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Motivation

Simulation of quantum mechanical molecular break-up reactions.

Electron wave character CERN Large Hadron Collider

Practical use: determine material composition/structure
→ inverse problem



Schrödinger equation

Full 3D break-up problem description – two particle system (d = 2)

Schrödinger equation (6-dimensional)

(H− E)ψ(r1, r2) = ζ(r1, r2).

with outgoing wave ψ i.f.o. r1, r2 ∈ R3 and Hamiltonian

H = − 1

2m
4r1 −

1

2m
4r2 + V1(r1) + V2(r2) + V12(r1, r2).

Right-hand side source term ζ(r1, r2) models

I incoming electron (electron scattering), or
[Rescigno Baertschy Isaacs McCurdy 1999]

I dipole operator (photo-ionization).
[Vanroose Martin Rescigno McCurdy 2005]



Partial wave expansion

Spherical coordinate representation: r1 = (ρ1,Θ1), r2 = (ρ2,Θ2)

ψ(r1, r2) =
∞∑

l1=0

l1∑
m1=−l1

∞∑
l2=0

l2∑
m2=−l2

ψl1m1,l2m2 (ρ1, ρ2)Yl1m1 (Θ1)Yl2m2 (Θ2),

leads to a coupled system for the radial wave components

ψ̄ =

ψl1m1,l2m2 (ρ1, ρ2)
ψl′1m′

1,l
′
2m′

2
(ρ1, ρ2)

...


Coupled partial wave system− 1
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ψ̄ = ζ̄.

Note: system decouples for V1, V2 and V12 spherically symmetric.



Relation to Helmholtz equation

Diagonal blocks assume form of 2D driven Schrödinger equation(
−1

2
4+ V (x)− E

)
u(x) = g(x), x = (x , y) ∈ R2.

Helmholtz equation (d-dimensional) (equivalent formulation)(
−4− k2(x)

)
u(x) = f (x), x ∈ Rd ,

with k2(x) = 2(E − V (x)) and f (x) = 2g(x).

Properties.

I potential V (x) – and hence wavenumber k(x) – is analytic,

I experimental observations (cross sections) are far field maps.
[McCurdy Baertschy Rescigno 2004]



Helmholtz equation

Representation of the physics behind a wave scattering at an object χ

defined on a compact area O located within a domain Ω ⊂ Rd .

Scattered wave solution usc (x) satisfies inhomogeneous Helmholtz(
−4− k2(x)

)
usc (x) = f (x), x ∈ Ω ⊂ Rd ,

with f (x) = k2
0χ(x)uin(x).

Aim: calculate far field amplitude map

O

F (α)

uin α



Far field map

Analytic solution on whole Rd using Green’s function:

u(x′) =

∫
Ω

G (x, x′)︸ ︷︷ ︸
Green’s function

k2
0χ(x) [uin(x) + usc (x)︸ ︷︷ ︸

scattered wave

] dx, x′ ∈ Rd .

[Colton Kress 1998]

Calculate u in any point x′ ∈ Rd outside the numerical domain Ω,
using only the information inside the numerical domain.

Computation: Split the far field integral into a sum I1 + I2, with

I1 =

∫
Ω

G (x, x′)χ(x)uin(x)dx︸ ︷︷ ︸
all factors known explicitly

and I2 =

∫
Ω

G (x, x′)χ(x)usc (x)dx︸ ︷︷ ︸
requires usc (x) for x ∈Ω



Preconditioned Krylov methods

State-of-the-art Helmholtz solvers.

Solve M−1Au =M−1f using Krylov methods, with

M = −4− %k(x)2 (preconditioner)

where A = −4− k(x)2 and Mu = f easily solvable iteratively.

I % = 1: original Helmholtz operator
[von Helmholtz 19th century]

I % = 0: Laplacian
[Bayliss Goldstein Turkel 1983]

I % < 0: shifted Laplacian or screened Poisson operator
[Laird 2001]

I % ∈ C: complex shifted Laplacian (CSL): % = α + βi
[Erlangga Vuik Oosterlee 2004]



Far field map

<{z}

={z}

γ

Z1
Z2

Complex contour approach.

For u and χ analytical
the far field integral

I2 =

∫
Ω

G (x, x′)χ(x)usc (x)dx

can be calculated over a complex contour Z = Z1 + Z2, rather than
over the real domain Ω, i.e.

I2 =

∫
Z1

G (z, z′)χ(z)usc (z)dz +

∫
Z2

G (z, z′)χ(z)usc (z)dz.



Far field map

<{z}

={z}

γ

Z1
Z2

Complex contour approach.

For u and χ analytical
the far field integral

I2 =

∫
Ω

G (x, x′)χ(x)usc (x)dx

can be calculated over a complex contour Z = Z1 + Z2, rather than
over the real domain Ω, i.e.

I2 =

∫
Z1

G (z, z′)χ(z)usc(z)dz︸ ︷︷ ︸
requires usc (z) for z∈Z1

+

∫
Z2

G (z, z′)χ(z)usc (z)dz.



Helmholtz on complex contour

Complex shifted Laplacian (CSL) system with shift parameter β ∈ R(
−4− (1 + iβ)k2(x)

)
u(x) = f (x)

is efficiently solvable using multigrid. [Erlangga Oosterlee Vuik 2004]

FD discretization: (
− 1

h2
L− (1 + iβ)k2

)
uh = fh,

with Laplacian stencil matrix L. Division by (1 + iβ) yields(
− 1

(1 + iβ)h2
L− k2

)
uh =

fh

1 + iβ
,

the original Helmholtz system with complex h̃ =
√

1 + iβ h = ρe iγh.
[Reps Vanroose bin Zubair 2010]



Contour approach - 2D validation

<{z}

={z}

γ

Z1
Z2Object of interest

5-point FD stencil, nx × ny = 2562

Real domain with ECS |χ(x)|
(θECS = 45◦)

Complex contour |χ(z)|
(γ = 14.6◦)



Contour approach - 2D validation

<{z}

={z}

γ

Z1
Z2Scattered wave solution

5-point FD stencil, nx × ny = 2562

Real domain with ECS |u(x)|
LU factorization

Complex contour |u(z)|
V(1,1) cycles (tolres = 10−6)



Contour approach - 2D validation

<{z}

={z}

γ

Z1
Z2Far field amplitude map

5-point FD stencil, nx × ny = 2562

Real domain with ECS F (α)
LU factorization

Complex contour F (α)
V(1,1) cycles (tolres = 10−6)



Contour approach - 3D validation

3D damped Helmholtz solver (γ = 10◦)

nx×ny×nz 163 323 643 1283 2563

k0 = 1/4
10 (0.79s.) 9 (4.65s.) 9 (44.2s.) 9 (352s.) 9 (2778s.)

0.24 0.20 0.21 0.20 0.20

k0 = 1/2
12 (0.92s.) 10 (4.96s.) 10 (48.3s.) 10 (390s.) 9 (2797s.)

0.31 0.24 0.22 0.23 0.21

k0 = 1
7 (0.62s.) 13 (6.59s.) 11 (54.6s.) 10 (387s.) 10 (3079s.)

0.13 0.32 0.27 0.24 0.24

k0 = 2
2 (0.28s.) 8 (4.24s.) 13 (63.9s.) 11 (428s.) 10 (3006s.)

0.00 0.14 0.33 0.27 0.24

k0 = 4
1 (0.20s.) 2 (1.35s.) 7 (36.1s.) 13 (503s.) 11 (3306s.)

0.00 0.00 0.12 0.33 0.26

GMRES(3)-smoothed V(1,1) cycles (tolres = 10−6) k0h = 0.625



Contour approach - 3D validation

3D damped Helmholtz solver (γ = 10◦, k0 = 1)

nx × ny × nz 163 323 643 1283 2563

CPU time 0.20 s. 0.78 s. 6.24 s. 53.3 s. 462 s.
‖r‖2 3.3e-5 7.9e-5 2.7e-5 1.1e-5 4.6e-6

2563

8× 573 s.
1.0e-5

GMRES(3)-smoothed FMG(1,1) cycle [Vasseur 2012]

Serial implementation, Intel Core i7-2720QM 2.20GHz CPU, 6MB Cache, 8GB RAM.



Schrödinger cross sections

Single ionization amplitude (single ionization probability)

sn(E) =

∫
Ω

φkn (x)φn(y)︸ ︷︷ ︸
Green’s function

[g(x , y)− V12(x , y)u(x , y)︸ ︷︷ ︸
scattered wave

] dx dy .

Double ionization cross section (double ionization probability)

dk1,k2 (E) =

∫
Ω

φk1 (x)φk2 (y)︸ ︷︷ ︸
Green’s function

[g(x , y)− V12(x , y)u(x , y)︸ ︷︷ ︸
scattered wave

] dx dy .

Single ionization Double ionization



Schrödinger on complex contour

2D driven Schrödinger equation(
−1

2
4+ V1(x) + V2(y) + V12(x , y)− E

)
u(x , y) = f (x , y),

with x , y ≥ 0, Vi potentials, E ∈ R energy of the system.

Multigrid convergence factor

• damped Schrödinger on full
complex grid with γ ≈ 8.5◦

• GMRES(3)-smoothed
multigrid V(1,1) cycles

Observation:
Poor convergence for −1<E<0.



Schrödinger spectral analysis

Single ionization Double ionization

E < 0 E = 0 E > 0
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destroy multigrid

convergence



Coupled channel approximation

Bound states are characterized by eigenstates of 1D Hamiltonians

H1φn(x) = λnφn(x),

H2ϕn(y) = µnϕn(y),

with λn < 0 and µn < 0, hence for M � nx , L� ny approximate

u(x , y) ≈
M∑

m=1

Am(y)φm(x) +
L∑

l=1

Bl (x)ϕl (y).

[Heller Reinhardt 1973] [McCarthy Stelbovics 1983]

Coupled channel correction step (CCCS).

u(k+1)(x , y) = u(k)(x , y) +
M∑

m=1

eA
m(y)φm(x) +

L∑
l=1

eB
l (x)ϕl (y).

Determine coefficients as solution of M+L 1D Schrödinger systems.



Numerical results: convergence

Convergence rate of MG-CCCS as stand-alone solver/preconditioner

Exponential model problem Temkin-Poet model problem

V1(x) = −4.5 exp(−x2) V1(x) = −1/x

V12(x , y) = 2 exp(−0.1(x + y)2) V12(x , y) = 1/max(x , y)

Ω = [0, 20]2, nx × ny = 256× 256 Ω = [0, 100]2, nx × ny = 1024× 1024



Numerical results: cross sections

2D Temkin Poet model problem

Potentials: V1(x) = −1/x , V2(y) = −1/y and V12(x , y) = 1/max(x , y)

Discretization: Ω = [0, 108]2 with nx × ny = 269× 269 spectral element grid

Solver: LU with θECS = 30◦ (real) vs. MG-CCCS with γ = 9◦ (complex)

Single differential cross section Total cross section

E = 1 E ∈ [0, 2]



Conclusions
In this work we presented. . .

F Proof-of-concept for complex contour approach to compute
the far field map of Helmholtz and Schrödinger equations.

F Fast and robust method for the computation of the far field map/
ionization cross sections for any wavenumber/energy.

F Coupled Channel Correction Step (CCCS) after each MG V-cycle
accounts for presence of localized bound states (Schrödinger).

F Numerical validation on model problems shows O(N) scalability.

Outlook

F Application of complex contour method to near field calculation.

F Generalization to 3D Schrödinger partial wave systems.

F Analysis of bound states and influence of complex rotation γ for
general discretizations.
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