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U" Motivation

Simulation of quantum mechanical molecular break-up reactions.
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Practical use: determine material composition/structure
— inverse problem




Uv Schrodinger equation

Full 3D break-up problem description — two particle system (d = 2)

Schrédinger equation (6-dimensional)
(H — E)¢p(r1,r2) = ((r1,12).

with outgoing wave 1) i.f.o. ri, ro € R3 and Hamiltonian

1

1
H = _ﬂArl = %Arg + Vi(r1) + Va(r2) + Vaa(ri, r2).

Right-hand side source term ((r1,r2) models

» incoming electron (electron scattering), or
[Rescigno Baertschy Isaacs McCurdy 1999]

» dipole operator (photo-ionization).
[Vanroose Martin Rescigno McCurdy 2005]




Uv Partial wave expansion

Spherical coordinate representation' r1 = (p1,01), r2 = (p2,02)
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leads to a coupled system for the radial wave components
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Coupled partial wave system
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Note: system decouples for 'y, Vo and Vi, spherically symmetric.
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U— Relation to Helmholtz equation

Diagonal blocks assume form of 2D driven Schrodinger equation

(—%A + V(x) — E) u(x) = g(x), x = (x,y) € R”.

Helmholtz equation (d-dimensional) (equivalent formulation)
GA k2(x)) u(x) = f(x), x € RY,

with k?(x) = 2(E — V(x)) and f(x) = 2g(x).

Properties.

» potential V/(x) — and hence wavenumber k(x) — is analytic,

» experimental observations (cross sections) are far field maps.
[McCurdy Baertschy Rescigno 2004]
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Uv Helmholtz equation

Representation of the physics behind a wave scattering at an object x

defined on a compact area O located within a domain Q C RY.

Scattered wave solution usc(x) satisfies inhomogeneous Helmholtz
(=2 — K*(x)) usc(x) = f(x), x € Q CRY,

with f(X) = ng(x)Uin(x)- K2 (x)— k2

X(X)Z—koﬁ

Aim: calculate far field amplitude map Q




U- Far field map

Analytic solution on whole RY using Green's function:

u(x') = / G(x,x) kgx(x) [Uin(X) + usc(x)] dx, X' € R,
Q~—— ——

-

Green's function scattered wave

[Colton Kress 1998]

Calculate u in any point X' € R? outside the numerical domain Q,
using only the information inside the numerical domain.

Computation: Split the far field integral into a sum /1 + b, with

Il_/QG(x,x’)X(x)u,-,,(x)dx and 12_/S?G(x,x’)x(x)usc(x)dx

all factors known explicitly requires usc(x) for x € Q
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U— Preconditioned Krylov methods

State-of-the-art Helmholtz solvers.

Solve M~*Au = M~Yf using Krylov methods, with
M = —A — ok(x)? (preconditioner)
where A = —/A — k(x)? and Mu = f easily solvable iteratively.

» o = 1: original Helmholtz operator
[von Helmholtz 19th century]

» o0 =0: Laplacian
[Bayliss Goldstein Turkel 1983]

» 0 < 0: shifted Laplacian or screened Poisson operator
[Laird 2001]

» o € C: complex shifted Laplacian (CSL): o = o + (i
[Erlangga Vuik Oosterlee 2004]
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> Far field map

Complex contour approach.

For u and x analytical
the far field integral v T R{z}

IQZ/QG(X,X,)X(X)USC(X)CIX

can be calculated over a complex contour Z = Z1 + Z», rather than
over the real domain €, i.e.

b= /Z 6(2,2)x(2)usc(2)dz + /Z 6(z, 2 )x(2)usc(2)dz.
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> Far field map

Complex contour approach.

For u and x analytical
the far field integral v T R{z}

I2:/S1G(x,x')x(x)usc(x)dx

can be calculated over a complex contour Z = Zy1 + Z», rather than
over the real domain €, i.e.

l2:/z G(z,Z')x(z)usc(z)dz

requires usc(z) for z€ Z;
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Uv Helmholtz on complex contour

Complex shifted Laplacian (CSL) system with shift parameter € R
(A = (L +iB)k*(x)) u(x) = f(x)
is efficiently solvable using multigrid. [Erlangga Oosterlee Vuik 2004]

FD discretization:

<7%L s iﬂ)kz) s

with Laplacian stencil matrix L. Division by (1 + i) yields

1 2\ _  fh
(Carmmt )

the original Helmholtz system with complex h = /I + i3 h = pe'7h.
[Reps Vanroose bin Zubair 2010]
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Hv Contour approach - 2D validation

Object of interest

5-point FD stencil, ny X n, = 2562

Real domain with ECS |x(x)| Complex contour |x(z)]
(Oecs = 45°) (v =14.6°)




H Contour approach - 2D validation
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Uv Contour approach - 2D validation
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Far field amplitude map

o
5-point FD stencil, ny X n, = 2562 ‘
Real domain with ECS F(a) Complex contour F(«)
LU factorization V(1,1) cycles (toles = 107°)
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U- Contour approach - 3D validation

3D damped Helmholtz solver (v = 10°)

Ny X Ny X n, 163 323 643 1283 2563
ko — 1/4 10 (0.79s.) 9 (4.65s.) 9 (44.2s.) 0 (352s.) O (2778s.)

0= 0.24 0.20 0.21 0.20 0.20
ko = 1/2 10 (4.96s.) 10 (48.3s.) 10 (390s.) 9 (2797s.)

0= 0.24 0.22 0.23 0.21
1 11 (54.6s) 10 (387s.) 10 (3079s.)

0= 0.27 0.24 0.24
B 11 (428s.) 10 (3006s.)

ko =2 0.27 0.24
11 (3306s.
ko =4 (0.26 *)

GMRES(3)-smoothed V(1,1) cycles (toles = 107¢) LGl 0{oPE)
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U- Contour approach - 3D validation

3D damped Helmholtz solver (y = 10°, ko = 1)

Nx X ny X nz 163

323 643 1283 2563 2563
CPU time 0.20s. 0.78s. 6.24s. 533s. 462s. 8 x 573 s.
[Ir|l2 33e-5 7.9e-5 27e-5 1l.le5 4.6e-6 1.0e-5

GMRES(3)-smoothed

FMG(1,1) cycle

[Vasseur 2012]

Serial implementation, Intel Core i7-2720QM 2.20GHz CPU, 6MB Cache, 8GB RAM.




Uv Schrodinger cross sections

Single ionization amplitude (single ionization probability)

so(E) = / bks (X)n(y) [£(%, ¥) — Vaa(x, y)u(x, )] dx dy.

Green's function scattered wave
Double ionization cross section (double ionization probability)

o () = | b0 ()00 (y) ecs) = Via(x, )ux, )] d .

Green's function scattered wave

Single ionization Double ionization

o 5 0 is




Uv Schrodinger on complex contour

2D driven Schrodinger equation
(=58 + Va0 + Vay) + Vialxuy) — £ ) i) = Flxy),

with x,y > 0, V; potentials, E € R energy of the system.

Multigrid convergence factor

g e damped Schrodinger on full
% o complex grid with v ~ 8.5°
E e GMRES(3)-smoothed

g ™ multigrid V(1,1) cycles

% 021 B

8 Observation:

e T TH— a—- Poor convergence for —1 < E <0.




U- Schrodinger spectral analysis

Single ionization Double ionization

E <O E=0 E>0
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bound states
with near-zero e.v.’s
destroy multigrid
convergence




U- Coupled channel approximation

Bound states are characterized by eigenstates of 1D Hamiltonians

H1¢n(x) - An¢n(x)7
Hoon(y) = pnen(y),
with A, < 0 and p, < 0, hence for M < ny, L < n, approximate

L
u(x, y) ~ ZAymvwzﬁwmm
I=1
[Heller Reinhardt 1973] [McCarthy Stelbovics 1983]

Coupled channel correction step (CCCS).

u

*D(x, y) = B (x,y) + 3 A0)omlx) + 3 e (X)r(y)

Determine coefficients as solution of M+L 1D Schrodinger systems.
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U— Numerical results: convergence

Convergence rate of MG-CCCS as stand-alone solver/preconditioner

Exponential model problem Temkin-Poet model problem

MG MG
A —— MG-CCCS = MG-CCCS
1 N \ MG-CCCS BiCGSTAB 1 ——— MG-CCCS BiCGSTAB
~——— MG-CCCS FGMRES = MG-CCCS FGMRES
2 goo
3 Soa
02
0-2 1 0 1 2 3
E
Vi(x) = —4.5exp(—x?) Vi(x) = —1/x
Via(x,y) = 2exp(—0.1(x + y)?) Viz2(x,y) = 1/ max(x, y)
Q =[0,20]?, n, x n, = 256 x 256 Q = [0,100]2, ny X n, = 1024 x 1024
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U" Numerical results: cross sections

2D Temkin Poet model problem

Potentials: Vi(x) = —1/x, Vo(y) = —1/y and Via(x, y) = 1/ max(x, y)
Discretization: Q = [0,108]? with n, x n, = 269 x 269 spectral element grid
Solver: LU with 0gcs = 30° (real) vs. MG-CCCS with v = 9° (complex)

Single differential cross section Total cross section
E=1 E €10,2]

—w— real grid —w— real grid
—e— complex grid —@— complex grid

(4 02 04 06 08 1 o 05 1 I 2

Energy fraction k2 / 2 E -




U" Conclusions

In this work we presented. . .

* Proof-of-concept for complex contour approach to compute
the far field map of Helmholtz and Schrodinger equations.

* Fast and robust method for the computation of the far field map/
ionization cross sections for any wavenumber/energy.

* Coupled Channel Correction Step (CCCS) after each MG V-cycle
accounts for presence of localized bound states (Schrodinger).

* Numerical validation on model problems shows O(N) scalability.
Outlook

* Application of complex contour method to near field calculation.

* Generalization to 3D Schrodinger partial wave systems.

% Analysis of bound states and influence of complex rotation ~ for

general discretizations. _
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