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Bi-Conjugate Gradients Stabilized (BiCGStab)

Traditional BiCGStab:
(non-preconditioned)

Global communication

I 3 global reduction phases

Semi-local communication

I 2 non-overlapping SpMVs

Local communication

I 4 axpy(-like) operations

General two-step framework for deriving pipelined Krylov methods:

Step 1. Avoiding communication: merge global reductions

Step 2. Hiding communication: overlap SpMVs & global reductions



Step 1. Avoiding global communication

(a) Identify two global comm. phases
for merger (lines 5-6 & 13-14)

(b) Rewrite SpMV as recurrence:

si = Api = wi + βi−1 (si−1 − ωi−1zi−1) ,

define wi := Ari , zi := Asi and
note that yi := wi − αizi

(c) Rewrite dot-product using (b):

(r0, si ) = (r0,wi+βi−1 (si−1 − ωi−1zi−1)),

independent of interlying variables

(d) Move dot-product (lines 5-6)
upward and merge with existing
global comm. phase (lines 13-14)



Communication-avoiding BiCGStab (CA-BiCGStab)

CA-BiCGStab:
(non-preconditioned)

Global communication

I 2 global red. phases (vs. 3)

Semi-local communication

I 2 non-overlapping SpMVs

Local communication

I 6 axpy(-like) operations (vs. 4)

Status after Step 1:

no. global comm. phases reduced from 3 to 2, at the cost of 2 additional axpys

Note: further reduction from 2 to 1 global comm. phase possible, but not recommended (see later).



Step 2. Hiding global communication

(a) Identify SpMV / global reduction
pairs (lines 6 & 9 and 13 & 14)

(b) Rewrite SpMVs as recurrences:

zi := Asi = ti + βi−1 (zi−1 − ωi−1vi−1) ,

wi+1 := Ari+1 = yi − ωi (ti − αivi ),

define ti := Awi , vi := Azi

(c) Check SpMV / global reduction
pairwise dependencies:

• line 9 independent of vi? yes
• line 14 indep. of ti+1? yes

(d) Insert new SpMVs below
corresponding global
comm. phases



Pipelined BiCGStab (p-BiCGStab)

p-BiCGStab:
(non-preconditioned)

Global communication

I 2 global red. phases (vs. 3)

Semi-local communication

I 2 overlapping SpMVs

Local communication

I 8 axpy(-like) operations (vs. 4)

Status after Step 2:

both global comm. phases are overlapped with SpMV computations (‘hidden’),
at the cost of 4 additional axpys compared to standard BiCGStab



Preconditioned pipelined BiCGStab

Like for any pipelined method,
including a preconditioner is easy.

p-BiCGStab:
(preconditioned)

Global communication

I 2 global red. phases (vs. 3)

Semi-local communication

I 2 overlapping Prec + SpMVs

Local communication

I 11 axpy(-like) operations (vs. 4)



Pipelined BiCGStab vs. Improved BiCGStab

L.T. Yang and R.P. Brent. The improved BiCGStab method for large and sparse unsymmetric

linear systems on parallel distributed memory architectures. In Proceedings of the Fifth International

Conference on Algorithms and Architectures for Parallel Processing, pp. 324–328, IEEE, 2002.

If time(glred) ≈ time(spmv):

I speed-up factor p-BiCGStab/BiCGStab = 2.5

I speed-up factor IBiCGStab/BiCGStab = 1.66

If time(glred) � time(spmv):

I speed-up factor p-BiCGStab/BiCGStab = 2.5

I speed-up factor IBiCGStab/BiCGStab = 3.0



Pipelined BiCGStab vs. Improved BiCGStab

L.T. Yang and R.P. Brent. The improved BiCGStab method for large and sparse unsymmetric

linear systems on parallel distributed memory architectures. In Proceedings of the Fifth International

Conference on Algorithms and Architectures for Parallel Processing, pp. 324–328, IEEE, 2002.

Is combination of both methods (1 glred overlapped with all spmvs) possible?

Theoretically, yes, however:

• no. axpys is much larger → algorithm robustness decreases (rounding errors)

• one extra SpMV required → increase in computational cost
→ further loss of robustness/flop equivalence



Convergence results: p-BiCGStab

MatrixMarket collection unsymmetric test problems tol = 1e-6



Convergence results: p-BiCGStab



Robustness and attainable accuracy: p-BiCGStab-rr



Robustness and attainable accuracy: p-BiCGStab-rr

Residual replacement every rr -th iteration
(non-automated, i.e. rr is a parameter of the method, but chosen large s.t. no. res. repl. is small)

ri := b − Axi , r̂i := M−1ri , wi := Ar̂i ,

si := Ap̂i , ŝi := M−1si , zi := Aŝi .

⊕ increased maximal attainable accuracy: comparable to BiCGStab level

⊕ increased robustness: negates instable true residual behaviour

	 increased number of iterations possible



Robustness and attainable accuracy: p-BiCGStab-rr

MatrixMarket collection unsymmetric test problems tol = 1e-20



Performance benchmark: strong scaling results

I PETSc implementation using MPICH-3.1.3 communication

I Hardware specs: 1-20 LYNX nodes (12-240 cores)

I Benchmark problem: 1.000.000 unknowns 2D model with asymmetric stencil

Astencil =

 1
1 −4 ε

ε

 , with ε = 0.999

CPU time i.f.o. number of nodes Speedup over 1-node BiCGStab



Performance benchmark: accuracy results

I PETSc implementation using MPICH-3.1.3 communication

I Hardware specs: 20 LYNX nodes (240 cores)

I Benchmark problem: 1.000.000 unknowns 2D model with asymmetric stencil

Astencil =

 1
1 −4 ε

ε

 , with ε = 0.999

Residuals i.f.o. number of iterations Residuals i.f.o. total time spent



Conclusions and outlook

Overall conclusions

I General framework for deriving pipelined variants of existing Krylov methods

I Prove-of-concept: successfully applied to BiCGStab

I p-BiCGStab displays good performance, but slightly decreased robustness

I Residual replacement strategy improves robustness and max. att. accuracy

Status summary

I p-BiCGStab prototype Matlab code available

I p-BiCGStab PETSc implementation finished

→ to be made publicly available in open-source PETSc distribution asap

I Technical report nearly (80%) completed

→ to be submitted as full paper in ∼ 1-2 months
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