

Hiding Global Reduction Latency in Pipelined Krylov Methods

Parallel Performance and Numerical Accuracy of Communication-Hiding Krylov Subspace Methods for Solving Large Scale Linear Systems

17th GAMM Workshop, University of Cologne, Germany, September 7-8, 2017

University of Antwerp* [BE] & INRIA Bordeaux† [FR]

Siegfried Cools * , J. Cornelis * , W. Vanroose * , E. F. Yetkin † , E. Agullo † , L. Giraud †

Contact: siegfried.cools@uantwerp.be

Introduction What are we working on?

Classical Krylov subspace method

Washing, drying and ironing in classical 'Laundry method'

VS.

Pipelined Krylov subspace method

Latency hiding of global drying in pipelined 'Laundry method'

Work initiated under:

EXascale Algorithms and Advanced Computational Techniques http://exa2ct.eu/

EU FP7 Project - Horizon 2020 - Ran from 2013 to 2016

Fellowship 12H4617N (2016-2019)

Observation: increasing gap between computation and communication costs

- ▶ Floating point performance steadily increases
- ► Network latencies only go down marginally
- ► Memory latencies decline slowly
- Avoid communication: trade communication for computations
- Hide communication: overlap communication with computations

Iteratively improve an approximate solution of linear system Ax = b,

$$x_i \in x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{r_0, Ar_0, A^2r_0, \dots, A^{i-1}r_0\}$$

- ▶ minimize an error measure over expanding Krylov subspace K_i(A, r₀)
- usually in combination with sparse linear algebra/stencil application
- ► three building blocks:
 - i. dot-productii. SpMV
 - iii. axpy

E.g. Conjugate Gradients

Algorithm 1 CG 1: procedure $CG(A, b, x_0)$ 2: $r_0 := b - Ax_0; p_0 = r_0$ 3: for i = 0, ... do 4: $s_i := Ap_i$ 5: $s_i := (r_i, r_i) / (s_i, p_i)$ 6: $s_i := (r_i, r_i) / (s_i, p_i)$ 7: $s_i := r_i + a_i p_i$ 8: $s_i := (r_i + r_i + r_i) / (r_i, r_i)$ 9: $s_i := (r_i + r_i) / (r_i, r_i)$ 10: end for 11: end procedure

Krylov subspace methods Classical CG

Hestenes & Stiefel (1952)

i. 3 dot-products

- ▶ 2 global reduction phases
- ► latency dominated
- ► scales as log₂(#partitions)

ii. 1 SpMV

- scales well (minor commun.)
- non-overlapping (sequential to dot-product)

iii. 3 axpy's

- recurrences to avoid SpMV's
- perfectly scalable (no commun.)


```
Algorithm 3 Pipelined CG

    procedure PIPE-CG(A, b, x<sub>0</sub>)

       r_0 := b - Ax_0; w_0 := Ar_0
       for i = 0, \dots do
 4: \gamma_i := (r_i, r_i)
 q_i := Aw_i
            if i > 0 then
               \beta_i := \gamma_i/\gamma_{i-1}; \alpha_i := (\delta/\gamma_i - \beta_i/\alpha_{i-1})^{-1}
 8:
 9.
            else
               \beta_i := 0; \alpha := \gamma_i / \delta
10.
                                                     dot-pr
11-
            end if
12: z_i := q_i + \beta_i z_{i-1}
                                                     SpMV
axpy
14: p_i := r_i + \beta_i p_{i-1}
15: x_{i+1} := x_i + \alpha_i p_i
16: r_{i+1} := r_i - \alpha_i s_i
17: w_{i+1} := w_i - \alpha_i z_i
        end for
19: end procedure
```

Ghysels & Vanroose (2013)

Re-organized version of classical CG for improved parallel performance

- equivalent to CG in exact arithmetic
- Communication avoiding: dot-products are grouped in one global reduction phase (line 4+5)
- Communication hiding: overlap global commun. (line 4+5) with computations (SpMV, line 6)
- ▶ 3 extra recurrences for $s_i = Ap_i$, $w_i = Ar_i$, $z_i = As_i$ (line 12+13+17)

Algorithm 4 Standard BiCGStab

```
1: function BICGSTAB(A, b, x_0)
         r_0 := b - Ax_0; p_0 := r_0
         for i = 0, \dots do
          s_i := Ap_i
         compute (r_0, s_i)
 5.
                                                     dot-prod
          \alpha_i := (r_0, r_i) / (r_0, s_i)
 6:
          q_i := r_i - \alpha_i s_i
                                                      SpMV
         u_i := Aa_i
                                                      axpv
         compute (q_i, y_i); (y_i, y_i)
10:
         \omega_i := (q_i, y_i) / (y_i, y_i)
11:
           x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i
           r_{i+1} := q_i - \omega_i y_i
12:
          compute (r_0, r_{i+1})
13:
           \beta_i := (\alpha_i/\omega_i) (r_0, r_{i+1}) / (r_0, r_i)
14:
           p_{i+1} := r_{i+1} + \beta_i (p_i - \omega_i s_i)
15:
         end for
16.
17: end function
```

Traditional BiCGStab:

(non-preconditioned)

Global communication

▶ 3 global reduction phases

Local communication

► 2 non-overlapping SpMVs

No communication

▶ 4 recurrences

General two-step framework for deriving pipelined Krylov methods:

- Step 1. Avoiding communication: merge global reductions
- Step 2. Hiding communication: overlap SpMVs & global reductions

Bi-Conjugate Gradients Stabilized Step 1. Avoiding communication

Algorithm 4 Standard BiCGStab

```
1: function BICGSTAB(A, b, x_0)
         r_0 := b - Ax_0; p_0 := r_0
         for i = 0, \dots do
          s_i := Ap_i
         compute (r_0, s_i)
 5.
                                                      dot-prod
          \alpha_i := (r_0, r_i) / (r_0, s_i)
 6:
          q_i := r_i - \alpha_i s_i
                                                      SpMV
         u_i := Aa_i
                                                      axpv
         compute (q_i, y_i) ; (y_i, y_i)
10:
         \omega_i := (q_i, y_i) / (y_i, y_i)
11:
          x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i
          r_{i+1} := q_i - \omega_i y_i
12:
          compute (r_0, r_{i+1})
13:
           \beta_i := (\alpha_i/\omega_i) (r_0, r_{i+1}) / (r_0, r_i)
14:
           p_{i+1} := r_{i+1} + \beta_i (p_i - \omega_i s_i)
15:
         end for
16.
17: end function
```

- (a) <u>Identify</u> two global comm. phases for merger (lines 5-6 & 13-14)
- (b) <u>Rewrite</u> SpMV as recurrence: $s_i = Ap_i = w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1}z_{i-1}),$ <u>define</u> $w_i := Ar_i, z_i := As_i$ and note that $y_i := w_i - \alpha_i z_i$
- (c) <u>Rewrite</u> dot-product using (b): $(r_0, s_i) = (r_0, w_i + \beta_{i-1} (s_{i-1} \omega_{i-1} z_{i-1})),$ independent of interlying variables
- (d) <u>Move</u> dot-product (lines 5-6) upward and merge with existing global comm. phase (lines 13-14)

Bi-Conjugate Gradients Stabilized CA-BiCGStab

Algorithm 5 Communication avoiding BiCGStab

```
1: function CA-BICGSTAB(A, b, x_0)
         r_0 := b - Ax_0; w_0 := Ar_0; \alpha_0 := (r_0, r_0) / (r_0, w_0); \beta_{-1} := 0
          for i = 0, \dots do
            p_i := r_i + \beta_{i-1} (p_{i-1} - \omega_{i-1} s_{i-1})
            s_i := w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1} z_{i-1})
             z_i := As_i
                                                                           dot-prod
             q_i := r_i - \alpha_i s_i
                                                                           SpMV
              u_i := w_i - \alpha_i z_i
              compute (q_i, y_i); (y_i, y_i)
                                                                            axpy
           \omega_i := (q_i, y_i) / (y_i, y_i)
10:
            | x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i
11:
12.
            r_{i+1} := q_i - \omega_i y_i
13:
            w_{i+1} := Ar_{i+1}
              compute (r_0, r_{i+1}); (r_0, w_{i+1}); (r_0, s_i); (r_0, z_i)
14:
15:
              \beta_i := (\alpha_i/\omega_i) (r_0, r_{i+1}) / (r_0, r_i)
             \alpha_{i+1} := (r_0, r_{i+1}) / ((r_0, w_{i+1}) + \beta_i (r_0, s_i) - \beta_i \omega_i (r_0, z_i))
16:
          end for
17.
18: end function
```

Communication-avoiding BiCGStab:

(non-preconditioned)

Global communication

▶ 2 global red. phases (vs. 3)

Local communication

► 2 non-overlapping SpMVs

No communication

▶ 6 recurrences (vs. 4)

Status after Step 1:

number of global comm. phases reduced from 3 to 2, at the cost of 2 axpys

Note: further reduction from 2 to 1 global comm. phase possible, but not recommended (see later).

Algorithm 5 Communication avoiding BiCGStab

```
1: function CA-BICGSTAB(A, b, x_0)
         r_0 := b - Ax_0; w_0 := Ar_0; \alpha_0 := (r_0, r_0) / (r_0, w_0); \beta_{-1} := 0
          for i = 0, .... do
            p_i := r_i + \beta_{i-1} (p_{i-1} - \omega_{i-1} s_{i-1})
            s_i := w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1} z_{i-1})
             z_i := As_i
                                                                            dot-prod
             q_i := r_i - \alpha_i s_i
                                                                            SpMV
              u_i := w_i - \alpha_i z_i
              compute (q_i, y_i); (y_i, y_i)
                                                                            axpy
             \omega_i := (q_i, y_i) / (y_i, y_i)
10:
            | x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i
11:
12:
            r_{i+1} := q_i - \omega_i y_i
13:
            w_{i+1} := Ar_{i+1}
              compute (r_0, r_{i+1}); (r_0, w_{i+1}); (r_0, s_i); (r_0, z_i)
14:
15:
              \beta_i := (\alpha_i/\omega_i) (r_0, r_{i+1}) / (r_0, r_i)
             \alpha_{i+1} := (r_0, r_{i+1}) / ((r_0, w_{i+1}) + \beta_i (r_0, s_i) - \beta_i \omega_i (r_0, z_i))
16:
          end for
17.
18: end function
```

Bi-Conjugate Gradients Stabilized Step 2. Hiding communication

- (a) Identify SpMV / global reduction pairs (lines 6 & 9 and 13 & 14)
- (b) Rewrite SpMVs as recurrences:

$$z_i := As_i = t_i + \beta_{i-1} (z_{i-1} - \omega_{i-1} v_{i-1}),$$

 $w_{i+1} := Ar_{i+1} = y_i - \omega_i (t_i - \alpha_i v_i),$
define $t_i := Aw_i, v_i := Az_i$

- (c) <u>Check</u> SpMV / global reduction pairwise dependencies:
 - line 9 independent of v_i ? yes
 - line 14 indep. of t_{i+1} ? **yes**
- (d) <u>Insert</u> new SpMVs <u>below</u> corresponding global comm. phases

Bi-Conjugate Gradients Stabilized pipe-BiCGStab

Algorithm 6 Pipelined BiCGStab 1: function PIPE-BICGSTAB(A, b, x_0) $r_0 := b - Ax_0$; $w_0 := Ar_0$; $t_0 := Aw_0$; for $i = 0, \dots$ do $p_i := r_i + \beta_{i-1} (p_{i-1} - \omega_{i-1} s_{i-1})$ 4: $s_i := w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1} z_{i-1})$ 5: $z_i := t_i + \beta_{i-1} (z_{i-1} - \omega_{i-1} v_{i-1})$ 6. $q_i := r_i - \alpha_i s_i$ 7: dot-prod 8. $y_i := w_i - \alpha_i z_i$ SpMV compute (q_i, y_i) ; (y_i, y_i) 9: axpy $\omega_i := (q_i, y_i) / (y_i, y_i)$ 10: overlap $v_i := Az_i$ 11: 12: $x_{i+1} := x_i + \alpha_i p_i + \omega_i q_i$ $r_{i+1} := q_i - \omega_i y_i$ 13: 14. $w_{i+1} := y_i - \omega_i (t_i - \alpha_i v_i)$ **compute** (r_0, r_{i+1}) ; (r_0, w_{i+1}) ; (r_0, s_i) ; (r_0, z_i) 15: $\beta_i := (\alpha_i/\omega_i) (r_0, r_{i+1}) / (r_0, r_i)$ 16:

 $\alpha_{i+1} := (r_0, r_{i+1}) / ((r_0, w_{i+1}) + \beta_i (r_0, s_i) - \beta_i \omega_i (r_0, z_i))$

Pipelined BiCGStab:

(non-preconditioned)

Global communication

▶ 2 global red. phases (vs. 3)

Local communication

► 2 overlapping SpMVs

No communication

▶ 8 recurrences (vs. 4)

Status after Step 2:

19: end for 20: end function

18:

overlap $t_{i+1} := Aw_{i+1}$

both global comm. phases are overlapped with SpMV computations ('hidden'), at the cost of 4 additional axpys compared to standard BiCGStab

Bi-Conjugate Gradients Stabilized Preconditioned pipe-BiCGStab

Algorithm 8 Preconditioned Pipelined BiCGStab

```
1: function P-PIPE-BICGSTAB(A, M^{-1}, b, x_0)
           r_0 := b - Ax_0; \hat{r}_0 := M^{-1}r_0; w_0 := A\hat{r}_0; \hat{w}_0 := M^{-1}w_0
 3.
           t_0 := A\hat{w}_0; \alpha_0 := (r_0, r_0) / (r_0, w_0); \beta_{-1} := 0
           for i = 0, \dots do
 4:
                \hat{p}_i := \hat{r}_i + \beta_{i-1} (\hat{p}_{i-1} - \omega_{i-1} \hat{s}_{i-1})
 6.
                s_i := w_i + \beta_{i-1} (s_{i-1} - \omega_{i-1} z_{i-1})
                \hat{s}_i := \hat{w}_i + \beta_{i-1} (\hat{s}_{i-1} - \omega_{i-1} \hat{z}_{i-1})
                z_i := t_i + \beta_{i-1} (z_{i-1} - \omega_{i-1}v_{i-1})
                q_i := r_i - \alpha_i s_i
                \hat{q}_i := \hat{r}_i - \alpha_i \hat{s}_i
10-
                u_i := w_i - \alpha_i z_i
11:
                                                                                    dot-prod
12:
                compute (q_i, y_i); (y_i, y_i)
                                                                                    SpMV
                \omega_i := (q_i, y_i) / (y_i, y_i)
13-
                                                                                    axpv
                overlap \hat{z}_i := M^{-1}z_i
14:
15:
                overlap v_i := A\hat{z}_i
                x_{i+1} := x_i + \alpha_i \hat{p}_i + \omega_i \hat{q}_i
16:
17:
                r_{i+1} := q_i - \omega_i y_i
18:
                \hat{r}_{i+1} := \hat{q}_i - \omega_i (\hat{w}_i - \alpha_i \hat{z}_i)
                w_{i+1} := y_i - \omega_i (t_i - \alpha_i v_i)
19-
                compute (r_0, r_{i+1}); (r_0, w_{i+1}); (r_0, s_i); (r_0, z_i)
20.
                \beta_i := (\alpha_i/\omega_i) (r_0, r_{i+1}) / (r_0, r_i)
21:
                \alpha_{i+1} := (r_0, r_{i+1}) / ((r_0, w_{i+1}) + \beta_i (r_0, s_i) - \beta_i \omega_i (r_0, z_i))
22.
                overlap \hat{w}_{i+1} := M^{-1}w_{i+1}
23.
                overlap t_{i+1} := A\hat{w}_{i+1}
24:
           end for
26: end function
```

Like for any pipelined method, including a preconditioner is - in theory - easy.

Pipelined BiCGStab:

(preconditioned)

Global communication

▶ 2 global red. phases (vs. 3)

Local communication

► 2 overlapping Prec + SpMVs

No communication

► 11 recurrences (vs. 4)

${\it Bi-Conjugate \ Gradients \ Stabilized} \\ Pipe-BiCGStab \ vs. \ IBiCGStab \ vs. \ s-step \ CA-BiCGStab$

	GLRED	SPMV	Flops (AXPY + DOT-PROD)	Time (GLRED + SPMV)	Memory
BiCGStab	3	2	20	3 glred + 2 spmv	7
IBiCGStab	1	2	30	1 glred + 2 spmv	10
p-BiCGStab	2	2*	38	2 max(glred, spmv)	11
s-step CA-BiCGStab	1/s	4	32s+45	1/s glred + 4 spmv	4s+5

Theoretical speed-up factors over classical BiCGStab:

	pipe-BiCGStab ☐ C., Vanroose, 2017	IBiCGStab ■ Yang & Brent, 2002	CA-BiCGStab Carson, 2015
$\begin{array}{l} \text{if time(}\text{GLRED)} \\ \approx \text{time(}\text{SPMV)} \end{array}$	× 2.5	× 1.67	× 1.25
if time(GLRED) ≫ time(SPMV)	× 1.5	× 3.0	× 3 <i>s</i>

Is algorithm with 1 GLRED overlapped with all SPMVs possible? Yes; however...

- ullet no. axpys is $\underline{\mathsf{much}}$ larger o algorithm robustness decreases (rounding errors)
- one extra SpMV required

Krylov subspace methods Other pipelined Krylov methods

► Pipelined GMRES

$$V_{i-\ell+1} = [v_0, v_1, \dots, v_{i-\ell}]$$

$$Z_{i+1} = [z_0, z_1, \dots, z_{i-\ell}, \underbrace{z_{i-\ell+1}, \dots, z_{i}}_{\ell}]$$

- compute \(\ell \) new basis vectors for Krylov subspace (SpMVs) during global communication (dot-products).
- deeper/variable pipelining possible: $p(\ell)$ -GMRES
- see talk by W. Vanroose

► Pipelined CG

Ghysels et al. (2013)

deeper pipelining also possible: p(ℓ)-CG

see talk by W. Vanroose

Pipelined BiCGStab
 non-symmetric operators

© C., Vanroose (2017)

- Preconditioned pipelined variants are available
 - prec-pipe-CG
 - prec-pipe-GMRES
 - prec-pipe-BiCGStab
- ► Augmented and deflated pipelined methods are available

Conjugate Gradients Rounding error propagation

Classical CG

Pipelined CG

Motivation: pipe-CG loses max. attainable accuracy compared to classical CG

- ▶ Model problem: small 2D Laplacian with 2,500 unknowns
- ▶ Loss of attainable accuracy is more pronounced for larger systems/longer pipelines

 $Pipe(\ell)$ -CG

Conjugate Gradients Rounding error propagation

J. Cornelis, MaTh (2017)

Motivation: pipe-CG loses max. attainable accuracy compared to classical CG

- ▶ Model problem: medium-sized 2D Laplacian with 250,000 unknowns
- ▶ Loss of attainable accuracy is more pronounced for larger systems/longer pipelines

Conjugate Gradients Rounding error propagation in CG

Rounding errors due to recursive definition of residual (and auxiliary variables)

$$\bar{p}_{i+1} = \bar{u}_{i+1} + \bar{\beta}_{i+1}\bar{p}_i + \delta_i^p,
\bar{x}_{i+1} = \bar{x}_i + \bar{\alpha}_i\bar{p}_i + \delta_i^x,
\bar{r}_{i+1} = \bar{r}_i - \bar{\alpha}_iA\bar{p}_i + \delta_i^r.$$

which deviates from the true residual $b - A\bar{x}_i$ in finite precision arithmetics

$$f_{i+1} = (b - A\bar{x}_{i+1}) - \bar{r}_{i+1}$$

$$= b - A(\bar{x}_i + \bar{\alpha}_i \bar{p}_i + \delta_i^x) - (\bar{r}_i - \bar{\alpha}_i A \bar{p}_i + \delta_i^r)$$

$$= f_i - A\delta_i^x - \delta_i^r.$$

After *i* iterations:

$$f_{i+1} = f_0 - \sum_{i=0}^i \left(A \delta_j^{\mathsf{x}} + \delta_j^{\mathsf{r}} \right).$$

Only accumulation of local rounding errors in classical CG, no amplification.

Greenbaum (1997), Gutknecht & Strakos (2000)

Conjugate Gradients Rounding errors in pipe-CG

Observation: rounding error propagation in pipe-CG may be much more dramatic due to additional recurrence relations that all induce rounding errors.

$$\begin{split} \bar{x}_{i+1} &= \bar{x}_i + \bar{\alpha}_i \bar{p}_i + \delta_i^x, \\ \bar{r}_{i+1} &= \bar{r}_i - \bar{\alpha}_i \bar{s}_i + \delta_i^r, \\ \bar{p}_i &= \bar{u}_i + \bar{\beta}_i \bar{p}_{i-1} + \delta_i^p, \\ \end{split}$$

$$\begin{split} \bar{s}_i &= \bar{w}_i + \bar{\beta}_i \bar{s}_{i-1} + \delta_i^s, \\ \bar{w}_{i+1} &= \bar{w}_i - \bar{\alpha}_i \bar{z}_i + \delta_i^w, \\ \bar{w}_i &= \bar{w}_i - \bar{\alpha}_i \bar{z}_i + \delta_i^w, \\ \bar{z}_i &= A \bar{m}_i + \bar{\beta}_i \bar{z}_{i-1} + \delta_i^z, \end{split}$$

Residual gap is **coupled** with the gaps on the other auxiliary variables:

$$f_i = (b - A\bar{x}_i) - \bar{r}_i, \quad g_i = A\bar{p}_i - \bar{s}_i, \quad h_i = A\bar{u}_i - \bar{w}_i, \quad j_i = A\bar{q}_i - \bar{z}_i$$

$$\begin{bmatrix} f_{i+1} \\ g_i \\ h_{i+1} \\ j_i \end{bmatrix} = \begin{bmatrix} 1 & -\bar{\alpha}_i \bar{\beta}_i & -\bar{\alpha}_i & 0 \\ 0 & \bar{\beta}_i & 1 & 0 \\ 0 & 0 & 1 & -\bar{\alpha}_i \bar{\beta}_i \\ 0 & 0 & 0 & \bar{\beta}_i \end{bmatrix} \begin{bmatrix} f_i \\ g_{i-1} \\ h_i \\ j_{i-1} \end{bmatrix} + \begin{bmatrix} -A\delta_i^x - \delta_i^r - \bar{\alpha}_i \left(A\delta_i^p - \delta_i^s\right) \\ A\delta_i^y - \delta_i^y - \bar{\alpha}_i \left(A\delta_i^q - \delta_i^z\right) \\ A\delta_i^q - \delta_i^z \end{bmatrix}.$$

Amplification of local rounding errors possible, depending on α_i 's and β_i 's.

Conjugate Gradients Rounding error model for CG

Error bounds: Local rounding errors $A\delta_i^x + \delta_i^r$ can be bounded by

$$\begin{aligned} \|A\delta_{i}^{\mathsf{x}} + \delta_{i}^{\mathsf{r}}\| & \leq \left(\|A\| \|\overline{\mathbf{x}}_{i}\| + \left(\mu\sqrt{n} + 4\right)|\overline{\alpha}_{i}| \|A\| \|\overline{\mathbf{p}}_{i}\| + \|\overline{\mathbf{r}}_{i}\|\right) \epsilon \\ & := e_{i}^{\mathsf{f}} \epsilon. \end{aligned}$$

$$(\epsilon = \mathsf{machine precision})$$

In practice:

- ► characterizes extreme case rounding error effects
- often largely overestimates the actual errors

Error estimates: Local rounding errors can be approximated as

$$\|A\delta_i^{\mathsf{x}} + \delta_i^{\mathsf{r}}\| \approx \sqrt{\mathbf{e}_i^{\mathsf{f}}} \epsilon$$

In practice:

- ► additional norm computations required
- ▶ include in existing global reduction phase to avoid overhead

Conjugate Gradients Pipe-CG with automated residual replacement

Explicitly replace \bar{r}_i , \bar{s}_i , \bar{w}_i and \bar{z}_i by their true values in selected iterations:

$$ar{r}_{i+1} = \mathrm{fl}(b - Aar{x}_{i+1}), \qquad ar{w}_{i+1} = \mathrm{fl}(Aar{u}_{i+1}), ar{s}_i = \mathrm{fl}(Aar{p}_i), \qquad ar{z}_i = \mathrm{fl}(Aar{q}_i).$$

Residual replacement criterion:

$$||f_{i-1}|| \le \tau ||\bar{r}_{i-1}||$$
 and $||f_i|| > \tau ||\bar{r}_i||$.

with $\tau = \sqrt{\epsilon}$.

- Sleijpen & Van der Vorst 1996
- Tong & Ye, 1999
- Van der Vorst & Ye, 2000

Estimate for gap $||f_i||$ can be computed at runtime (without additional overhead), so fully automated replacement strategy is possible for pipe-CG.

Conjugate Gradients Pipe-CG with automated residual replacement

Example: 2D Laplacian - 2,500 unk (cont.)

- Pipe-CG-rr = pipe-CG with residual replacement based on rounding error model
 <u>Cost?</u> 4 additional SpMV's per replacement step
- ► Replacement criterion ensures:
 - (1) number of replacements is limited,
 - (2) only replace when $||r_i||$ is sufficiently large (Krylov convergence is not affected)
 - Tong & Ye, 1999

Conjugate Gradients Numerical results: attainable accuracy

MatrixMarket collection: convergence tests on all non-diagonal SPD matrices

Matrix	Prec	$\kappa(A)$	n	#nnz		CG	CC	G-CG	p-	-CG		p-CG-rr	
					iter	relres	iter	relres	iter	relres	iter	relres	rr
bcsstk14	JAC	1.3e + 10	1806	63,454	650	7.6e-16	658	7.1e-16	506	5.2e-12	658	5.2e-16	9
bcsstk15	JAC	8.0e + 09	3948	117,816	772	3.7e-15	785	3.5e-15	646	2.3e-11	974	4.0e-15	10
bcsstk16	JAC	65	4884	290,378	298	3.5e-15	300	4.0e-15	261	8.7e-12	301	2.1e-15	4
bcsstk17	JAC	65	10,974	428,650	3547	1.0e-14	3428	1.7e-14	2913	2.8e-09	4508	1.2e-14	54
bcsstk18	JAC	65	11,948	149,090	2299	2.2e-15	2294	2.1e-15	1590	2.9e-11	2400	1.5e-15	50
bcsstk27	JAC	7.7e + 04	1224	56,126	345	3.2e-15	345	4.0e-15	295	8.0e-12	342	2.7e-15	6
gr_30_30	-	3.8e + 02	900	7744	56	2.7e-15	55	3.1e-15	52	2.0e-13	61	3.0e-15	2
nos1	*ICC	2.5e + 07	237	1017	301	1.3e-14	338	1.2e-14	337	2.6e-10	968	1.9e-14	21
nos2	*ICC	6.3e + 09	957	4137	3180	8.3e-14	3292	1.1e-13	2656	1.2e-07	4429	2.7e-11	113
nos3	ICC	7.3e + 04	960	15,844	64	1.0e-14	63	1.1e-14	59	1.0e-12	61	2.5e-14	3
nos4	ICC	2.7e + 03	100	594	31	1.9e-15	31	1.9e-15	29	4.0e-14	33	1.3e-15	2
nos5	ICC	2.9e + 04	468	5172	63	3.2e-16	64	3.4e-16	58	4.3e-14	65	2.3e-16	2
nos6	ICC	8.0e + 06	675	3255	34	5.1e-15	35	6.2e-15	31	5.5e-11	33	1.0e-14	2
nos7	ICC	4.1e + 09	729	4617	29	4.0e-14	31	2.8e-14	29	4.5e-14	29	3.0e-14	3
s1rmq4m1	ICC	1.8e + 06	5489	262,411	122	4.3e-15	122	4.6e-15	114	5.5e-12	135	3.7e-15	ϵ
s1rmt3m1	ICC	2.5e + 06	5489	217,651	229	9.3e-15	228	8.7e-15	213	2.2e-11	240	1.7e-14	6
s2rmq4m1	*ICC	1.8e + 08	5489	263,351	370	6.7e-15	387	7.3e-15	333	2.7e-10	349	2.5e-13	25
s2rmt3m1	ICC	2.5e + 08	5489	217,681	285	8.7e-15	283	1.0e-14	250	7.3e-10	425	8.7e-15	17
s3dkq4m2	*ICC	1.9e + 11	90,449	2,455,670	-	1.9e-08	-	2.1e-08	-	2.8e-07	-	5.6e-08	199
s3dkt3m2	*ICC	3.6e + 11	90,449	1,921,955	-	2.9e-07	-	2.9e-07	-	3.5e-07	-	2.9e-07	252
s3rmq4m1	*ICC	1.8e + 10	5489	262,943	1651	1.5e-14	1789	1.6e-14	1716	2.6e-08	1602	5.3e-10	154
s3rmt3m1	*ICC	2.5e + 10	5489	217,669	2282	2.7e-14	2559	2.9e-14	2709	9.3e-08	3448	8.0e-10	149
s3rmt3m3	*ICC	2.4e + 10	5357	207,123	2862	3.3e-14	2798	3.4e-14	3378	2.0e-07	2556	7.1e-11	248

Conjugate Gradients Numerical results: strong scaling

- ▶ PETSc implementation using MPICH-3.1.3 communication
- ▶ Benchmark problem: 2D Laplacian model, 1,000,000 unknowns
- ▶ System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG (12-240 cores)

Accuracy i.f.o. total time spent (240 cores)

Conjugate Gradients Numerical results: strong scaling

- ▶ PETSc implementation using MPICH-3.3a2 communication
- ▶ Benchmark problem: 3D ice sheet flow, $150 \times 150 \times 100 / 500 \times 500 \times 50$ Q1 FE
- ► System specs: 128 nodes, two 14-core Intel Xeon E5-2680v4 2.4GHz CPUs/node

Speedup over single-node CG (2,250,000 unk)

Speedup over single-node CG (12,500,000 unk)

Bi-Conjugate Gradients Stabilized Numerical results: attainable accuracy

Non-automated residual replacement every i-th iteration:

$$r_i := b - Ax_i, \quad \hat{r}_i := M^{-1}r_i, \quad w_i := A\hat{r}_i, \quad s_i := A\hat{p}_i, \quad \hat{s}_i := M^{-1}s_i, \quad z_i := A\hat{s}_i.$$

- ⊕ increased maximal attainable accuracy: comparable to BiCGStab level
- increased robustness: resets accumulated rounding errors

Bi-Conjugate Gradients Stabilized Numerical results: attainable accuracy

Multi-term auxiliary recurrences

Local error propagation matrix

$$\begin{bmatrix} 1 & -\bar{\alpha}_i\bar{\beta}_i & -\bar{\alpha}_i - \bar{\omega}_i & \bar{\alpha}_i\bar{\beta}_i(\bar{\omega}_i + \bar{\omega}_{i-1}) \\ 0 & \bar{\beta}_i & 1 & -\bar{\beta}_i\bar{\omega}_{i-1} \\ 0 & 0 & 1 & -\bar{\alpha}_i\bar{\beta}_i \\ 0 & 0 & 0 & \bar{\beta}_i \end{bmatrix}$$

Non-automated residual replacement every i-th iteration:

$$r_i := b - Ax_i, \quad \hat{r}_i := M^{-1}r_i, \quad w_i := A\hat{r}_i, \quad s_i := A\hat{p}_i, \quad \hat{s}_i := M^{-1}s_i, \quad z_i := A\hat{s}_i.$$

- increased maximal attainable accuracy: comparable to BiCGStab level
- increased robustness: resets accumulated rounding errors

Bi-Conjugate Gradients Stabilized Numerical results: strong scaling

- ▶ PETSc implementation using MPICH-3.1.3 communication
- ▶ Benchmark problem 2: 2D indefinite Helmholtz model, 1,000,000 unknowns
- ▶ System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

$$A_2^{stencil} = \begin{pmatrix} 1 & 1 \\ 1 & -1 & 1 \\ & 1 & \end{pmatrix}$$

Speedup over single-node BiCGStab

Iterations i.f.o. number of nodes

nodes	1	2	3	4	5
BiCGStab	1563	1805	1789	1875	1710
p-BiCGStab	1807	1614	1779	1787	1673
p-BiCGStab-rr	1857	1788	1728	1570	1677
nodes	6	7	8	9	10
BiCGStab	1852	1789	1555	1641	1909
p-BiCGStab	1547	1668	1773	1640	1673
p-BiCGStab-rr	1721	1688	1283	1884	1718
nodes	11	12	13	14	15
BiCGStab	1805	1715	1875	1717	1765
p-BiCGStab	1936	1811	1629	1642	1849
p-BiCGStab-rr	1845	1628	1562	1861	1650
nodes	16	17	18	19	20
BiCGStab	1722	1657	2050	1778	1670
p-BiCGStab	1843	1726	1796	1713	1870
p-BiCGStab-rr	1647	1889	1750	1701	2112

In this talk _____

Pipelined Conjugate Gradients: algorithm and rounding error analysis

- ▶ pipe-CG is much more sensitive to rounding errors than standard CG
- rounding error model allows for real-time countermeasures: pipe-CG-rr

Pipelined BiCGStab: algorithm and numerical stability

▶ pipe-BiCGStab for non-symmetric operators (alternative to pipe-GMRES)

Related work _____

Longer pipelines: $pipe(\ell)$ -GMRES & $pipe(\ell)$ -CG

talk by W. Vanroose

- ▶ useful when time(GLRED) is much larger than time(SPMV+PREC)
- further reduced numerical stability (WIP)

Shifted pipelined CG

- ▶ introduce shift σ in auxiliary variables: $s_i = (A \sigma)p_i$, $w_i = (A \sigma)s_i$
- ▶ stabilizing effect on rounding error propagation for the right shift choice

Soft error detection

with INRIA Bordeaux

- rounding error model allows separation rounding errors vs. soft errors
- detect-and-correct strategy improves soft error resilience

Conclusion References

- P. Ghysels, T.J. Ashby, K. Meerbergen, W. Vanroose, Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines, SIAM J. Sci. Comput., 35(1), 2013.
- P. Ghysels, W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm, Parallel Computing, 40, 2013.
- H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 13(2):631-644, 1992.
- H.A. Van der Vorst, Q. Ye, Residual Replacement strategies for Krylov Subspace iterative methods for Convergence of the True Residuals, 22(3), SIAM J. Sci. Comput., 2000.
- E. Carson, J. Demmel, A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Methods, SIAM J. Mat. Anal. Appl., 35(1), 2014.
- S. Cools, W. Vanroose, Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined Conjugate Gradients method, under review, SIAM J. Numer. Anal., 2017.
- S. Cools, W. Vanroose, The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems, Parallel Computing, 65, pp.1–20, 2017.
- S. Cools, W. Vanroose, Numerically Stable Variants of the Communication-hiding Pipelined Conjugate Gradients Algorithm for the Parallel Solution of Large Scale Symmetric Linear Systems, Technical Report, https://arxiv.org/abs/1706.05988, 2017.

Thank you for your attention!

- Q: What is the difference between pipelined and s-step Krylov methods?
 - Carson, Knight, Demmel, 2013
 - A: Global communication is hidden vs. avoided
 - A: Off-the-shelf preconditioning possible vs. specialized preconditioning required
- Q: Is the code available online?
 - A: Pipe-CG, pipe-CG-rr, gropp-CG, pipe-GMRES and pipe-BiCGStab are included in the current PETSc version, available at https://www.mcs.anl.gov/petsc/.
 - A: The inclusion of $pipe(\ell)$ -CG and $pipe(\ell)$ -GMRES in PETSc is work in progress.