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Introduction

What are we working on?

Classical Krylov subspace method

Washing, drying and ironing
in classical ‘Laundry method’

vs.

Pipelined Krylov subspace method

Latency hiding of global drying
in pipelined ‘Laundry method’
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Introduction

The EXA2CT European project

Increasing gap between computation
and communication costs

I Floating point performance steadily
increases

I Network latencies only go down
marginally

I Memory latencies decline slowly

I Avoid communication: trade
communication for computations

I Hide communication: overlap
communication with computations

EXascale Algorithms and Advanced Computational Techniques
http://exa2ct.eu/

More info: see talk by Tom Vander Aa, Thu April 28, 13h40
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Krylov subspace methods

General idea

Iteratively improve an approximate solution of linear system Ax = b,

xi ∈ x0 +Ki (A, r0) = x0 + span{r0,Ar0,A
2r0, . . . ,A

i−1r0}

I minimize an error measure over
expanding Krylov subspace Ki (A, r0)

I usually in combination with sparse
linear algebra/stencil application

I three building blocks:
i. dot-product
ii. SpMV
iii. axpy

E.g. Conjugate Gradients
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Krylov subspace methods

Classical CG

Hestenes & Stiefel (1952)

i. 3 dot-products
I 2 global reduction phases
I latency dominated
I scales as log2(#partitions)

ii. 1 SpMV
I scales well (minor commun.)
I non-overlapping

(sequential to dot-product)

iii. 3 axpy’s
I recurrences to avoid SpMV’s
I perfectly scalable (no commun.)
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Krylov subspace methods

Pipelined CG

Ghysels & Vanroose (2013)

Re-organized version of classical CG
for improved parallel performance

I equivalent to CG in exact arithmetic

I Communication avoiding:
dot-products are grouped in
one global reduction phase (line 4+5)

I Communication hiding:
overlap global commun. (line 4+5)
with computations (SpMV, line 6)

I 3 extra recurrences for si = Api ,
wi = Ari , zi = Asi (line 12+13+17)
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Krylov subspace methods

Strong scaling experiment

I Hydrostatic ice sheet flow, 100× 100× 50 Q1 finite elements, PETSc experiment

I Line search Newton method (rtol=10−8, atol=10−15)

I CG preconditioned with block Jacobi with ICC(0) (rtol=10−5, atol=10−50)

Ghysels & Vanroose (2013)

Performance breakdown

I max pipe-CG/CG speedup:
2.14×

I max pipe-CG/CG1 speedup:
1.43×

I max pipe-CR/CR speedup:
2.09×

(CG1 = Chronopoulos/Gear CG)

(CR = Conjugate Residuals)
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Krylov subspace methods

Other pipelined Krylov methods

I Pipelined CG Ghysels, Vanroose (2013)

I Pipelined GMRES Ghysels, Ashby, Meerbergen, Vanroose (2012)

Vi−`+1 = [v0, v1, . . . , vi−`]

Zi+1 = [z0, z1, . . . , zi−`, zi−`+1, . . . , zi︸ ︷︷ ︸
`

]

• compute ` new basis vectors for Krylov subspace (SpMVs) during global
communication (dot-products).

• more technical, but deeper and variable pipelining possible p(`)-GMRES

I Pipelined BiCGStab
• non-symmetric operators
• work-in-progress

I Preconditioned pipelined Krylov methods are available
• p-pipe-CG
• p-pipe-GMRES

I Augmented and deflated pipelined Krylov methods are (almost) available
• work-in-progress
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Krylov subspace methods

Rounding error propagation

Classical CG Pipelined CG

Motivation: pipe-CG loses max. attainable accuracy compared to classical CG

I Model problem (figures): small 2D Laplacian problem, 2500 unknowns, single-core

I Loss of attainable accuracy is even more pronounced for larger systems
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Krylov subspace methods

Rounding error propagation in CG

Rounding errors due to recursive definition of residual (and auxiliary variables){
xi+1 = xi + αipi + δxi ,

ri+1 = ri − αi si + δri ,

which deviates from the true residual ri = b − Axi in finite precision arithmetics

∆r
i+1 := ri+1 − (b − Axi+1)

= ri − αi si + δri − b + A(xi + αipi + δxi )

= ri − (b − Axi )− αi (Api ) + A(αipi ) + Aδxi + δri

= ∆r
i + A(αipi )− αi (Api )︸ ︷︷ ︸

non-commutativity error

+ Aδxi + δri︸ ︷︷ ︸
local rounding error

,

Rounding error model: ‖A(αipi )− αi (Api )‖ ≈ 2αi‖si‖ψ, ψ = eps.mach.
C. & Vanroose (2016)
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Krylov subspace methods

Rounding error propagation in CG

Accumulated rounding error Per-iter non-comm error

I Rounding errors accumulate and cause the true residuals to stagnate

I Maximal attainable accuracy for CG is still good (1e-13)

I Rounding error model: runtime tracking of residual rounding errors (estimate)
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Krylov subspace methods

Rounding errors in pipe-CG

Observation: rounding error propagation in pipe-CG is much more dramatic due
to additional recurrence relations that all build up rounding errors.

zi = qi + βizi−1,

si = wi + βi si−1,

pi = ri + βipi−1,


xi+1 = xi + αipi ,

ri+1 = ri − αi si ,

wi+1 = wi − αizi .

Residual rounding error is coupled with the error on the auxiliary variables:
‖∆r

i+1‖
‖∆s

i+1‖
‖∆w

i+1‖
‖∆z

i+1‖

 =

1 αi 0 0
0 βi+1 1 αi

0 0 1 αi

0 0 0 βi+1


︸ ︷︷ ︸

rounding error propagation matrix

‖∆
r
i ‖

‖∆s
i ‖

‖∆w
i ‖

‖∆z
i ‖

 +

eri
esi
ewi
ezi

 ,

with eri = ‖αi (Api )− A(αipi )‖, esi , ewi , ezi the non-comm error on each variable.
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Krylov subspace methods

Rounding errors in pipe-CG

Accumulated rounding error Per-iter non-comm error

I Loss of maximal attainable accuracy (1e-11) compared to classical CG

I Rounding error model: runtime tracking of residual rounding error (estimate)

Cost? two additional dot-pr per iteration to compute ‖si‖ and ‖zi‖
But: can be included in existing global reduction phase

→ no additional overhead
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Krylov subspace methods

Pipe-CG with automated residual replacement

Replace ri , si , wi and zi with their true values
si = Api ,

zi = Asi ,

ri+1 = b − Axi+1,

wi+1 = Ari+1.

(1)

Replacement criterion:

‖∆r
i−1‖ ≤ τ‖ri−1‖ and ‖∆r

i ‖ > τ‖ri‖, (2)

with τ =
√
ψ.

Van der Vorst & Ye, Residual Replacement strategies for Krylov Subspace iterative methods

for Convergence of the True Residuals, SISC, 2000.

Tong & Ye, Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric

linear systems, Mathematics and Computations, 1999.
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Krylov subspace methods

Pipe-CG with automated residual replacement

Accumulated rounding error Per-iter non-comm error

I Pipe-CG-rr = pipe-CG with residual replacement based on rounding error model

Cost? 4 additional SpMV’s per replacement step

I Replacement criterion ensures:

(1) a limited number of replacements,
(2) only when ‖ri‖ is sufficiently large (Krylov convergence is not affected).

15/21



Numerical results

Maximal attainable accuracy

MatrixMarket collection: convergence tests on all SPD matrices
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Numerical results

Maximal attainable accuracy

MatrixMarket collection: convergence tests on selected SPD matrices
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Numerical results

Strong scaling experiment

I PETSc implementation using MPICH-3.1.3 communication

I Benchmark problem: 2D Laplacian model, 1.000.000 unknowns

I System specs: 20 nodes, two 6-core Intel Xeon X5660 Nehalem 2.8GHz CPUs/node

Speedup over single-node CG Accuracy i.f.o. total time spent
(12-240 cores) (144 cores)
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Conclusions & future work

Summary

I Pipe-CG-rr is robust & resilient version of pipe-CG:
• improved maximal attainable accuracy w.r.t. pipe-CG

(see Results: attainable accuracy),
• good parallel performance, identical to pipe-CG

(see Results: strong scaling).

I Pipe-CG-rr incorporated in PETSc development version.

I Pipe-CG-rr paper submitted to SIAM Journal on Scientific Computing.
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Conclusions & future work

Work in progress

Shifted pipelined CG

I introduce shift σ in auxiliary variables: si = (A− σ)pi , wi = (A− σ)si
I do not shift the solution: ri = b − Axi
I stabilizing effect on rounding error propagation for the right shift choice

‖∆r
i+1‖

‖∆s
i+1‖

‖∆w
i+1‖

‖∆z
i+1‖

 =

1 αi 0 0
0 βi+1−σαi 1 αi

0 −σαi 1 αi

0 0 0 βi+1


‖∆

r
i ‖

‖∆s
i ‖

‖∆w
i ‖

‖∆z
i ‖

 +

eri
esi
ewi
ezi

 .

Rounding error model in soft error detection

I model allows for separation between rounding errors and soft errors
I introduce detect-and-correct strategy to improve soft error resilience

Pipelined BiCGStab

I development of stable pipe-BiCGStab for non-symmetric operators
I implement countermeasures to improve rounding error resilience
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Conclusions & future work
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Q: What is the difference between pipelined and s-step Krylov methods?

A: Global communication is hidden vs. avoided

A: Off-the-shelf preconditioning possible vs. specialized preconditioning

Q: Is the code available online?

A: Yes: pipe-CG, pipe-CG-rr, gropp-CG, pipe-CR and p(`)-GMRES are all in the current

PETSc library, available at https://www.mcs.anl.gov/petsc/.
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