 PM 7 Midnight 8 10 11 Time 40 20 30 40 20 30 40 20 30 40 20 30 Т à a s k Ъ Order $\overleftarrow{\mathbf{c}}$ б 6 PM 10 Midnight 7 8 9 11 Time 40 20 30 40 40 40 T a s k à Ъ Order $\mathbf{\tilde{c}}$

Classical Krylov subspace method

Washing, drying and ironing in classical 'Laundry method'

VS.

Pipelined Krylov subspace method

Latency hiding of global drying in pipelined 'Laundry method'

Fellowship 12H4617N (2016-2019)

Research Foundation Flanders Opening new horizons

Observation: increasing gap between computation and communication costs

- Floating point performance steadily increases
- Network latencies only go down marginally
- Memory latencies decline slowly
- <u>Avoid communication</u>: trade communication for computations
- <u>Hide communication</u>: overlap communication with computations

Work initiated under:

EXascale Algorithms and Advanced Computational Techniques http://exa2ct.eu/

EU FP7 Project - Horizon 2020 - Ran from 2013 to 2016

Krylov subspace methods General idea

Iteratively improve an approximate solution of linear system Ax = b,

$$x_i \in x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{r_0, Ar_0, A^2r_0, \dots, A^{i-1}r_0\}$$

- minimize an error measure over expanding Krylov subspace K_i(A, r₀)
- usually in combination with sparse linear algebra/stencil application
- three building blocks:
 - i. dot-product
 - ii. SpMV
 - iii. axpy

E.g. Conjugate Gradients

Algorithm 1 CG	
1: procedure $CG(A, b, x_0)$	
2: $r_0 := b - Ax_0; p_0 = r_0$	
3: for $i = 0,$ do	
$4:$ $s_i := Ap_i$	
5: $\alpha_i := (r_i, r_i) / (s_i, p_i)$	dot-pr
6: $x_{i+1} := x_i + \alpha_i p_i$	SpMV
7: $r_{i+1} := r_i - \alpha_i s_i$	-
8: $\beta_{i+1} := (r_{i+1}, r_{i+1}) / (r_i, r_i)$	ахру
9: $p_{i+1} := r_{i+1} + \beta_{i+1}p_i$	
10: end for	
11: end procedure	

Algorithm 1 CG

1: procedure $CG(A, b, x_0)$	
2: $r_0 := b - Ax_0; p_0 = r_0$ 3: for $i = 0,$ do	
4: $s_i := Ap_i$ 5: $\alpha_i := (r_i, r_i) / (s_i, p_i)$	dot-pr
$\begin{array}{c} 6: \qquad x_{i+1} := x_i + \alpha_i p_i \\ 7: \qquad r_{i+1} := r_i - \alpha_i s_i \end{array}$	SpMV
8: $\beta_{i+1} := (r_{i+1}, r_{i+1}) / (r_i, r_i)$	ахру
9: $p_{i+1} := r_{i+1} + \beta_{i+1}p_i$ 10: end for	
11: end procedure	

Hestenes & Stiefel (1952)

Krylov subspace methods Classical CG

- i. 3 dot-products
 - 2 global reduction phases
 - Iatency dominated
 - scales as log₂(#partitions)
- ii. 1 SpMV
 - scales well (minor commun.)
 - non-overlapping (sequential to dot-product)

iii. 3 axpy's

- recurrences to avoid SpMV's
- perfectly scalable (no commun.)

Krylov subspace methods Pipelined CG

Algorithm 3 Pipelined CG

1: procedure PIPE-CG (A, b, x_0)	
2: $r_0 := b - Ax_0; w_0 := Ar_0$	
3: for $i = 0,$ do	
4: $\gamma_i := (r_i, r_i)$	
5: $\delta := (w_i, r_i)$	
$6: - q_i := Aw_i$	
7: if $i > 0$ then	
8: $\beta_i := \gamma_i / \gamma_{i-1}; \alpha_i := (\delta / \gamma_i - \beta_i)$	$\beta_i / \alpha_{i-1})^{-1}$
9: else	
10: $\beta_i := 0; \alpha := \gamma_i / \delta$	dot-pr
11: end if	Contract
12: $z_i := q_i + \beta_i z_{i-1}$	Spiviv
13: $s_i := w_i + \beta_i s_{i-1}$	ахру
14: $p_i := r_i + \beta_i p_{i-1}$	
$15:$ $x_{i+1} := x_i + \alpha_i p_i$	
16: $r_{i+1} := r_i - \alpha_i s_i$	
17: $w_{i+1} := w_i - \alpha_i z_i$	
18: end for	
19: end procedure	

Ghysels & Vanroose (2013)

Re-organized version of classical CG for improved parallel performance

- equivalent to CG in exact arithmetic
- Communication avoiding: dot-products are grouped in one global reduction phase (line 4+5)
- Communication hiding: overlap global commun. (line 4+5) with computations (SpMV, line 6)
- S extra recurrences for s_i = Ap_i, w_i = Ar_i, z_i = As_i (line 12+13+17)

Krylov subspace methods Strong scaling experiment

- $\blacktriangleright\,$ Hydrostatic ice sheet flow, 100 \times 100 \times 50 Q1 finite elements, PETSc experiment
- Line search Newton method (rtol= 10^{-8} , atol= 10^{-15})
- ▶ CG preconditioned with block Jacobi with ICC(0) (rtol=10⁻⁵, atol=10⁻⁵⁰)

Performance breakdown

- max pipe-CG/CG speedup: 2.14×
- max pipe-CG/CG1 speedup: 1.43×
- max pipe-CR/CR speedup: 2.09×

(CG1 = Chronopoulos/Gear CG)(CR = Conjugate Residuals)

Krylov subspace methods Other pipelined Krylov methods

- Pipelined CG
 - deeper pipelining possible: see further
- Pipelined GMRES

• compute ℓ new basis vectors for Krylov subspace (SpMVs) during global communication (dot-products).

 $Z_{i+1} = [z_0, z_1, \ldots, z_{i-\ell}, \underbrace{z_{i-\ell+1}, \ldots, z_i}]$

• deeper and variable pipelining possible: $p(\ell)$ -GMRES

 $V_{i-\ell+1} = [v_0, v_1, \dots, v_{i-\ell}]$

- Pipelined BiCGStab
 - non-symmetric operators: see further
- Preconditioned pipelined Krylov methods are available
 - prec-pipe-CG
 - prec-pipe-GMRES
 - prec-pipe-BiCGStab
- Augmented and deflated pipelined Krylov methods are available

C., Vanroose (2017)

Ghysels et al. (2012)

Ghysels, Vanroose (2013)

Conjugate Gradients Rounding error propagation

Classical CG

Pipelined CG

Motivation: pipe-CG loses max. attainable accuracy compared to classical CG

- Model problem: small 2D Laplacian with 2,500 unknowns
- ▶ Loss of attainable accuracy is more pronounced for larger systems/longer pipelines

Conjugate Gradients Rounding error propagation

J. Cornelis, MaTh (2017)

Motivation: pipe-CG loses max. attainable accuracy compared to classical CG

- Model problem: larger 2D Laplacian with 250,000 unknowns
- Loss of attainable accuracy is more pronounced for larger systems/longer pipelines

Conjugate Gradients Rounding error propagation in CG

Rounding errors due to recursive definition of residual (and auxiliary variables)

which deviates from the true residual $b - A\bar{x}_i$ in finite precision arithmetics

$$\begin{aligned} f_{i+1} &= (b - A\bar{x}_{i+1}) - \bar{r}_{i+1} \\ &= b - A(\bar{x}_i + \bar{\alpha}_i \bar{p}_i + \delta_i^x) - (\bar{r}_i - \bar{\alpha}_i A \bar{p}_i + \delta_i^r) \\ &= f_i - A \delta_i^x - \delta_i^r. \end{aligned}$$

After *i* iterations:

$$f_{i+1} = f_0 - \sum_{j=0}^{i} \left(A \delta_j^{\mathsf{x}} + \delta_j^{\mathsf{r}} \right).$$

Only accumulation of local rounding errors in classical CG, no amplification.

Greenbaum (1997), Gutknecht & Strakos (2000)

Conjugate Gradients Rounding errors in pipe-CG

Observation: rounding error propagation in pipe-CG may be much more dramatic due to additional recurrence relations that all induce rounding errors.

 $\begin{aligned} \bar{\mathbf{x}}_{i+1} &= \bar{\mathbf{x}}_i + \bar{\alpha}_i \bar{p}_i + \delta_i^x, & \mathbf{\bar{s}}_i &= \bar{\mathbf{w}}_i + \bar{\beta}_i \bar{\mathbf{s}}_{i-1} + \delta_i^s, \\ \bar{r}_{i+1} &= \bar{r}_i - \bar{\alpha}_i \bar{\mathbf{s}}_i + \delta_i^r, & \mathbf{\bar{w}}_{i+1} &= \bar{w}_i - \bar{\alpha}_i \bar{\mathbf{z}}_i + \delta_i^w, \\ \bar{p}_i &= \bar{u}_i + \bar{\beta}_i \bar{p}_{i-1} + \delta_i^p, & \mathbf{\bar{z}}_i &= A \bar{m}_i + \bar{\beta}_i \bar{\mathbf{z}}_{i-1} + \delta_i^z, \end{aligned}$

Residual gap is **coupled** with the gaps on the other auxiliary variables:

$$f_i = (b - A\overline{x}_i) - \overline{r}_i, \quad g_i = A\overline{p}_i - \overline{s}_i, \quad h_i = A\overline{u}_i - \overline{w}_i, \quad j_i = A\overline{q}_i - \overline{z}_i$$

$$\begin{bmatrix} f_{i+1} \\ g_i \\ h_{i+1} \\ j_i \end{bmatrix} = \begin{bmatrix} 1 & -\bar{\alpha}_i \beta_i & -\bar{\alpha}_i & 0 \\ 0 & \bar{\beta}_i & 1 & 0 \\ 0 & 0 & 1 & -\bar{\alpha}_i \bar{\beta}_i \\ 0 & 0 & 0 & \bar{\beta}_i \end{bmatrix} \begin{bmatrix} f_i \\ g_{i-1} \\ h_i \\ j_{i-1} \end{bmatrix} + \begin{bmatrix} -A\delta_i^x - \delta_i^r - \bar{\alpha}_i \left(A\delta_i^p - \delta_i^s\right) \\ A\delta_i^p - \delta_i^s \\ A\delta_i^u - \delta_i^w - \bar{\alpha}_i \left(A\delta_i^q - \delta_i^z\right) \\ A\delta_i^q - \delta_i^z \end{bmatrix}.$$

Amplification of local rounding errors possible, depending on α_i 's and β_i 's.

Conjugate Gradients Rounding error model for CG

Residual gap in iteration i

 $\epsilon = machine precision$

$$f_{i+1} = f_i - A\delta_i^x - \delta_i^r.$$

Error bounds: Local rounding errors $A\delta_i^x + \delta_i^r$ can be bounded by

$$\begin{aligned} \|A\delta_i^{\mathsf{x}} + \delta_i^{\mathsf{r}}\| &\leq \left(\|A\| \|\bar{\mathbf{x}}_i\| + (\mu\sqrt{n} + 4) |\bar{\alpha}_i| \|A\| \|\bar{\mathbf{p}}_i\| + \|\bar{r}_i\|\right) \epsilon \\ &:= e_i^{\mathsf{f}} \epsilon. \end{aligned}$$

often largely overestimates the actual errors

Error estimates: Local rounding errors can be approximated as

$$\|A\delta_i^{\mathsf{x}}+\delta_i^{\mathsf{r}}\|\approx\sqrt{e_i^{\mathsf{f}}}\epsilon$$

- additional norm computations required
- include in existing global reduction phase to avoid overhead

C. & Vanroose (2017)

Conjugate Gradients Rounding errors in pipe-CG

Accumulated rounding error

2D Laplacian, 2,500 unk

- Accumulation of rounding errors causes true residuals to stagnate
- Pipe-CG has reduced maximal attainable accuracy
- ► Rounding error model: runtime tracking of residual gap using estimate <u>Cost?</u> additional DOT-PRS per iteration to compute norms of auxiliary variables <u>But:</u> can be included in existing global reduction phase → no additional overhead

Conjugate Gradients Pipe-CG with automated residual replacement

Explicitly replace \bar{r}_i , \bar{s}_i , \bar{w}_i and \bar{z}_i by their true values in selected iterations:

Residual replacement criterion:

$$||f_{i-1}|| \le \tau ||\bar{r}_{i-1}||$$
 and $||f_i|| > \tau ||\bar{r}_i||$.

with $\tau = \sqrt{\epsilon}$.

- Sleijpen & Van der Vorst 1996
- Tong & Ye, 1999
- 🔋 Van der Vorst & Ye, 2000

Estimate for gap $||f_i||$ can be computed at runtime (without additional overhead), so fully automated replacement strategy is possible for pipe-CG.

Conjugate Gradients Pipe-CG with automated residual replacement

Accumulated rounding error

2D Laplacian, 2,500 unk

- Pipe-CG-rr = pipe-CG with residual replacement based on rounding error model
 Cost? 4 additional SpMV's per replacement step
- Replacement criterion ensures:
 - number of replacements is limited,
 - (2) only replace when ||r_i|| is sufficiently large (Krylov convergence is not affected)
 Tong & Ye, 1999

Conjugate Gradients Numerical results: attainable accuracy

Laplacian 2D: convergence tests on Laplacian problems

\bar{x}_0	$\bar{x}_{0} = 0$		CG	CC	G-CG	p-CG		p-CG-rr		
Matrix	n	iter	relres	iter	relres	iter	relres	iter	relres	rr
			relerr		relerr		relerr		relerr	
lap150	2,500	128	7.8e-15	127	8.1e-15	118	1.5e-12	125	9.1e-15	3
			$6.4e{-}15$		$5.7e{-}15$		1.1e-12		2.9e-14	
lapl100	10,000	254	1.6e-14	256	1.6e-14	228	9.1e-12	272	1.2e-14	6
			$1.4e{-}14$		1.4e-14		6.5e-12		1.8e-14	
lapl200	40,000	490	3.1e-14	487	3.2e-14	439	$5.4e{-}11$	536	2.5e-14	11
			$3.7e{-}14$		3.6e-14		5.3e-11		$3.7e{-}14$	
lapl400	160,000	959	6.2e-14	958	$6.4e{-}14$	807	3.0e-10	957	4.6e-14	23
			1.0e-13		5.6e-14		$3.4e{-}10$		1.8e-13	
lapl800	640,000	1883	1.2e-13	1877	1.3e-13	1524	1.4e-10	1876	1.1e-13	53
			2.7e-13		8.2e-13		2.0e-09		2.1e-13	
								p-CG-rr		
$\bar{x}_0 = ra$	$\operatorname{nd}(n, 1)$		CG	CC	G-CG	p	-CG		p-CG-rr	
$\bar{x}_0 = ra$ Matrix	nd(n, 1) n	iter	CG relres	CC iter	G-CG relres	p iter	-CG relres	iter	p-CG-rr relres	rr
$\bar{x}_0 = ra$ Matrix	nd(n, 1) n	iter	CG relres relerr	iter	G-CG relres relerr	iter	-CG relres relerr	iter	p-CG-rr relres relerr	rr
$\bar{x}_0 = ra$ Matrix lap150	nd(n, 1) n 2,500	iter 232	CG relres relerr 9.0e-14	iter 237	G-CG relres relerr 1.1e-13	iter 197	-CG relres relerr 1.3e-10	iter 227	p-CG-rr relres relerr 1.9e-14	rr 6
$\overline{x_0} = ra$ Matrix lap150	nd(n, 1) n 2,500	iter 232	CG relres relerr 9.0e-14 4.9e-14	iter 237	G-CG relres relerr 1.1e-13 6.4e-14	p iter 197	-CG relres relerr 1.3e-10 1.1e-10	iter 227	p-CG-rr relres relerr 1.9e-14 7.4e-14	rr 6
	nd $(n, 1)$ n 2,500 10,000	iter 232 444	CG relres relerr 9.0e-14 4.9e-14 2.9e-13	CO iter 237 449	G-CG relres relerr 1.1e-13 6.4e-14 3.8e-13	p iter 197 367	-CG relres relerr 1.3e-10 1.1e-10 1.5e-09	iter 227 483	p-CG-rr relres relerr 1.9e-14 7.4e-14 1.6e-14	rr 6 10
	$ \begin{array}{c} \operatorname{nd}(n,1) \\ \hline \\ n \\ \hline \\ 2,500 \\ 10,000 \end{array} $	iter 232 444	CG relres relerr 9.0e-14 4.9e-14 2.9e-13 1.6e-13	CC iter 237 449	G-CG relerr 1.1e-13 6.4e-14 3.8e-13 2.1e-13	p iter 197 367	-CG relres relerr 1.3e-10 1.1e-10 1.5e-09 1.3e-09	iter 227 483	p-CG-rr relres relerr 1.9e-14 7.4e-14 1.6e-14 1.5e-14	rr 6 10
$ \overline{x_0 = ra} $ Matrix lapl50 lapl100 lapl200	$ \begin{array}{c c} nd(n,1) \\ \hline n \\ 2,500 \\ 10,000 \\ 40,000 \\ \end{array} $	iter 232 444 881	CG relres relerr 9.0e-14 4.9e-14 2.9e-13 1.6e-13 1.3e-12	CC iter 237 449 883	G-CG relres relerr 1.1e-13 6.4e-14 3.8e-13 2.1e-13 1.6e-12	p iter 197 367 685	-CG relerr 1.3e-10 1.1e-10 1.5e-09 1.3e-09 1.7e-08	iter 227 483 952	p-CG-rr relres relerr 1.9e-14 7.4e-14 1.6e-14 1.5e-14 3.3e-14	rr 6 10 20
	$ \begin{array}{c c} nd(n,1) \\ \hline n \\ 2,500 \\ 10,000 \\ 40,000 \end{array} $	iter 232 444 881	CG relers 9.0e-14 4.9e-14 2.9e-13 1.6e-13 1.3e-12 6.2e-13	CC iter 237 449 883	G-CG relers relerr 1.1e-13 6.4e-14 3.8e-13 2.1e-13 1.6e-12 7.8e-13	p iter 197 367 685	-CG relres relerr 1.3e-10 1.1e-10 1.5e-09 1.3e-09 1.7e-08 1.6e-08	iter 227 483 952	p-CG-rr relres relerr 1.9e-14 7.4e-14 1.6e-14 1.5e-14 3.3e-14 3.9e-14	rr 6 10 20
$\overline{x_0 = ra}$ Matrix lap150 lap1100 lap1200 lap1400	$ \begin{array}{r} nnd(n,1) \\ \hline n \\ 2,500 \\ 10,000 \\ 40,000 \\ 160,000 \end{array} $	iter 232 444 881 1676	CG relres relerr 9.0e-14 4.9e-14 2.9e-13 1.6e-13 1.3e-12 6.2e-13 4.9e-12	CC iter 237 449 883 1714	G-CG relers 1.1e-13 6.4e-14 3.8e-13 2.1e-13 1.6e-12 7.8e-13 6.1e-12	p iter 197 367 685 1220	-CG relers relerr 1.3e-10 1.1e-10 1.5e-09 1.3e-09 1.7e-08 1.6e-08 1.8e-07	iter 227 483 952 1846	p-CG-rr relres relerr 1.9e-14 7.4e-14 1.6e-14 3.3e-14 3.3e-14 1.1e-13	rr 6 10 20 35
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \mathrm{nd}(n,1) & \\ \hline n \\ 2,500 \\ 10,000 \\ 40,000 \\ 160,000 \end{array}$	iter 232 444 881 1676	CG relres relerr 9.0e-14 4.9e-14 2.9e-13 1.6e-13 1.3e-12 6.2e-13 4.9e-12 2.3e-12	CC iter 237 449 883 1714	G-CG relres relerr 1.1e-13 6.4e-14 3.8e-13 2.1e-13 1.6e-12 7.8e-13 6.1e-12 2.9e-12	p iter 197 367 685 1220	-CG relres relerr 1.3e-10 1.1e-10 1.5e-09 1.3e-09 1.7e-08 1.6e-08 1.8e-07 1.8e-07	iter 227 483 952 1846	p-CG-rr relres relerr 1.9e-14 7.4e-14 1.6e-14 1.5e-14 3.3e-14 3.9e-14 1.1e-13 1.5e-13	rr 6 10 20 35
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathrm{nd}(n,1) \\ \hline n \\ 2,500 \\ 10,000 \\ 40,000 \\ 160,000 \\ 640,000 \end{array}$	iter 232 444 881 1676 3339	CG relers 9.0e-14 4.9e-14 2.9e-13 1.6e-13 1.3e-12 6.2e-13 4.9e-12 2.3e-12 2.1e-11	CC iter 237 449 883 1714 3249	G-CG relres relerr 1.1e-13 6.4e-14 3.8e-13 2.1e-13 1.6e-12 7.8e-13 6.1e-12 2.9e-12 2.9e-12 2.5e-11	p iter 197 367 685 1220 2225	-CG relres relerr 1.3e-10 1.5e-09 1.3e-09 1.7e-08 1.6e-08 1.6e-08 1.8e-07 1.8e-07 1.9e-06	iter 227 483 952 1846 3435	p-CG-rr relres relerr 1.9e-14 7.4e-14 1.6e-14 1.5e-14 3.3e-14 3.9e-14 1.1e-13 1.5e-13 2.1e-12	10 20 35 65

Conjugate Gradients Numerical results: attainable accuracy

MatrixMarket collection: convergence tests on all non-diagonal SPD matrices

Matrix	Prec	$\kappa(A)$	n	#nnz		CG	CC	G-CG	p-	-CG		p-CG-rr	
					iter	relres	iter	relres	iter	relres	iter	relres	rr
bcsstk14	JAC	1.3e+10	1806	63,454	650	7.6e-16	658	7.1e-16	506	5.2e-12	658	5.2e-16	9
bcsstk15	JAC	8.0e + 09	3948	117,816	772	3.7e-15	785	3.5e-15	646	2.3e-11	974	4.0e-15	10
bcsstk16	JAC	65	4884	290,378	298	3.5e-15	300	4.0e-15	261	8.7e-12	301	2.1e-15	4
bcsstk17	JAC	65	10,974	428,650	3547	1.0e-14	3428	$1.7e{-}14$	2913	2.8e-09	4508	1.2e-14	54
bcsstk18	JAC	65	11,948	149,090	2299	2.2e-15	2294	2.1e-15	1590	2.9e-11	2400	1.5e-15	50
bcsstk27	JAC	7.7e + 04	1224	56,126	345	3.2e-15	345	4.0e-15	295	8.0e-12	342	$2.7e{-}15$	6
gr_30_30	-	3.8e + 02	900	7744	56	2.7e-15	55	3.1e-15	52	2.0e-13	61	3.0e-15	2
nos1	*ICC	2.5e+07	237	1017	301	1.3e-14	338	1.2e-14	337	2.6e-10	968	1.9e-14	21
nos2	*ICC	6.3e + 09	957	4137	3180	8.3e-14	3292	1.1e-13	2656	1.2e-07	4429	2.7e-11	113
nos3	ICC	7.3e + 04	960	15,844	64	1.0e-14	63	1.1e-14	59	1.0e-12	61	2.5e-14	3
nos4	ICC	2.7e + 03	100	594	31	1.9e-15	31	1.9e-15	29	4.0e-14	33	1.3e-15	2
nos5	ICC	2.9e + 04	468	5172	63	3.2e-16	64	$3.4e{-}16$	58	4.3e-14	65	2.3e-16	2
nos6	ICC	8.0e + 06	675	3255	34	5.1e-15	35	6.2e-15	31	5.5e-11	33	1.0e-14	2
nos7	ICC	4.1e + 09	729	4617	29	4.0e-14	31	2.8e-14	29	4.5e-14	29	3.0e-14	3
s1rmq4m1	ICC	1.8e + 06	5489	262,411	122	4.3e-15	122	4.6e-15	114	5.5e-12	135	3.7e-15	6
s1rmt3m1	ICC	2.5e+06	5489	217,651	229	9.3e-15	228	8.7e-15	213	2.2e-11	240	$1.7e{-}14$	9
s2rmq4m1	*ICC	1.8e + 08	5489	263,351	370	6.7e-15	387	7.3e-15	333	2.7e-10	349	2.5e-13	25
s2rmt3m1	ICC	2.5e + 08	5489	217,681	285	8.7e-15	283	1.0e-14	250	7.3e-10	425	8.7e-15	17
s3dkq4m2	*ICC	1.9e + 11	90,449	2,455,670	-	1.9e-08	-	2.1e-08	-	2.8e-07	-	5.6e-08	199
s3dkt3m2	*ICC	3.6e + 11	90,449	1,921,955	-	2.9e-07	-	2.9e-07	-	3.5e-07	-	2.9e-07	252
s3rmq4m1	*ICC	1.8e + 10	5489	262,943	1651	1.5e-14	1789	1.6e-14	1716	2.6e-08	1602	$5.3e{-}10$	154
s3rmt3m1	*ICC	2.5e + 10	5489	217,669	2282	2.7e-14	2559	2.9e-14	2709	9.3e-08	3448	8.0e-10	149
s3rmt3m3	*ICC	2.4e + 10	5357	207,123	2862	3.3e-14	2798	$3.4e{-}14$	3378	2.0e-07	2556	7.1e-11	248

Conjugate Gradients Numerical results: attainable accuracy

MatrixMarket collection: convergence tests on selected SPD matrices

Note: delay of convergence due to loss of Krylov basis orthogonality may occur.

Strakos & Tichy, 2002

(12-240 cores)

Conjugate Gradients Numerical results: strong scaling

- ▶ PETSc implementation using MPICH-3.1.3 communication
- Benchmark problem: 2D Laplacian model, 1,000,000 unknowns
- ► System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG

Conjugate Gradients Numerical results: strong scaling

- PETSc implementation using MPICH-3.3a2 communication
- \blacktriangleright Benchmark problem: 3D ice sheet flow, 150 \times 150 \times 100 / 500 \times 500 \times 50 Q1 FE
- ► System specs: 128 nodes, two 14-core Intel Xeon E5-2680v4 2.4GHz CPUs/node

Speedup over single-node CG (2,250,000 unk)

Speedup over single-node CG (12,500,000 unk)

Conjugate Gradients Shifted pipelined CG

gorithm 3 Shifted pipelined CG
procedure P-CG-SH($A, M^{-1}, b, x_0, \sigma$)
$r_0 := b - Ax_0; u_0 := M^{-1}r_0$
$w_0 := Au_0 - \sigma r_0$
for $i = 0,$ do
$\gamma_i := (r_i, u_i); \delta := (w_i + \sigma r_i, u_i)$
$m_i := M^{-1} w_i$
$n_i := Am_i$
if $i > 0$ then
$\beta_i := \gamma_i / \gamma_{i-1}$
$lpha_i := (\delta/\gamma_i - eta_i/lpha_{i-1})^{-1}$
else
$eta_i:=0;lpha_i:=\gamma_i/\delta$
end if
$z_i := n_i + \beta_i z_{i-1}$
$q_i := m_i + \beta_i q_{i-1}$
$s_i := w_i + \beta_i s_{i-1}$
$t_i := r_i + \beta_i t_{i-1}$
$p_i := u_i + \beta_i p_{i-1}$
$x_{i+1} := x_i + \alpha_i p_i$
$r_{i+1} := r_i - \alpha_i s_i - \alpha_i \sigma t_i$
$u_{i+1} := u_i - \alpha_i q_i - \alpha_i \sigma p_i$
$w_{i+1} := w_i - \alpha_i z_i$
end for

Define selected auxiliary variables using a shifted matrix:

$$w_i := (AM^{-1} - \sigma I) r_i = Au_i - \sigma r_i,$$

$$s_i := (AM^{-1} - \sigma I) t_i = Ap_i - \sigma t_i,$$

and reformulate recursions accordingly.

Rounding error propagation:

$$\begin{bmatrix} f_{i+1} \\ g_i \\ h_{i+1} \\ j_i \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & -\bar{\alpha}_i \bar{\beta}_i & -\bar{\alpha}_i & 0 \\ 0 & \bar{\beta}_i & 1 & 0 \\ 0 & -\bar{\alpha}_i \bar{\beta}_i \sigma & 1 - \bar{\alpha}_i \sigma & -\bar{\alpha}_i \bar{\beta}_i \\ 0 & 0 & 0 & \bar{\beta}_i \end{bmatrix}}_{:= P_i(\sigma)} \begin{bmatrix} f_i \\ g_{i-1} \\ h_i \\ j_{i-1} \end{bmatrix} + \begin{bmatrix} \epsilon_i^f \\ \epsilon_i^f \\ \epsilon_i^h \\ \epsilon_i^f \end{bmatrix}$$

Key idea: Proper choice of shift counteracts rounding error amplification and stabilizes pipe-CG.

C. & Vanroose (2017)

Conjugate Gradients Shifted pipelined CG

MatrixMarket collection: convergence tests on selected SPD matrices

Remarks:

- choice of shift is based on an a posteriori estimate (α_i 's and β_i 's required)
- delay of convergence possible (cf. pipe-CG)

Conjugate Gradients Shifted pipelined CG

MatrixMarket collection: convergence tests on selected SPD matrices

Remarks:

- choice of shift is based on an a posteriori estimate (α_i 's and β_i 's required)
- delay of convergence possible (cf. pipe-CG)

(12-240 cores)

Conjugate Gradients Numerical results: strong scaling

- ▶ PETSc implementation using MPICH-3.1.3 communication
- Benchmark problem: 2D Laplacian model, 1,000,000 unknowns
- ► System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG

Cornelis, MaTh (2017)

Convergence comparison:

pipe-CG vs. pipe(1)-CG

10⁻¹⁰ 200 300 400 500 700 800 900

All CG variants are <u>equivalent</u> in exact arithmetic; however, pipe-CG and pipe(1)-CG are not equivalent in finite precision.

||qx¹-p||

- pipe(1)-CG appears to be more robust w.r.t. local rounding errors
- pipe(1)-CG has less AXPYs compared to pipe-CG

Conjugate Gradients Pipelined(ℓ)-CG

2D Laplacian, 62,500 unk

J. Cornelis, MaTh (2017)

Conjugate Gradients Numerical results: strong scaling

- ▶ PETSc implementation using MPICH-3.1.3 communication
- Benchmark problem: 2D Laplacian model, 1,000,000 unknowns
- ► System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Bi-Conjugate Gradients Stabilized BiCGStab

Algorithm 4 Standard BiCGStab

```
1: function BICGSTAB(A, b, x_0)
         r_0 := b - Ax_0; p_0 := r_0
 2:
         for i = 0, ..., do
 3 \cdot
          s_i := Ap_i
 4:
          compute (r_0, s_i)
 5.
                                                      dot-prod
          \alpha_i := (r_0, r_i) / (r_0, s_i)
 6:
           q_i := r_i - \alpha_i s_i
 7.
                                                       SpMV
         u_i := A a_i
 8:
                                                       axpy
         compute (q_i, y_i); (y_i, y_i)
 9.
10:
          \omega_i := (q_i, y_i) / (y_i, y_i)
11:
           x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i
           r_{i+1} := q_i - \omega_i y_i
12:
          compute (r_0, r_{i+1})
13:
           \beta_i := (\alpha_i / \omega_i) (r_0, r_{i+1}) / (r_0, r_i)
14:
           p_{i+1} := r_{i+1} + \beta_i (p_i - \omega_i s_i)
15:
         end for
16.
17: end function
```

Traditional BiCGStab: (non-preconditioned) Global communication 3 global reduction phases Local communication 2 non-overlapping SpMVs No communication

4 recurrences

General two-step framework for deriving pipelined Krylov methods: Step 1. Avoiding communication: merge global reductions Step 2. Hiding communication: overlap SpMVs & global reductions

Bi-Conjugate Gradients Stabilized Step 1. Avoiding global communication

Algorithm 4 Standard BiCGStab 1: function BICGSTAB(A, b, x_0) $r_0 := b - Ax_0; p_0 := r_0$ 2: for i = 0, ..., do $3 \cdot$ $s_i := Ap_i$ 4: **compute** (r_0, s_i) 5. dot-prod $\alpha_i := (r_0, r_i) / (r_0, s_i)$ 6: $q_i := r_i - \alpha_i s_i$ 7. **SpMV** $u_i := A a_i$ 8: axpy **compute** (q_i, y_i) ; (y_i, y_i) 9. 10: $\omega_i := (q_i, y_i) / (y_i, y_i)$ 11: $\mathbf{x}_{i+1} := x_i + \alpha_i p_i + \omega_i q_i$ $r_{i+1} := q_i - \omega_i y_i$ 12:**compute** (r_0, r_{i+1}) 13: $\beta_i := (\alpha_i / \omega_i) (r_0, r_{i+1}) / (r_0, r_i)$ 14: $p_{i+1} := r_{i+1} + \beta_i (p_i - \omega_i s_i)$ 15: end for 16. 17: end function

- (a) *Identify* two global comm. phases for merger (lines 5-6 & 13-14)
- (b) <u>Rewrite</u> SpMV as recurrence: $s_i = Ap_i = w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1}z_{i-1}),$ <u>define</u> $w_i := Ar_i, z_i := As_i$ and note that $y_i := w_i - \alpha_i z_i$
- (c) <u>Rewrite</u> dot-product using (b): $(r_0, s_i) = (r_0, w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1} z_{i-1})),$ independent of interlying variables
- (d) <u>Move</u> dot-product (lines 5-6) upward and merge with existing global comm. phase (lines 13-14)

Bi-Conjugate Gradients Stabilized CA-BiCGStab

Al	gorit	hm 5 Communication avoiding BiCGSt	ab
1:	fund	tion CA-BICGSTAB (A, b, x_0)	
2:	r	$a_0 := b - Ax_0; w_0 := Ar_0; \alpha_0 := (r_0, r_0) /$	$(r_0, w_0); \beta_{-1} := 0$
3:	f	or $i = 0, do$	
4:		$p_i := r_i + \beta_{i-1} \left(p_{i-1} - \omega_{i-1} s_{i-1} \right)$	
5:		$s_i := w_i + \beta_{i-1} \left(s_{i-1} - \omega_{i-1} z_{i-1} \right)$	
6:		$z_i := As_i$	
7:		$q_i := r_i - \alpha_i s_i$	dot-prod
8:		$y_i := w_i - \alpha_i z_i$	SpMV
9:		compute (q_i, y_i) ; (y_i, y_i)	axpy
10:		$\omega_i := (q_i, y_i) / (y_i, y_i)$	
11:		$x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i$	
12:		$r_{i+1} := q_i - \omega_i y_i$	
13:		$w_{i+1} := Ar_{i+1}$	
14:		compute (r_0, r_{i+1}) ; (r_0, w_{i+1}) ; (r_0, s_{i+1}) ; (r_0, s_{i+1})	$(s_i); (r_0, z_i)$
15:		$\beta_i := (\alpha_i / \omega_i) (r_0, r_{i+1}) / (r_0, r_i)$	
16:		$\alpha_{i+1} := (r_0, r_{i+1}) / ((r_0, w_{i+1}) + \beta_i (r_0))$	$(s_i) - \beta_i \omega_i (r_0, z_i))$
17:	e	nd for	
18:	\mathbf{end}	function	

Communication-avoiding BiCGStab:

(non-preconditioned)

Global communication

▶ 2 global red. phases (vs. 3)

Local communication

2 non-overlapping SpMVs

No communication

▶ 6 recurrences (vs. 4)

Status after Step 1:

no. global comm. phases reduced from 3 to 2, at the cost of 2 additional axpys

Note: further reduction from 2 to 1 global comm. phase possible, but not recommended (see later).

Bi-Conjugate Gradients Stabilized Step 2. Hiding global communication

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Alg	gorithm 5 Communication avoiding BiCGSta	ιb
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1:	function CA-BICGSTAB (A, b, x_0)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2:	$r_0 := b - Ax_0; w_0 := Ar_0; \alpha_0 := (r_0, r_0) / c_0$	$(r_0, w_0); \beta_{-1} := 0$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3:	for $i = 0,$ do	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4:	$p_i := r_i + \beta_{i-1} \left(p_{i-1} - \omega_{i-1} s_{i-1} \right)$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5:	$s_i := w_i + \beta_{i-1} \left(s_{i-1} - \omega_{i-1} z_{i-1} \right)$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	6:	$z_i := As_i$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7:	$q_i := r_i - \alpha_i s_i$	dot-prod
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	8:	$y_i := w_i - \alpha_i z_i$	SpMV
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	9:	compute (q_i, y_i) ; (y_i, y_i)	axpy
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	10:	$\omega_i := (q_i, y_i) / (y_i, y_i)$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	11:	$x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	12:	$r_{i+1} := q_i - \omega_i y_i$	
$ \begin{array}{ll} 4: & \text{compute} \left(r_{0}, r_{i+1} \right): \left(r_{0}, w_{i+1} \right): \left(r_{0}, s_{i} \right): \left(r_{0}, z_{i} \right) \\ 15: & \beta_{i}: = \left(\alpha_{i} / \omega_{i} \right) \left(r_{0}, r_{i+1} \right) / \left(r_{i} \right) \\ 16: & \alpha_{i+1} := \left(r_{0}, r_{i+1} \right) / \left(\left(r_{0}, w_{i+1} \right) + \beta_{i} \left(r_{0}, s_{i} \right) - \beta_{i} \omega_{i} \left(r_{0}, z_{i} \right) \right) \\ 17: & \text{end for} \\ 18: & \text{end function} \end{array} $	13:	$w_{i+1} := Ar_{i+1}$	
$ \begin{array}{ll} 15: & & & & & & \\ \beta_i := (\alpha_i/\omega_i) \left(r_0, r_{i+1} \right) / \left(r_0, r_i \right) \\ \alpha_{i+1} := (r_0, r_{i+1}) / \left((r_0, w_{i+1}) + \beta_i \left(r_0, s_i \right) - \beta_i \omega_i \left(r_0, z_i \right) \right) \\ 17: & & \text{end for} \\ 18: & \text{end function} \end{array} $	14:	compute (r_0, r_{i+1}) ; (r_0, w_{i+1}) ; (r_0, s_{i+1}) ; (r_0, s_{i+1})	$_{i});(r_{0},z_{i})$
$ \begin{array}{ll} 16: & & \alpha_{i+1} := (r_0, r_{i+1}) / \left((r_0, w_{i+1}) + \beta_i \left(r_0, s_i \right) - \beta_i \omega_i \left(r_0, z_i \right) \right) \\ 17: & \text{end for} \\ 18: & \text{end function} \\ \end{array} $	15:	$\beta_i := (\alpha_i / \omega_i) (r_0, r_{i+1}) / (r_0, r_i)$	
17: end for 18: end function	16:	$\alpha_{i+1} := (r_0, r_{i+1}) / ((r_0, w_{i+1}) + \beta_i (r_0, w_{i+1}))$	$s_i) - \beta_i \omega_i \left(r_0, z_i \right) $
18: end function	17:	end for	
	18:	end function	

- (a) Identify SpMV / global reduction pairs (lines 6 & 9 and 13 & 14)
- (b) <u>Rewrite</u> SpMVs as recurrences: $z_i := As_i = t_i + \beta_{i-1} (z_{i-1} - \omega_{i-1}v_{i-1}),$ $w_{i+1} := Ar_{i+1} = y_i - \omega_i (t_i - \alpha_i v_i),$ define $t_i := Aw_i, v_i := Az_i$
- (c) <u>Check</u> SpMV / global reduction pairwise dependencies:
 - line 9 independent of v_i? yes
 - line 14 indep. of t_{i+1} ? yes
- (d) <u>Insert</u> new SpMVs <u>below</u> corresponding global comm. phases

Bi-Conjugate Gradients Stabilized pipe-BiCGStab

Algorithm 6 Pipelined BiCGStab 1: function PIPE-BICGSTAB (A, b, x_0) $r_0 := b - Ax_0; w_0 := Ar_0; t_0 := Aw_0;$ 23. for i = 0, ..., do $p_i := r_i + \beta_{i-1} (p_{i-1} - \omega_{i-1} s_{i-1})$ 4: $s_i := w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1} z_{i-1})$ 5: $z_i := t_i + \beta_{i-1} (z_{i-1} - \omega_{i-1} v_{i-1})$ 6. $q_i := r_i - \alpha_i s_i$ 7: dot-prod 8. $y_i := w_i - \alpha_i z_i$ **SpMV compute** (q_i, y_i) ; (y_i, y_i) 9: axpy $\omega_i := (q_i, y_i) / (y_i, y_i)$ 10: overlap $v_i := Az_i$ 11: 12: $x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i$ $r_{i+1} := q_i - \omega_i y_i$ 13: 14. $w_{i+1} := y_i - \omega_i \left(t_i - \alpha_i v_i \right)$ **compute** (r_0, r_{i+1}) ; (r_0, w_{i+1}) ; (r_0, s_i) ; (r_0, z_i) 15: $\beta_i := (\alpha_i / \omega_i) (r_0, r_{i+1}) / (r_0, r_i)$ 16 $\alpha_{i+1} := (r_0, r_{i+1}) / ((r_0, w_{i+1}) + \beta_i (r_0, s_i) - \beta_i \omega_i (r_0, z_i))$ overlap $t_{i+1} := Aw_{i+1}$ 18: end for 19-20: end function

Pipelined BiCGStab:

(non-preconditioned)

Global communication

▶ 2 global red. phases (vs. 3)

Local communication

2 overlapping SpMVs

No communication

8 recurrences (vs. 4)

Status after Step 2:

both global comm. phases are overlapped with SpMV computations ('hidden'), at the cost of 4 additional axpys compared to standard BiCGStab

Bi-Conjugate Gradients Stabilized Preconditioned pipe-BiCGStab

Algorithm 8 Preconditioned Pipelined BiCGStab

```
1: function P-PIPE-BICGSTAB(A, M^{-1}, b, x_0)
           r_0 := b - Ax_0; \hat{r}_0 := M^{-1}r_0; w_0 := A\hat{r}_0; \hat{w}_0 := M^{-1}w_0
 3.
           t_0 := A\hat{w}_0; \ \alpha_0 := (r_0, r_0) / (r_0, w_0); \ \beta_{-1} := 0
           for i = 0, ..., do
 4:
 5:
                \hat{p}_i := \hat{r}_i + \beta_{i-1} \left( \hat{p}_{i-1} - \omega_{i-1} \hat{s}_{i-1} \right)
 6.
                 s_i := w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1} z_{i-1})
                 \hat{s}_i := \hat{w}_i + \beta_{i-1} \left( \hat{s}_{i-1} - \omega_{i-1} \hat{z}_{i-1} \right)
                 z_i := t_i + \beta_{i-1} \left( z_{i-1} - \omega_{i-1} v_{i-1} \right)
 8:
 9-
                 q_i := r_i - \alpha_i s_i
                 \hat{q}_i := \hat{r}_i - \alpha_i \hat{s}_i
10-
                 u_i := w_i - \alpha_i z_i
11:
                                                                                        dot-prod
12:
                 compute (q_i, y_i); (y_i, y_i)
                                                                                         SpMV
                 \omega_i := (q_i, y_i) / (y_i, y_i)
13.
                                                                                         axpv
                 overlap \hat{z}_i := M^{-1} z_i
14:
15:
                overlap v_i := A\hat{z}_i
                x_{i+1} := x_i + \alpha_i \hat{p}_i + \omega_i \hat{q}_i
16.
17:
                 r_{i+1} := q_i - \omega_i u_i
18:
                \hat{r}_{i+1} := \hat{q}_i - \omega_i \left( \hat{w}_i - \alpha_i \hat{z}_i \right)
                w_{i+1} := y_i - \omega_i \left( t_i - \alpha_i v_i \right)
19-
                 compute (r_0, r_{i+1}); (r_0, w_{i+1}); (r_0, s_i); (r_0, z_i)
20-
                 \beta_i := (\alpha_i / \omega_i) (r_0, r_{i+1}) / (r_0, r_i)
21:
                 \alpha_{i+1} := (r_0, r_{i+1}) / ((r_0, w_{i+1}) + \beta_i (r_0, s_i) - \beta_i \omega_i (r_0, z_i))
22.
                 overlap \hat{w}_{i+1} := M^{-1} w_{i+1}
23-
                overlap t_{i+1} := A\hat{w}_{i+1}
24:
           end for
25:
26: end function
```

Like for any pipelined method, including a preconditioner is easy.

Pipelined BiCGStab: (preconditioned)

Global communication

▶ 2 global red. phases (vs. 3)

Local communication

2 overlapping Prec + SpMVs

No communication

▶ 11 recurrences (vs. 4)

Bi-Conjugate Gradients Stabilized Pipe-BiCGStab vs. IBiCGStab vs. CA-BiCGStab

	GLRED	SPMV	Flops $(AXPY + DOT-PROD)$	Time ($GLRED + SPMV$)	Memory
BiCGStab	3	2	20	3 glred + 2 spmv	7
IBiCGStab	1	2	30	1 glred + 2 spmv	10
p-BiCGStab	2	2*	38	2 max(glred, spmv)	11
s-step CA-BiCGStab	1/s	4	32s + 45	1/s glred + 4 spmv	4s + 5

Theoretical speed-up factors over classical BiCGStab:

	pipe-BiCGStab C., Vanroose, 2017	IBiCGStab ■ Yang & Brent, 2002	CA-BiCGStab
if time($_{ m GLRED}$) $pprox$ time($_{ m SPMV}$)	× 2.5	× 1.67	× 1.25
if time(GLRED) ≫ time(SPMV)	imes 1.5	× 3.0	× 3 <i>s</i>

Is algorithm with 1 GLRED overlapped with all SPMVs possible? Yes; however...

- no. axpys is <u>much</u> larger \rightarrow algorithm robustness decreases (rounding errors)
- one extra SpMV required

Bi-Conjugate Gradients Stabilized Numerical results: attainable accuracy

MatrixMarket collection: unsymmetric test problems

tol = 1e-20

Matrix	$ r_0 _2$	BiC	GStab	p-BiC	p-BiCGStab		p-BiCGStab-rr		
		iter	$ r_i _2$	iter	$ r_i _2$	iter	$ r_i _2$	$_{k}$	#nrr
1138_bus	4.3e+01	124	1.8e-11	130	4.0e-09	220	7.4e-12	35	3
add32	8.0e-03	46	7.8e-18	42	5.0e-16	51	5.7e-18	10	2
bcsstk14	2.1e + 09	559	7.3e-06	444	6.6e-01	522	3.8e-03	200	2
bcsstk18	2.6e + 09	523	4.8e-06	450	1.1e-01	725	2.8e-05	50	7
bcsstk26	3.5e + 09	414	1.1e-05	216	5.7e-01	475	8.6e-04	30	6
bcsstm25	6.9e + 07	-	3.2e + 00	-	3.8e + 00	-	4.6e + 00	1000	9
bfw782a	3.2e-01	117	9.5e-14	106	5.1e-13	133	2.6e-15	20	4
bwm2000	1.1e + 03	1733	2.5e-09	1621	1.4e-05	2231	3.8e-08	500	3
cdde6	5.8e-01	151	8.1e-14	147	2.0e-11	159	2.1e-15	10	13
fidap014	2.7e + 06	-	4.3e-03	-	9.7e-03	-	4.3e-03	50	3
fs_760_3	1.6e + 07	1979	1.2e-05	1039	5.1e-02	4590	1.1e-05	900	3
jagmesh9	6.8e + 00	6230	2.4e-14	3582	5.8e-09	9751	1.1e-11	500	13
jpwh_991	3.8e-01	53	1.3e-14	54	1.8e-12	63	2.5e-15	10	4
orsreg_1	4.8e + 00	51	4.0e-11	52	3.7e-09	56	5.9e-12	10	3
pde2961	2.9e-01	50	4.5e-15	48	3.4e-13	52	1.4e-15	10	3
rdb32001	1.0e + 01	178	3.7e-08	167	9.9e-08	181	3.4e-08	100	1
s3dkq4m2	6.8e + 01	-	1.0e-05	-	1.4e-05	-	1.3e-05	1000	9
saylr4	3.1e-03	52	4.0e-12	43	7.5e-11	46	1.8e-12	10	4
sherman3	1.8e + 01	111	2.5e-11	100	2.8e-07	128	6.2e-11	20	4
sstmodel	7.9e + 00	-	5.1e-06	-	3.1e-06	-	4.5e-06	1000	9
utm5940	3.6e-01	256	3.0e-12	248	4.3e-08	395	2.9e-11	100	3
Average ite	r deviation	wrt BiC	GStab	-11.0%		22.1%			
Average #r	rr wrt p-Bi	CGStab	-rr iter						2.4%

Bi-Conjugate Gradients Stabilized Numerical results: attainable accuracy

Residual replacement every i-th iteration (non-automated, i.e. i is a parameter of the method, but chosen large s.t. no. repl. is small)

$r_i:=b-Ax_i,$	$\hat{r}_i := M^{-1} r_i,$	$w_i := A\hat{r}_i,$
$s_i := A\hat{p}_i,$	$\hat{s}_i := M^{-1} s_i,$	$z_i := A\hat{s}_i.$

- increased maximal attainable accuracy: comparable to BiCGStab level
- ⊕ increased robustness: counteracts rounding error amplification
- ⊖ increased number of iterations possible (convergence delay)

Bi-Conjugate Gradients Stabilized Numerical results: strong scaling

- ▶ PETSc implementation using MPICH-3.1.3 communication
- Benchmark problem 1: 2D unsymmetric model, 1,000,000 unknowns
- ► System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

$$A_1^{stencil} = egin{pmatrix} 1 & 1 & \ 1 & -4 & arepsilon \end{pmatrix}, \quad ext{with } arepsilon = 0.999$$

Speedup over single-node BiCGStab

BiCGStah

5

10

nr of nodes (x12 MPI procs)

15

speedup over BiCGStab on 1 node

0

0

BiCGStab

-BiCGStab-rr

Accuracy i.f.o. total time spent

Bi-Conjugate Gradients Stabilized Numerical results: strong scaling

- ▶ PETSc implementation using MPICH-3.1.3 communication
- Benchmark problem 2: 2D indefinite Helmholtz model, 1,000,000 unknowns
- ► System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

$$A_2^{\text{stencil}} = \begin{pmatrix} 1 & \\ 1 & -1 & 1 \\ & 1 & \end{pmatrix}$$

Speedup over single-node BiCGStab

Iterations i.f.o. number of nodes

nodes	1	2	3	4	5
BiCGStab	1563	1805	1789	1875	1710
p-BiCGStab	1807	1614	1779	1787	1673
p-BiCGStab-rr	1857	1788	1728	1570	1677
nodes	6	7	8	9	10
BiCGStab	1852	1789	1555	1641	1909
p-BiCGStab	1547	1668	1773	1640	1673
p-BiCGStab-rr	1721	1688	1283	1884	1718
nodes	11	12	13	14	15
BiCGStab	1805	1715	1875	1717	1765
p-BiCGStab	1936	1811	1629	1642	1849
p-BiCGStab-rr	1845	1628	1562	1861	1650
nodes	16	17	18	19	20
BiCGStab	1722	1657	2050	1778	1670
p-BiCGStab	1843	1726	1796	1713	1870
p-BiCGStab-rr	1647	1889	1750	1701	2112

How soft errors occur?

What is soft error?

- Possible causes : electricity fluctuations, cosmic particle effects, etc...
- Appears on: memories, registers, pipeline of the processor

Propagation of SDC at SpMV

1:
$$r_0 := b - Ax_0$$

2: $u_0 := M^{-1}r_0; p_0 := r_0$
3: for $i = 0, ...$ do
4: $s := Ap_i$
5: $\alpha := (r_i, u_i)/(s, p_i)$
6: $x_{i+1} := x_i + \alpha p_i$
7: $r_{i+1} := r_i - \alpha s$
8: $u_{i+1} := M^{-1}r_{i+1}$
9: β $:= (r_{i+1}, u_{i+1})/(r_i, u_i)$
10: $p_{i+1} := u_{i+1} + \beta p_i$
11: end for

Propagation of SDC at Preconditioner

1: $r_0 := b - Ax_0$ 2: $u_0 := M^{-1}r_0$; $p_0 := r_0$ 3: for i = 0, ... do 4: $s := Ap_i$ 5: $\alpha := (r_i, \underline{u}_i)/(\underline{s}, \underline{p}_i)$ 6: $x_{i+1} := x_i + \alpha p_i$ 7: $r_{i+1} := r_i - \alpha s$ 8: $u_{i+1} := M^{-1}r_{i+1}$ 9: := $(r_{i+1}, u_{i+1})/(r_i, u_i)$ $p_{i+1} := u_{i+1} + \beta p_i$ 10: 11: end for

Context

Soft Errors in Preconditioned Conjugate Gradient (PCG)

Question 1

Impact of soft errors on convergence of PCG

Question 2

Reliability of numerical detection mechanisms ?

Question 3

Robust numerical recovery schemes ?

Protocol for sensitivity study

	Effect on the convergence
Converged	
Not Converged	

Fault injection methodology in 64-bit

Sensitivity v.s. SpMV bit-flip locations

A closer look at temporal behaviour of SpMV soft-errors

On Numerical Resilience in Linear Algebra

Check the impact of SpMV computation

Rounding error analysis of residuals in finite precision arithmetics

Residual Deviation

- True Residual in EXACT: $\hat{r}_{i+1} := b Ax_{i+1}$
- Computed residual in EXACT: $r_{i+1} := r_i \alpha s$
- Equality in EXACT $\Delta_{i+1}^r = \hat{r}_{i+1} r_{i+1} = 0$

Bound for deviation [Voist & Yee, SISC, 2000] $||\Delta_{i+1}^{r}|| \leq \mathbf{u}N||A||\sum_{j=0}^{i}||x_{j}|| + \mathbf{u}\sum_{j=0}^{i}||r_{j}||$ • **u**: Machine epsilon • N: Maximum provides row

Check the impact of SpMV computation

Rounding error analysis of residuals in finite precision arithmetics

Residual Deviation

- True residual in FINITE: $\hat{r}_{i+1} := b A(x_i + \alpha_i p_i + \delta_i^x)$
- Computed residual in FINITE: $r_{i+1} := r_i \alpha_i s_i + \delta_i^r$
- Deviation in FINITE:

 $\Delta_{i+1}^r := \Delta_i^r + A\alpha_i p_i - \alpha_i A p_i + A\delta_i^x + \delta_i^r$

Bound for deviation [Vorst & Yee, SISC, 2000]

$$||\Delta_{i+1}^r|| \le \mathbf{u}N||A||\sum_{j=0}^i ||x_j|| + \mathbf{u}\sum_{j=0}^i ||r_j||$$

- u: Machine epsilon
- N : Maximum nnz per row

Check the impact of SpMV computation

How can we employ this bound to detect soft errors?

- Soft errors at SpMV will effect x_{i+1} and r_{i+1} in a different way
- It will create a deviation larger than the theoretical upper bound
- It gives us an opportunity to detect the soft errors

Detection robustness v.s. Preco. bit-flip location

Detection robustness v.s. SpMV bit-flip location

Hybrid approach for full-protection

Level-1 : Deviation based approach to detect SpMV faults

Deviation can be checked periodically to avoid extra SpMV at each iteration

Level-2 : α based approach to detect preconditioner faults

An estimation for $\lambda_{\textit{max}}$ for preconditioned matrix is required

nnin

Non-faulty case for matrix mesh2e1

Several Bit-flip effects for matrix mesh2e1

Several Bit-flip effects for matrix mesh2e1

Sensitivity behaviour of all matrices - 200.000 experiments

Detection success for all matrices - 200.000 experiments

Analysis of rounding error propagation in pipelined CG

- ▶ pipe-CG is much more sensitive to rounding errors than standard CG
- ▶ rounding error model allows for real-time countermeasures: pipe-CG-rr

Shifted pipelined CG

- introduce shift σ in auxiliary variables: $s_i = (A \sigma)p_i$, $w_i = (A \sigma)s_i$
- stabilizing effect on rounding error propagation for the right shift choice

Longer pipelines: $pipe(\ell)$ -CG

- useful when time(GLRED) is much larger than time(SPMV+PREC)
- further reduced numerical stability (WIP)

Pipelined BiCGStab

- pipe-BiCGStab for non-symmetric operators (alternative to pipe-GMRES)
- implement countermeasures to improve rounding error resilience

Soft error detection

- ▶ rounding error model allows for separation rounding errors vs. soft errors
- detect-and-correct strategy to improve soft error resilience

Conclusion References

- P. Ghysels, T.J. Ashby, K. Meerbergen, W. Vanroose, Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines, SIAM J. Sci. Comput., 35(1), 2013.
- P. Ghysels, W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm, Parallel Computing, 40, 2013.
- H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 13(2):631–644, 1992.
- H.A. Van der Vorst, Q. Ye, Residual Replacement strategies for Krylov Subspace iterative methods for Convergence of the True Residuals, 22(3), SIAM J. Sci. Comput., 2000.
- E. Carson, J. Demmel, A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Methods, SIAM J. Mat. Anal. Appl., 35(1), 2014.
- S. Cools, W. Vanroose, Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined Conjugate Gradients method, under review, SIAM J. Numer. Anal., 2017.
- S. Cools, W. Vanroose, The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems, Parallel Computing, 65, pp.1–20, 2017.
- S. Cools, W. Vanroose, Numerically Stable Variants of the Communication-hiding Pipelined Conjugate Gradients Algorithm for the Parallel Solution of Large Scale Symmetric Linear Systems, Technical Report, https://arxiv.org/abs/1706.05988, 2017.

Conclusion FAQ

Thank you for your attention!

Q: What is the difference between pipelined and s-step Krylov methods? Carson, Knight, Demmel, 2013

- A: Global communication is hidden vs. avoided
- A: Off-the-shelf preconditioning possible vs. specialized preconditioning required
- Q: Is the code available online?
 - A: Pipe-CG, pipe-CG-rr, gropp-CG, pipe-GMRES and pipe-BiCGStab are included in the current PETSc version, available at https://www.mcs.anl.gov/petsc/.
 - A: The inclusion of $pipe(\ell)$ -CG in PETSc is work in progress.