



## A robust computational method for the Schrödinger equation cross sections using an MG-Krylov scheme

International Conference On Preconditioning Techniques For Scientific And Industrial Applications 17-19 June 2015, Eindhoven, The Netherlands

University of Antwerp, Applied Mathematics S. Cools<sup>\*</sup> and W. Vanroose

\*Contact: siegfried.cools@uantwerp.be

#### Universiteit Antwerpen



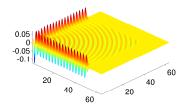


- [1] Motivation
- [2] The Helmholtz and Schrödinger equations
- [3] The classical far field map calculation
- [4] The complex contour approach for the far field map
- [5] Schrödinger cross sections: the MG-CCCS preconditioner
- [6] Conclusions & discussion



#### Motivation

#### Simulation of quantum mechanical molecular break-up reactions.





Electron wave character

CERN Large Hadron Collider

Practical use: determine material composition and structure.



### Schrödinger equation

Full 3D break-up problem description – two particle system (d = 2)

Schrödinger equation (6-dimensional)

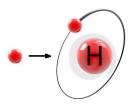
$$(\mathcal{H}-E)\,\psi(\mathbf{r}_1,\mathbf{r}_2)=\zeta(\mathbf{r}_1,\mathbf{r}_2).$$

with outgoing wave  $\psi$  i.f.o.  $\mathbf{r}_1$ ,  $\mathbf{r}_2 \in \mathbb{R}^3$  and Hamiltonian

$$\mathcal{H} = -rac{1}{2m} riangle_{\mathbf{r}_1} - rac{1}{2m} riangle_{\mathbf{r}_2} + V_1(\mathbf{r}_1) + V_2(\mathbf{r}_2) + V_{12}(\mathbf{r}_1, \mathbf{r}_2).$$

Right-hand side source term  $\zeta(\mathbf{r}_1, \mathbf{r}_2)$  models

- incoming electron (electron scattering), or [Rescigno Baertschy Isaacs McCurdy 1999]
- dipole operator (photo-ionization).
   [Vanroose Martin Rescigno McCurdy 2005]



#### Partial wave expansion

Spherical coordinate representation:  $\mathbf{r}_1 = (\rho_1, \Theta_1)$ ,  $\mathbf{r}_2 = (\rho_2, \Theta_2)$ 

$$\psi(\mathbf{r}_1,\mathbf{r}_2) = \sum_{l_1=0}^{\infty} \sum_{m_1=-l_1}^{l_1} \sum_{l_2=0}^{\infty} \sum_{m_2=-l_2}^{l_2} \psi_{l_1m_1,l_2m_2}(\rho_1,\rho_2) Y_{l_1m_1}(\Theta_1) Y_{l_2m_2}(\Theta_2),$$

leads to a coupled system for the radial wave components

$$\bar{\psi} = \begin{pmatrix} \psi_{l_1m_1, l_2m_2}(\rho_1, \rho_2) \\ \psi_{l'_1m'_1, l'_2m'_2}(\rho_1, \rho_2) \\ \vdots \end{pmatrix}$$

Coupled partial wave system

$$\begin{pmatrix} -\frac{1}{2m} \triangle_{l_1,l_2} + V_{l_1m_1\,l_2m_2;l_1m_1\,l_2m_2} - E & V_{l_1m_1\,l_2m_2;l_1'm_1'l_2'm_2'} & \cdots \\ V_{l_1'm_1'\,l_2'm_2';l_1m_1\,l_2m_2} & -\frac{1}{2m} \triangle_{l_1',l_2'} + V_{l_1'm_1'\,l_2'm_2';l_1'm_1'l_2'm_2'} - E & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \bar{\psi} = \bar{\zeta}.$$

Note: system decouples for  $V_1$ ,  $V_2$  and  $V_{12}$  spherically symmetric.



### Relation to Helmholtz equation

Diagonal blocks assume form of 2D driven Schrödinger equation

$$\left(-rac{1}{2} riangle + V(\mathbf{x}) - E
ight)u(\mathbf{x}) = g(\mathbf{x}), \qquad \mathbf{x} = (x, y) \in \mathbb{R}^2.$$

Helmholtz equation (d-dimensional)

(equivalent formulation)

$$\left(-\bigtriangleup - k^2(\mathbf{x})\right) \, u(\mathbf{x}) = f(\mathbf{x}), \qquad \mathbf{x} \in \mathbb{R}^d,$$

with  $k^2(\mathbf{x}) = 2(E - V(\mathbf{x}))$  and  $f(\mathbf{x}) = 2g(\mathbf{x})$ .

Properties.

- ▶ potential  $V(\mathbf{x})$  and hence wavenumber  $k(\mathbf{x})$  is analytic,
- experimental observations (cross sections) are far field maps. [McCurdy Baertschy Rescigno 2004]



#### Helmholtz equation

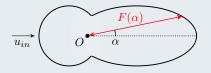
Representation of the physics behind a wave scattering at an object  $\chi$  defined on a compact area O located within a domain  $\Omega \subset \mathbb{R}^d$ .

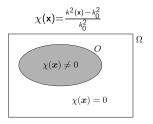
Scattered wave solution  $u_{sc}(\mathbf{x})$  satisfies inhomogeneous Helmholtz

$$\left(-\bigtriangleup -k^2(\mathbf{x})
ight)u_{sc}(\mathbf{x})=f(\mathbf{x}), \qquad \mathbf{x}\in \Omega\subset \mathbb{R}^d,$$

with  $f(\mathbf{x}) = k_0^2 \chi(\mathbf{x}) u_{in}(\mathbf{x})$ .

Aim: calculate far field amplitude map







### Far field map

#### Analytic solution on whole $\mathbb{R}^d$ using Green's function:

$$u(\mathbf{x}') = \int_{\Omega} \underbrace{G(\mathbf{x}, \mathbf{x}')}_{Green's \ function} k_0^2 \chi(\mathbf{x}) \left[ u_{in}(\mathbf{x}) + \underbrace{u_{sc}(\mathbf{x})}_{scattered \ wave} \right] d\mathbf{x}, \quad \mathbf{x}' \in \mathbb{R}^d.$$
[Colton Kress 1998]

Calculate u in any point  $\mathbf{x}' \in \mathbb{R}^d$  outside the numerical domain  $\Omega$ , using only the information inside the numerical domain.

*Computation:* Split the far field integral into a sum  $I_1 + I_2$ , with

$$I_{1} = \underbrace{\int_{\Omega} G(\mathbf{x}, \mathbf{x}') \chi(\mathbf{x}) u_{in}(\mathbf{x}) d\mathbf{x}}_{\text{all factors known explicitly}} \text{ and } I_{2} = \underbrace{\int_{\Omega} G(\mathbf{x}, \mathbf{x}') \chi(\mathbf{x}) u_{sc}(\mathbf{x}) d\mathbf{x}}_{\text{requires } u_{sc}(\mathbf{x}) \text{ for } \mathbf{x} \in \Omega}$$

### Preconditioned Krylov methods

State-of-the-art Helmholtz solvers.

Solve  $\mathcal{M}^{-1}\mathcal{A}u = \mathcal{M}^{-1}f$  using Krylov methods, with

 $\mathcal{M} = -\triangle - \varrho k(\mathbf{x})^2$  (preconditioner)

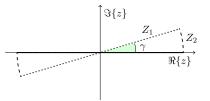
where  $A = -\triangle - k(\mathbf{x})^2$  and Mu = f easily solvable iteratively.

- ▶ *Q* = 1: original Helmholtz operator [von Helmholtz 19th century]
- ▶ *Q* = 0: Laplacian [Bayliss Goldstein Turkel 1983]
- ▶ *Q* < 0: shifted Laplacian or screened Poisson operator [Laird 2001]
- ►  $\rho \in \mathbb{C}$ : complex shifted Laplacian (CSL):  $\rho = \alpha + \beta i$ [Erlangga Vuik Oosterlee 2004]

Complex contour approach.

For u and  $\chi$  analytical the far field integral

$$I_2 = \int_{\Omega} G(\mathbf{x}, \mathbf{x}') \chi(\mathbf{x}) u_{sc}(\mathbf{x}) d\mathbf{x}$$



can be calculated over a *complex contour*  $Z = Z_1 + Z_2$ , rather than over the real domain  $\Omega$ , i.e.

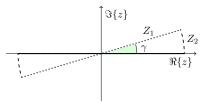
$$I_2 = \int_{Z_1} G(\mathbf{x}, \mathbf{x}') \chi(\mathbf{z}) u_{sc}(\mathbf{z}) d\mathbf{z} + \int_{Z_2} G(\mathbf{x}, \mathbf{x}') \chi(\mathbf{z}) u_{sc}(\mathbf{z}) d\mathbf{z}.$$

### Far field map

Complex contour approach.

For u and  $\chi$  analytical the far field integral

$$I_2 = \int_{\Omega} G(\mathbf{x}, \mathbf{x}') \chi(\mathbf{x}) u_{sc}(\mathbf{x}) d\mathbf{x}$$



can be calculated over a *complex contour*  $Z = Z_1 + Z_2$ , rather than over the real domain  $\Omega$ , i.e.

$$I_2 = \underbrace{\int_{Z_1} G(\mathbf{x}, \mathbf{x}') \chi(\mathbf{z}) u_{sc}(\mathbf{z}) d\mathbf{z}}_{\text{requires } u_{sc}(\mathbf{z}) \text{ for } \mathbf{z} \in Z_1} + \int_{Z_2} G(\mathbf{x}, \mathbf{x}') \chi(\mathbf{z}) u_{sc}(\mathbf{z}) d\mathbf{z}.$$



### Helmholtz on complex contour

Complex shifted Laplacian (CSL) system with shift parameter  $\beta \in \mathbb{R}$ 

$$(-\triangle - (1+i\beta)k^2(\mathbf{x})) u(\mathbf{x}) = f(\mathbf{x})$$

is efficiently solvable using multigrid.

[Erlangga Oosterlee Vuik 2004]

FD discretization:

$$\left(-\frac{1}{h^2}L-(1+i\beta)k^2\right)u_h=f_h,$$

with Laplacian stencil matrix L. Division by  $(1 + i\beta)$  yields

$$\left(-\frac{1}{(1+i\beta)h^2}L-k^2\right)u_h=\frac{f_h}{1+i\beta},$$

the original Helmholtz system with complex  $\tilde{h} = \sqrt{1 + i\beta} h = \rho e^{i\gamma} h$ . [Reps Vanroose bin Zubair 2010]

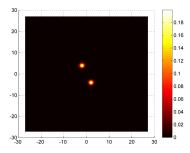


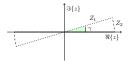
### Contour approach - 2D validation

#### **Object of interest**

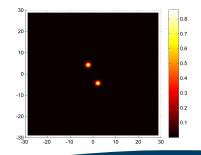
5-point FD stencil,  $n_x \times n_y = 256^2$ 

Real domain with ECS  $|\chi(\mathbf{x})|$  $(\theta_{ECS} = 45^{\circ})$ 





Complex contour  $|\chi(\mathbf{z})|$  $(\gamma = 14.6^{\circ})$ 



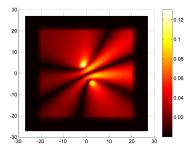


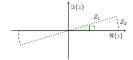
### Contour approach - 2D validation

#### Scattered wave solution

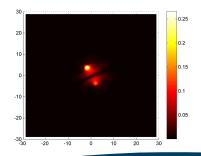
5-point FD stencil,  $n_x \times n_y = 256^2$ 

Real domain with ECS  $|u(\mathbf{x})|$ LU factorization





Complex contour  $|u(\mathbf{z})|$ V(1,1) cycles ( $tol_{res} = 10^{-6}$ )

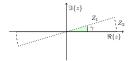




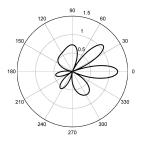
### Contour approach - 2D validation

#### Far field amplitude map

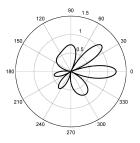
5-point FD stencil,  $n_x \times n_y = 256^2$ 



Real domain with ECS  $F(\alpha)$ LU factorization



Complex contour  $F(\alpha)$ V(1,1) cycles ( $tol_{res} = 10^{-6}$ )





#### 3D damped Helmholtz solver ( $\gamma = 10^\circ$ )

| $n_x \times n_y \times n_z$ | 16 <sup>3</sup>    | 32 <sup>3</sup>    | 64 <sup>3</sup>    | 128 <sup>3</sup>  | 256 <sup>3</sup>   |
|-----------------------------|--------------------|--------------------|--------------------|-------------------|--------------------|
| $k_0 = 1/4$                 | <b>10</b> (0.79s.) | <b>9</b> (4.65s.)  | <b>9</b> (44.2s.)  | <b>9</b> (352s.)  | <b>9</b> (2778s.)  |
|                             | 0.24               | 0.20               | 0.21               | 0.20              | 0.20               |
| $k_0 = 1/2$                 | 12 (0.92s.)        | <b>10</b> (4.96s.) | <b>10</b> (48.3s.) | <b>10</b> (390s.) | <b>9</b> (2797s.)  |
|                             | 0.31               | 0.24               | 0.22               | 0.23              | 0.21               |
| $k_0 = 1$                   | 7 (0.62s.)         | 13 (6.59s.)        | <b>11</b> (54.6s.) | <b>10</b> (387s.) | <b>10</b> (3079s.) |
|                             | 0.13               | 0.32               | 0.27               | 0.24              | 0.24               |
| $k_0 = 2$                   | 2 (0.28s.)         | 8 (4.24s.)         | 13 (63.9s.)        | <b>11</b> (428s.) | <b>10</b> (3006s.) |
|                             | 0.00               | 0.14               | 0.33               | 0.27              | 0.24               |
| $k_0 = 4$                   | 1 (0.20s.)         | 2 (1.35s.)         | 7 (36.1s.)         | 13 (503s.)        | <b>11</b> (3306s.) |
|                             | 0.00               | 0.00               | 0.12               | 0.33              | 0.26               |

GMRES(3)-smoothed V(1,1) cycles ( $tol_{res} = 10^{-6}$ )

 $k_0 h = 0.625$ 

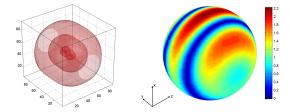
### Contour approach - 3D validation

#### **3D** damped Helmholtz solver ( $\gamma = 10^{\circ}$ , $k_0 = 1$ )

| $n_x \times n_y \times n_z$ |         | 32 <sup>3</sup> | 64 <sup>3</sup> |         | 256 <sup>3</sup> |                      |
|-----------------------------|---------|-----------------|-----------------|---------|------------------|----------------------|
| CPU time                    | 0.20 s. | 0.78 s.         | 6.24 s.         | 53.3 s. | 462 s.           | 8 × 573 s.<br>1.0e-5 |
| $  r  _2$                   | 3.3e-5  | 7.9e-5          | 2.7e-5          | 1.1e-5  | 4.6e-6           | 1.0e-5               |

GMRES(3)-smoothed FMG(1,1) cycle

[Vasseur 2012]



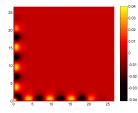
Serial implementation, Intel Core i7-2720QM 2.20GHz CPU, 6MB Cache, 8GB RAM.

### Schrödinger cross sections Single ionization amplitude = single ionization probability $s_n(E) = \int_{\Omega} \phi_{k_n}(x)\phi_n(y) [g(x, y) - V_{12}(x, y)u(x, y)] dx dy.$ Scattered wave Double ionization cross section = double ionization probability $d_{k_1,k_2}(E) = \int_{\Omega} \phi_{k_1}(x)\phi_{k_2}(y) [g(x, y) - V_{12}(x, y)u(x, y)] dx dy.$

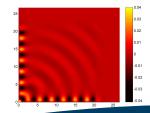
Green's function

scattered wave

#### Single ionization



#### **Double ionization**

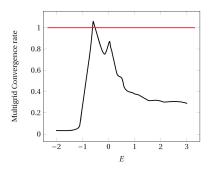


### Schrödinger on complex contour

2D driven Schrödinger equation

$$\left(-\frac{1}{2}\triangle + V_1(x) + V_2(y) + V_{12}(x,y) - E\right)u(x,y) = f(x,y),$$

with  $x, y \ge 0$ ,  $V_i$  potentials,  $E \in \mathbb{R}$  energy of the system.



#### Multigrid convergence factor

- damped Schrödinger on full complex grid with  $\gamma \approx 8.5^\circ$
- GMRES(3)-smoothed multigrid V(1,1) cycles

#### Observation:

Poor convergence for -1 < E < 0.

#### Single ionization

1+

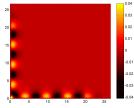
-2 6eui -4

-6

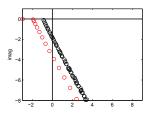
-2 0 2

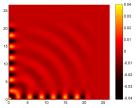
*E* < 0

## **Double ionization** E > 0



bound states with near-zero e.v.'s destroy multigrid convergence







Schrödinger spectral analysis

### Coupled channel approximation

Bound states are characterized by eigenstates of 1D Hamiltonians

$$H_1\phi_n(x) = \lambda_n\phi_n(x),$$
  
$$H_2\varphi_n(y) = \mu_n\varphi_n(y),$$

with  $\lambda_n < 0$  and  $\mu_n < 0$ , hence for  $M \ll n_x$ ,  $L \ll n_y$  approximate

$$u(x,y) \approx \sum_{m=1}^{M} A_m(y)\phi_m(x) + \sum_{l=1}^{L} B_l(x)\varphi_l(y).$$

[Heller Reinhardt 1973] [McCarthy Stelbovics 1983]

Coupled channel correction step (CCCS).

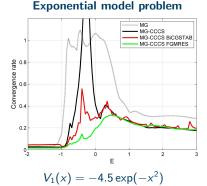
$$u^{(k+1)}(x,y) = u^{(k)}(x,y) + \sum_{m=1}^{M} e_m^A(y)\phi_m(x) + \sum_{l=1}^{L} e_l^B(x)\varphi_l(y).$$

Determine coefficients as solution of M+L 1D Schrödinger systems.



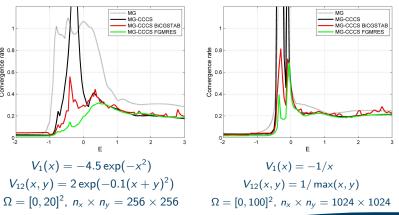
#### Numerical results: convergence

Convergence rate of MG-CCCS as stand-alone solver/preconditioner



 $V_{12}(x, y) = 2 \exp(-0.1(x+y)^2)$ 

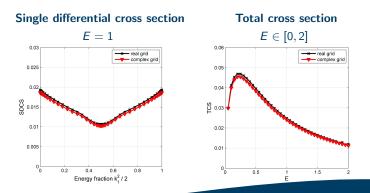
Temkin-Poet model problem



### Numerical results: cross sections

2D Temkin Poet model problem

Potentials:  $V_1(x) = -1/x$ ,  $V_2(y) = -1/y$  and  $V_{12}(x, y) = 1/\max(x, y)$ Discretization:  $\Omega = [0, 108]^2$  with  $n_x \times n_y = 269 \times 269$  spectral element grid Solver: LU with  $\theta_{ECS} = 30^\circ$  (real) vs. MG-CCCS with  $\gamma = 9^\circ$  (complex)





### Conclusions

In this work we presented...

- ★ Proof-of-concept for complex contour approach proposed in [Cools Reps Vanroose 2013] and application to impact scattering.
- ★ Coupled Channel Correction Step (CCCS) after each MG V-cycle accounts for presence of localized bound states.
- ★ Fast and robust method for the computation of the ionization cross sections for electron-impact models (for any energy E).
- ★ MG-CCCS validated on 2D Temkin-Poet model problem, convergence as solver/preconditioner shows O(N) scalability.

Outlook

- ★ Generalization to 3D Schrödinger partial wave systems.
- ★ Analysis of bound states and influence of complex rotation  $\gamma$  for general discretizations.

### References

- Y.A. Erlangga, C.W. Oosterlee, and C. Vuik, *A novel multigrid based preconditioner for heterogeneous Helmholtz problems*, SIAM Journal on Scientific Computing 27(4), pp. 1471-1492, 2006.
- W. Vanroose, D.A. Horner, F. Martin, T.N. Rescigno and C.W. McCurdy. Double photoionization of aligned molecular hydrogen. Physical Review A, 74(5), pp. 052702-1-19, 2006.
- O.G. Ernst and M.J. Gander, *Why it is difficult to solve Helmholtz problems with classical iterative methods*, Numerical Analysis of Multiscale Problems, pp. 325-363, 2012.
- S. Cools, B. Reps and W. Vanroose, *An efficient multigrid method calculation of the far field map for Helmholtz problems*, SIAM Journal on Scientific Computing 36(3), pp. B367-B395, 2014.
- S. Cools and W. Vanroose, A fast and robust computational method for the ionization cross sections of the driven Schrödinger equation using an O(N) multigrid-based scheme, under review, arxiv:1412.1953, 2015.