
Latency hiding of global reductions in pipelined Krylov methods

On Parallel Performance and Numerical Accuracy of Communication Hiding
Pipelined Krylov Subspace Methods for Solving Large Scale Linear Systems

Lawrence Berkeley National Laboratory, CA, US, August 7, 2017

University of Antwerp∗ [BE] & INRIA Bordeaux† [FR]

Siegfried Cools∗, J. Cornelis∗, W. Vanroose∗, E. F. Yetkin†, E. Agullo†, L. Giraud†

Contact: siegfried.cools@uantwerp.be

Introduction

What are we working on?

Classical Krylov subspace method

Washing, drying and ironing
in classical ‘Laundry method’

vs.

Pipelined Krylov subspace method

Latency hiding of global drying
in pipelined ‘Laundry method’

2/42

Introduction

Our benefactors

Fellowship 12H4617N
(2016-2019)

Observation: increasing gap between computation
and communication costs

I Floating point performance steadily increases

I Network latencies only go down marginally

I Memory latencies decline slowly

I Avoid communication:
trade communication for computations

I Hide communication:
overlap communication with computations

Work initiated under:
EXascale Algorithms and Advanced Computational Techniques
http://exa2ct.eu/

EU FP7 Project - Horizon 2020 - Ran from 2013 to 2016

3/42

http://exa2ct.eu/

Krylov subspace methods

General idea

Iteratively improve an approximate solution of linear system Ax = b,

xi ∈ x0 +Ki (A, r0) = x0 + span{r0,Ar0,A
2r0, . . . ,A

i−1r0}

I minimize an error measure over
expanding Krylov subspace Ki (A, r0)

I usually in combination with sparse
linear algebra/stencil application

I three building blocks:
i. dot-product
ii. SpMV
iii. axpy

E.g. Conjugate Gradients

4/42

Krylov subspace methods

Classical CG

Hestenes & Stiefel (1952)

i. 3 dot-products
I 2 global reduction phases
I latency dominated
I scales as log2(#partitions)

ii. 1 SpMV
I scales well (minor commun.)
I non-overlapping

(sequential to dot-product)

iii. 3 axpy’s
I recurrences to avoid SpMV’s
I perfectly scalable (no commun.)

5/42

Krylov subspace methods

Pipelined CG

Ghysels & Vanroose (2013)

Re-organized version of classical CG
for improved parallel performance

I equivalent to CG in exact arithmetic

I Communication avoiding:
dot-products are grouped in
one global reduction phase (line 4+5)

I Communication hiding:
overlap global commun. (line 4+5)
with computations (SpMV, line 6)

I 3 extra recurrences for si = Api ,
wi = Ari , zi = Asi (line 12+13+17)

6/42

Krylov subspace methods

Strong scaling experiment

I Hydrostatic ice sheet flow, 100× 100× 50 Q1 finite elements, PETSc experiment

I Line search Newton method (rtol=10−8, atol=10−15)

I CG preconditioned with block Jacobi with ICC(0) (rtol=10−5, atol=10−50)

Ghysels & Vanroose (2013)

Performance breakdown

I max pipe-CG/CG speedup:
2.14×

I max pipe-CG/CG1 speedup:
1.43×

I max pipe-CR/CR speedup:
2.09×

(CG1 = Chronopoulos/Gear CG)

(CR = Conjugate Residuals)

7/42

Krylov subspace methods

Other pipelined Krylov methods

I Pipelined CG Ghysels, Vanroose (2013)

• deeper pipelining possible: see further

I Pipelined GMRES Ghysels et al. (2012)

Vi−`+1 = [v0, v1, . . . , vi−`]

Zi+1 = [z0, z1, . . . , zi−`, zi−`+1, . . . , zi︸ ︷︷ ︸
`

]

• compute ` new basis vectors for Krylov subspace (SpMVs) during global
communication (dot-products).

• deeper and variable pipelining possible: p(`)-GMRES

I Pipelined BiCGStab C., Vanroose (2017)

• non-symmetric operators: see further

I Preconditioned pipelined Krylov methods are available
• prec-pipe-CG
• prec-pipe-GMRES
• prec-pipe-BiCGStab

I Augmented and deflated pipelined Krylov methods are available

8/42

Conjugate Gradients

Rounding error propagation

Classical CG Pipelined CG

Motivation: pipe-CG loses max. attainable accuracy compared to classical CG

I Model problem: small 2D Laplacian with 2,500 unknowns

I Loss of attainable accuracy is more pronounced for larger systems/longer pipelines

9/42

Conjugate Gradients

Rounding error propagation

Pipe(`)-CG J. Cornelis, MaTh (2017)

Motivation: pipe-CG loses max. attainable accuracy compared to classical CG

I Model problem: larger 2D Laplacian with 250,000 unknowns

I Loss of attainable accuracy is more pronounced for larger systems/longer pipelines

10/42

Conjugate Gradients

Rounding error propagation in CG

Rounding errors due to recursive definition of residual (and auxiliary variables)

p̄i+1 = ūi+1 + β̄i+1p̄i + δpi ,

x̄i+1 = x̄i + ᾱi p̄i + δxi ,

r̄i+1 = r̄i − ᾱiAp̄i + δri ,

which deviates from the true residual b − Ax̄i in finite precision arithmetics

fi+1 = (b − Ax̄i+1)− r̄i+1

= b − A(x̄i + ᾱi p̄i + δxi)− (r̄i − ᾱiAp̄i + δri)

= fi − Aδxi − δri .

After i iterations:

fi+1 = f0 −
i∑

j=0

(
Aδxj + δrj

)
.

Only accumulation of local rounding errors in classical CG, no amplification.

Greenbaum (1997), Gutknecht & Strakos (2000)

11/42

Conjugate Gradients

Rounding errors in pipe-CG

Observation: rounding error propagation in pipe-CG may be much more
dramatic due to additional recurrence relations that all induce rounding errors.

x̄i+1 = x̄i + ᾱi p̄i + δxi , s̄i = w̄i + β̄i s̄i−1 + δsi ,

r̄i+1 = r̄i − ᾱi s̄i + δri , w̄i+1 = w̄i − ᾱi z̄i + δwi ,

p̄i = ūi + β̄i p̄i−1 + δpi , z̄i = Am̄i + β̄i z̄i−1 + δzi ,

Residual gap is coupled with the gaps on the other auxiliary variables:

fi = (b − Ax̄i)− r̄i , gi = Ap̄i − s̄i , hi = Aūi − w̄i , ji = Aq̄i − z̄i
fi+1

gi
hi+1

ji

 =

1 −ᾱi β̄i −ᾱi 0
0 β̄i 1 0
0 0 1 −ᾱi β̄i
0 0 0 β̄i

fi
gi−1

hi
ji−1

+

−Aδxi − δri − ᾱi (Aδpi − δ

s
i)

Aδpi − δ
s
i

Aδui − δwi − ᾱi (Aδqi − δ
z
i)

Aδqi − δ
z
i

 .
Amplification of local rounding errors possible, depending on αi ’s and βi ’s.

12/42

Conjugate Gradients

Rounding error model for CG

Residual gap in iteration i ε = machine precision

fi+1 = fi − Aδxi − δri .

Error bounds: Local rounding errors Aδxi + δri can be bounded by

‖Aδxi + δri ‖ ≤
(
‖A‖ ‖x̄i‖+ (µ

√
n + 4) |ᾱi | ‖A‖ ‖p̄i‖+ ‖r̄i‖

)
ε

:= e fi ε.

I often largely overestimates the actual errors

Error estimates: Local rounding errors can be approximated as

‖Aδxi + δri ‖ ≈
√
e
f
i ε

I additional norm computations required

I include in existing global reduction phase to avoid overhead

C. & Vanroose (2017)

13/42

Conjugate Gradients

Rounding errors in pipe-CG

Accumulated rounding error 2D Laplacian, 2,500 unk

I Accumulation of rounding errors causes true residuals to stagnate

I Pipe-CG has reduced maximal attainable accuracy

I Rounding error model: runtime tracking of residual gap using estimate

Cost? additional dot-prs per iteration to compute norms of auxiliary variables

But: can be included in existing global reduction phase → no additional overhead

14/42

Conjugate Gradients

Pipe-CG with automated residual replacement

Explicitly replace r̄i , s̄i , w̄i and z̄i by their true values in selected iterations:

r̄i+1 = fl(b − Ax̄i+1), w̄i+1 = fl(Aūi+1),

s̄i = fl(Ap̄i), z̄i = fl(Aq̄i).

Residual replacement criterion:

‖fi−1‖ ≤ τ‖r̄i−1‖ and ‖fi‖ > τ‖r̄i‖.

with τ =
√
ε.

Sleijpen & Van der Vorst 1996

Tong & Ye, 1999

Van der Vorst & Ye, 2000

Estimate for gap ‖fi‖ can be computed at runtime (without additional overhead),
so fully automated replacement strategy is possible for pipe-CG.

15/42

Conjugate Gradients

Pipe-CG with automated residual replacement

Accumulated rounding error 2D Laplacian, 2,500 unk

I Pipe-CG-rr = pipe-CG with residual replacement based on rounding error model

Cost? 4 additional SpMV’s per replacement step

I Replacement criterion ensures:

(1) number of replacements is limited,
(2) only replace when ‖ri‖ is sufficiently large (Krylov convergence is not affected)

Tong & Ye, 1999

16/42

Conjugate Gradients

Numerical results: attainable accuracy

Laplacian 2D: convergence tests on Laplacian problems

17/42

Conjugate Gradients

Numerical results: attainable accuracy

MatrixMarket collection: convergence tests on all non-diagonal SPD matrices

18/42

Conjugate Gradients

Numerical results: attainable accuracy

MatrixMarket collection: convergence tests on selected SPD matrices

Note: delay of convergence due to loss of Krylov basis orthogonality may occur.

Strakos & Tichy, 2002

19/42

Conjugate Gradients

Numerical results: strong scaling

I PETSc implementation using MPICH-3.1.3 communication

I Benchmark problem: 2D Laplacian model, 1,000,000 unknowns

I System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG Accuracy i.f.o. total time spent
(12-240 cores) (240 cores)

20/42

Conjugate Gradients

Numerical results: strong scaling

I PETSc implementation using MPICH-3.3a2 communication

I Benchmark problem: 3D ice sheet flow, 150× 150× 100 / 500× 500× 50 Q1 FE

I System specs: 128 nodes, two 14-core Intel Xeon E5-2680v4 2.4GHz CPUs/node

Speedup over single-node CG Speedup over single-node CG
(2,250,000 unk) (12,500,000 unk)

21/42

Conjugate Gradients

Shifted pipelined CG

C. & Vanroose (2017)

Define selected auxiliary variables using a
shifted matrix:

wi :=
(
AM−1 − σI

)
ri = Aui − σri ,

si :=
(
AM−1 − σI

)
ti = Api − σti ,

and reformulate recursions accordingly.

Rounding error propagation: fi+1

gi
hi+1

ji

 =

1 −ᾱi β̄i −ᾱi 0
0 β̄i 1 0
0 −ᾱi β̄iσ 1− ᾱiσ −ᾱi β̄i
0 0 0 β̄i

︸ ︷︷ ︸

:= Pi (σ)

 fi
gi−1

hi
ji−1

+

εfi
εgi
εhi
εji

Key idea: Proper choice of shift counteracts
rounding error amplification and stabilizes pipe-CG.

22/42

Conjugate Gradients

Shifted pipelined CG

MatrixMarket collection: convergence tests on selected SPD matrices

ψi (σ) = max
1≤j≤i

∥∥∥∥∥∥
i∏

k=j

Pk (σ)

∥∥∥∥∥∥
2

Remarks:

I choice of shift is based on an a posteriori estimate (αi ’s and βi ’s required)

I delay of convergence possible (cf. pipe-CG)

23/42

Conjugate Gradients

Shifted pipelined CG

MatrixMarket collection: convergence tests on selected SPD matrices

ψi (σ) = max
1≤j≤i

∥∥∥∥∥∥
i∏

k=j

Pk (σ)

∥∥∥∥∥∥
2

Remarks:

I choice of shift is based on an a posteriori estimate (αi ’s and βi ’s required)

I delay of convergence possible (cf. pipe-CG)

24/42

Conjugate Gradients

Numerical results: strong scaling

I PETSc implementation using MPICH-3.1.3 communication

I Benchmark problem: 2D Laplacian model, 1,000,000 unknowns

I System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG Accuracy i.f.o. total time spent
(12-240 cores) (240 cores)

25/42

Conjugate Gradients

Pipelined(`)-CG

Commutative diagram?

GMRES CG

pipe-GMRES pipe-CG

pipe(`)-GMRES pipe(`)-CG

Cornelis, MaTh (2017)

Saad (2003)

Ghysels, Vanroose (2012)

Ghysels, Vanroose (2012)

Ghysels, Vanroose (2013)

Relation?

26/42

Conjugate Gradients

Pipelined(`)-CG

Convergence comparison: 2D Laplacian, 62,500 unk

pipe-CG vs. pipe(1)-CG J. Cornelis, MaTh (2017)

All CG variants are equivalent in exact arithmetic; however,

pipe-CG and pipe(1)-CG are not equivalent in finite precision.

• pipe(1)-CG appears to be more robust w.r.t. local rounding errors

• pipe(1)-CG has less axpys compared to pipe-CG

27/42

Conjugate Gradients

Numerical results: strong scaling

I PETSc implementation using MPICH-3.1.3 communication

I Benchmark problem: 2D Laplacian model, 1,000,000 unknowns

I System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Measured/predicted speedup over 1-node CG J. Cornelis, MaTh (2017)

240 cores/600 cores

28/42

Bi-Conjugate Gradients Stabilized

BiCGStab

Traditional BiCGStab:
(non-preconditioned)

Global communication

I 3 global reduction phases

Local communication

I 2 non-overlapping SpMVs

No communication

I 4 recurrences

General two-step framework for deriving pipelined Krylov methods:

Step 1. Avoiding communication: merge global reductions

Step 2. Hiding communication: overlap SpMVs & global reductions

29/42

Bi-Conjugate Gradients Stabilized

Step 1. Avoiding global communication

(a) Identify two global comm. phases
for merger (lines 5-6 & 13-14)

(b) Rewrite SpMV as recurrence:

si = Api = wi + βi−1 (si−1 − ωi−1zi−1) ,

define wi := Ari , zi := Asi and
note that yi := wi − αizi

(c) Rewrite dot-product using (b):

(r0, si) = (r0,wi+βi−1 (si−1 − ωi−1zi−1)),

independent of interlying variables

(d) Move dot-product (lines 5-6)
upward and merge with existing
global comm. phase (lines 13-14)

30/42

Bi-Conjugate Gradients Stabilized

CA-BiCGStab

Communication-avoiding BiCGStab:
(non-preconditioned)

Global communication

I 2 global red. phases (vs. 3)

Local communication

I 2 non-overlapping SpMVs

No communication

I 6 recurrences (vs. 4)

Status after Step 1:

no. global comm. phases reduced from 3 to 2, at the cost of 2 additional axpys

Note: further reduction from 2 to 1 global comm. phase possible, but not recommended (see later).

31/42

Bi-Conjugate Gradients Stabilized

Step 2. Hiding global communication

(a) Identify SpMV / global reduction
pairs (lines 6 & 9 and 13 & 14)

(b) Rewrite SpMVs as recurrences:

zi := Asi = ti + βi−1 (zi−1 − ωi−1vi−1) ,

wi+1 := Ari+1 = yi − ωi (ti − αivi),

define ti := Awi , vi := Azi

(c) Check SpMV / global reduction
pairwise dependencies:

• line 9 independent of vi? yes
• line 14 indep. of ti+1? yes

(d) Insert new SpMVs below
corresponding global
comm. phases

32/42

Bi-Conjugate Gradients Stabilized

pipe-BiCGStab

Pipelined BiCGStab:
(non-preconditioned)

Global communication

I 2 global red. phases (vs. 3)

Local communication

I 2 overlapping SpMVs

No communication

I 8 recurrences (vs. 4)

Status after Step 2:

both global comm. phases are overlapped with SpMV computations (‘hidden’),

at the cost of 4 additional axpys compared to standard BiCGStab

33/42

Bi-Conjugate Gradients Stabilized

Preconditioned pipe-BiCGStab

Like for any pipelined method,
including a preconditioner is easy.

Pipelined BiCGStab:
(preconditioned)

Global communication

I 2 global red. phases (vs. 3)

Local communication

I 2 overlapping Prec + SpMVs

No communication

I 11 recurrences (vs. 4)

34/42

Bi-Conjugate Gradients Stabilized

Pipe-BiCGStab vs. IBiCGStab vs. CA-BiCGStab

Theoretical speed-up factors over classical BiCGStab:

if time(glred)

≈ time(spmv)

if time(glred)

� time(spmv)

pipe-BiCGStab
C., Vanroose, 2017

× 2.5

× 1.5

IBiCGStab
Yang & Brent, 2002

× 1.67

× 3.0

CA-BiCGStab
Carson, 2015

× 1.25

× 3s

Is algorithm with 1 glred overlapped with all spmvs possible? Yes; however. . .

• no. axpys is much larger → algorithm robustness decreases (rounding errors)

• one extra SpMV required

35/42

Bi-Conjugate Gradients Stabilized

Numerical results: attainable accuracy

MatrixMarket collection: unsymmetric test problems tol = 1e-20

36/42

Bi-Conjugate Gradients Stabilized

Numerical results: attainable accuracy

Residual replacement every i-th iteration
(non-automated, i.e. i is a parameter of the method, but chosen large s.t. no. repl. is small)

ri := b − Axi , r̂i := M−1ri , wi := Ar̂i ,

si := Ap̂i , ŝi := M−1si , zi := Aŝi .

⊕ increased maximal attainable accuracy: comparable to BiCGStab level

⊕ increased robustness: counteracts rounding error amplification

	 increased number of iterations possible (convergence delay)

37/42

Bi-Conjugate Gradients Stabilized

Numerical results: strong scaling

I PETSc implementation using MPICH-3.1.3 communication

I Benchmark problem 1: 2D unsymmetric model, 1,000,000 unknowns
I System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Astencil
1 =

 1
1 −4 ε

ε

 , with ε = 0.999

Speedup over single-node BiCGStab Accuracy i.f.o. total time spent

38/42

Bi-Conjugate Gradients Stabilized

Numerical results: strong scaling

I PETSc implementation using MPICH-3.1.3 communication

I Benchmark problem 2: 2D indefinite Helmholtz model, 1,000,000 unknowns
I System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Astencil
2 =

 1
1 −1 1

1

Speedup over single-node BiCGStab Iterations i.f.o. number of nodes

39/42

Soft errors in PCG

How soft errors occur?

What is soft error?
Possible causes : electricity fluctuations, cosmic particle
effects, etc...
Appears on: memories, registers, pipeline of the processor

Exascale

‘

On Numerical Resilience in Linear Algebra 4 / 53

Soft errors in PCG

Propagation of SDC at SpMV

1: r0 := b − Ax0
2: u0 := M−1r0; p0 := r0
3: for i = 0, . . . do
4: s := Api
5: α := (ri , ui)/(s, pi)
6: xi+1 := xi + αpi
7: ri+1 := ri − αs
8: ui+1 := M−1ri+1
9: β :=

(ri+1, ui+1)/(ri , ui)
10: pi+1 := ui+1 + βpi
11: end for

piA

si

αi

ri+1

xi+1

M−1

ui+1

ri

ui

xi

βi+1

pi+1

SpMV

Preconditioner

Previous Iteration

On Numerical Resilience in Linear Algebra 7 / 53

Soft errors in PCG

Propagation of SDC at Preconditioner

1: r0 := b − Ax0
2: u0 := M−1r0; p0 := r0
3: for i = 0, . . . do
4: s := Api
5: α := (ri , ui)/(s, pi)
6: xi+1 := xi + αpi
7: ri+1 := ri − αs
8: ui+1 := M−1ri+1
9: β :=

(ri+1, ui+1)/(ri , ui)
10: pi+1 := ui+1 + βpi
11: end for

piA

si

αi

ri+1

xi+1

M−1

ui+1

ri

ui

xi

βi+1

pi+1

SpMV

Preconditioner

Previous Iteration

On Numerical Resilience in Linear Algebra 8 / 53

Soft errors in PCG

Aim of this study

Context
Soft Errors in Preconditioned Conjugate Gradient (PCG)

Question 1
Impact of soft errors on convergence of PCG

Question 2
Reliability of numerical detection mechanisms ?

Question 3
Robust numerical recovery schemes ?

On Numerical Resilience in Linear Algebra 10 / 53

Soft errors in PCG Sensitivity

Protocol for sensitivity study

On Numerical Resilience in Linear Algebra 11 / 53

Soft errors in PCG Sensitivity

Fault injection methodology in 64-bit

On Numerical Resilience in Linear Algebra 12 / 53

Soft errors in PCG Sensitivity

Sensitivity v.s. SpMV bit-flip locations

On Numerical Resilience in Linear Algebra 14 / 53

Soft errors in PCG Sensitivity

A closer look at temporal behaviour of SpMV soft-errors

On Numerical Resilience in Linear Algebra 16 / 53

Soft errors in PCG Detection

Check the impact of SpMV computation

Rounding error analysis of residuals in finite precision arithmetics

Residual Deviation
True Residual in EXACT: r̂i+1 := b − Axi+1

Computed residual in EXACT: ri+1 := ri − αs
Equality in EXACT ∆r

i+1 = r̂i+1 − ri+1 = 0

Bound for deviation [Vorst & Yee, SISC, 2000]

||∆r
i+1|| ≤ uN||A||

∑i
j=0 ||xj ||+ u

∑i
j=0 ||rj ||

u: Machine epsilon
N : Maximum nnz per row

On Numerical Resilience in Linear Algebra 21 / 53

Soft errors in PCG Detection

Check the impact of SpMV computation

Rounding error analysis of residuals in finite precision arithmetics

Residual Deviation
True residual in FINITE: r̂i+1 := b − A(xi + αipi + δx

i)

Computed residual in FINITE: ri+1 := ri − αisi + δr
i

Deviation in FINITE:
∆r

i+1 := ∆r
i + Aαipi − αiApi + Aδx

i + δr
i

Bound for deviation [Vorst & Yee, SISC, 2000]

||∆r
i+1|| ≤ uN||A||

∑i
j=0 ||xj ||+ u

∑i
j=0 ||rj ||

u: Machine epsilon
N : Maximum nnz per row

On Numerical Resilience in Linear Algebra 21 / 53

Soft errors in PCG Detection

Check the impact of SpMV computation

How can we employ this bound to detect soft errors?

Soft errors at SpMV will effect
xi+1 and ri+1 in a different way
It will create a deviation larger
than the theoretical upper
bound
It gives us an opportunity to
detect the soft errors

On Numerical Resilience in Linear Algebra 22 / 53

Soft errors in PCG Detection

Detection robustness v.s. Preco. bit-flip location

On Numerical Resilience in Linear Algebra 26 / 53

Soft errors in PCG Detection

Detection robustness v.s. SpMV bit-flip location

On Numerical Resilience in Linear Algebra 27 / 53

Soft errors in PCG Detection

Hybrid approach for full-protection

Level-1 : Deviation based approach to detect SpMV faults

Deviation can be checked periodically to avoid extra SpMV at each
iteration

Level-2 : α based approach to detect preconditioner faults

An estimation for λmax for preconditioned matrix is required

On Numerical Resilience in Linear Algebra 28 / 53

Soft errors in p-CG-rr (overnight results)

Non-faulty case for matrix mesh2e1

¿
E. Agullo et al. - Soft errors in p-CG-rr (SIAM PP18?) 37 / 33

Soft errors in p-CG-rr (overnight results)

Several Bit-flip effects for matrix mesh2e1

¿
E. Agullo et al. - Soft errors in p-CG-rr (SIAM PP18?) 38 / 33

Soft errors in p-CG-rr (overnight results)

Several Bit-flip effects for matrix mesh2e1

¿
E. Agullo et al. - Soft errors in p-CG-rr (SIAM PP18?) 38 / 33

Soft errors in p-CG-rr (overnight results)

Sensitivity behaviour of all matrices - 200.000 experiments

¿
E. Agullo et al. - Soft errors in p-CG-rr (SIAM PP18?) 41 / 33

Soft errors in p-CG-rr (overnight results)

Detection success for all matrices - 200.000 experiments

¿
E. Agullo et al. - Soft errors in p-CG-rr (SIAM PP18?) 42 / 33

Conclusion

Overview

Analysis of rounding error propagation in pipelined CG
I pipe-CG is much more sensitive to rounding errors than standard CG
I rounding error model allows for real-time countermeasures: pipe-CG-rr

Shifted pipelined CG
I introduce shift σ in auxiliary variables: si = (A− σ)pi , wi = (A− σ)si
I stabilizing effect on rounding error propagation for the right shift choice

Longer pipelines: pipe(`)-CG
I useful when time(glred) is much larger than time(spmv+prec)
I further reduced numerical stability (WIP)

Pipelined BiCGStab
I pipe-BiCGStab for non-symmetric operators (alternative to pipe-GMRES)
I implement countermeasures to improve rounding error resilience

Soft error detection
I rounding error model allows for separation rounding errors vs. soft errors
I detect-and-correct strategy to improve soft error resilience

40/42

Conclusion

References

P. Ghysels, T.J. Ashby, K. Meerbergen, W. Vanroose, Hiding Global Communication Latency in the GMRES
Algorithm on Massively Parallel Machines, SIAM J. Sci. Comput., 35(1), 2013.

P. Ghysels, W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient
algorithm, Parallel Computing, 40, 2013.

H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 13(2):631–644, 1992.

H.A. Van der Vorst, Q. Ye, Residual Replacement strategies for Krylov Subspace iterative methods for
Convergence of the True Residuals, 22(3), SIAM J. Sci. Comput., 2000.

E. Carson, J. Demmel, A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of
s-Step Krylov Methods, SIAM J. Mat. Anal. Appl., 35(1), 2014.

S. Cools, W. Vanroose, Analyzing the effect of local rounding error propagation on the maximal attainable
accuracy of the pipelined Conjugate Gradients method, under review, SIAM J. Numer. Anal., 2017.

S. Cools, W. Vanroose, The communication-hiding pipelined BiCGstab method for the parallel solution of large
unsymmetric linear systems, Parallel Computing, 65, pp.1–20, 2017.

S. Cools, W. Vanroose, Numerically Stable Variants of the Communication-hiding Pipelined Conjugate
Gradients Algorithm for the Parallel Solution of Large Scale Symmetric Linear Systems, Technical Report,
https://arxiv.org/abs/1706.05988, 2017.

41/42

https://arxiv.org/abs/1706.05988

Conclusion

FAQ

Thank you for your attention!

Q: What is the difference between pipelined and s-step Krylov methods?
Carson, Knight, Demmel, 2013

A: Global communication is hidden vs. avoided

A: Off-the-shelf preconditioning possible vs. specialized preconditioning required

Q: Is the code available online?

A: Pipe-CG, pipe-CG-rr, gropp-CG, pipe-GMRES and pipe-BiCGStab are included in the
current PETSc version, available at https://www.mcs.anl.gov/petsc/.

A: The inclusion of pipe(`)-CG in PETSc is work in progress.

42/42

https://www.mcs.anl.gov/petsc/

