

A new level-dependent coarsegrid correction scheme for indefinite Helmholtz problems

Siegfried Cools*, Bram Reps, Wim Vanroose

University of Antwerp, Applied Mathematics

European Multigrid Conference, Leuven, 8-12 September 2014

*siegfried.cools@uantwerp.be

Universiteit Antwerpen

Introducing the Helmholtz equation

Story of a Helmholtz preconditioner

A level-dependent coarse grid correction scheme

Numerical results and scalability

Introducing the Helmholtz equation

Story of a Helmholtz preconditioner

A level-dependent coarse grid correction scheme

Numerical results and scalability

Application area:

- Numerical solution of scattering models
- Usually solved for inverse problems (forward problem)
- E.g. radars, seismic exploration, quantum-mechanical break-up problems (cf. Schrödinger equation), ...

Homogeneous medium

Wedge problem

Coulomb problem

$$-\left[\Delta+k(\vec{x})^{2}\right]\psi(\vec{x})=\chi(\vec{x}) \text{ in } \Omega\subseteq\mathbb{R}^{d}.$$
 (1)

If k = 0 then (1) reduces to a positive definite Poisson problem.

Easy to solve with most numerical methods e.g.

- Krylov subspace methods
- ILU factorization
- Geometric/algebraic multigrid
- Domain decomposition

$$-\left[\triangle + k(\vec{x})^2\right]\psi(\vec{x}) = \chi(\vec{x}) \text{ in } \Omega \subseteq \mathbb{R}^d.$$
(1)

If $k \neq 0$ then (1) can become indefinite.

Hard to solve with most numerical methods e.g.

- Krylov subspace methods
- ILU factorization
- Geometric/algebraic multigrid
- Domain decomposition

[Elman Ernst O'Leary 2001]

[Gander Nataf 2005]

[Erlangga Vuik Oosterlee 2006]

[Engquist Ying 2011]

Introducing the Helmholtz equation

Story of a Helmholtz preconditioner

A level-dependent coarse grid correction scheme

Numerical results and scalability

Preconditioned Krylov methods

Solve (1) using Krylov methods, with preconditioner

$$\mathcal{M} = -\triangle - \gamma k(\vec{x})^2$$

for $\mathcal{H} = -\triangle - k(\vec{x})^2$, with $\mathcal{M}u = f$ easily solvable iteratively.

- γ = 0: Laplacian
 [Bayliss Goldstein Turkel 1983]
- ▶ $\gamma < 0$: shifted Laplacian or screened Poisson operator [Laird 2001]

► $\gamma \in \mathbb{C}$: complex shifted Laplacian (CSL): $\gamma = \alpha + \beta i$ [Erlangga Vuik Oosterlee 2004]

Physical interpretation. Complex shift β induces damping

- $\rightarrow\,$ smooth modes of ${\cal H}$ represented accurately by ${\cal M}_{\it CSL}$
- $\rightarrow\,$ oscillatory modes of ${\cal H}$ damped in ${\cal M}_{\it CSL}.$

Original Helmholtz operator $\mathcal{H} = - \bigtriangleup - k(ec{x})^2$

Complex shifted Laplacian $\mathcal{M}_{CSL} = -\triangle - \gamma k (\vec{x})^2$

Spectral interpretation. Let L^h be the discretization matrix of the negative Laplacian $-\Delta$ with eigenvalues λ_L^h . If $k(\vec{x}) = k$ constant then the eigenvalues of M_{CSL}^h and H^h are:

Spectral interpretation. Let L^{2h} be the discretization matrix of the negative Laplacian $-\Delta$ with eigenvalues λ_L^{2h} . If $k(\vec{x}) = k$ constant then the eigenvalues of M_{CSL}^{2h} and H^{2h} are:

Spectral interpretation. Let L^h be the discretization matrix of the negative Laplacian $-\Delta$ with eigenvalues λ_L^h . If $k(\vec{x}) = k$ constant then the eigenvalues of M_{CSL}^h and H^h are related as:

Preconditioned system $\lambda^h = \frac{\lambda_L^h - k^2}{\lambda_L^h - \gamma k^2}$

The Helmholtz equation (1) can be solved numerically with a M_{CSL} -preconditioned Krylov subspace method

Observation 1.MG preconditionerThe larger the shift β the better the MG convergence.

Observation 2. Krylov solver The smaller the shift β the better $\kappa(M_{CSL}^{-1}H)$.

Choice of the shift parameter is compromise between 1. and 2.

 $\gamma \approx 1 + 0.5i$ optimal for both MG [Erlangga et al. 2006] [Cools Vanroose 2013] and DDM [Kimn Sarkis 2011] [Shanks et al. 2013].

Introducing the Helmholtz equation

Story of a Helmholtz preconditioner

A level-dependent coarse grid correction scheme

Numerical results and scalability

Two-grid analysis

Two-grid analysis for coarsegrid correction scheme:

$$\mathbf{e}^{h} - P \mathbf{e}^{2h} pprox \mathbf{v}^{h} - rac{\lambda^{h}}{\lambda^{2h}} P R \mathbf{v}^{h} = \left(1 - rac{\lambda^{h}}{\lambda^{2h}}
ight) \mathbf{v}^{h}$$

with $\lambda^h \in \sigma(A^h)$ and \mathbf{v}^h a smooth eigenvector. [Brandt 1986] [Elman Ernst O'Leary 2001]

Coarsegrid correction cancels out smooth modes if

$$\left|1-\frac{\lambda_L^h-k^2}{\lambda_L^{2h}-k^2}\right|<1,$$

for indefinite Helmholtz, with $\lambda_L > 0$.

Two-grid analysis

Two-grid analysis for coarsegrid correction scheme:

$$\mathbf{e}^{h} - P \mathbf{e}^{2h} pprox \mathbf{v}^{h} - rac{\lambda^{h}}{\lambda^{2h}} P R \mathbf{v}^{h} = \left(1 - rac{\lambda^{h}}{\lambda^{2h}}
ight) \mathbf{v}^{h}$$

with $\lambda^h \in \sigma(A^h)$ and \mathbf{v}^h a smooth eigenvector. [Brandt 1986] [Elman Ernst O'Leary 2001]

Coarsegrid correction cancels out smooth modes if

$$\left|1-rac{\lambda_L^h-\gamma k^2}{\lambda_L^{2h}-\gamma k^2}
ight|<1,$$

for complex shifted Laplacian, with $\lambda_L > 0$.

Two-grid analysis

When exactly do we violate

$$\left|1 - \frac{\lambda_L^h - k^2}{\lambda_L^{2h} - k^2}\right| < 1$$

for the indefinite Helmholtz operator?

- Most problematic when $\lambda_L^{2h} k^2 \approx 0$.
- Instability only occurs on few intermediate levels, so replace standard smoother on those levels by GMRES(m), damping a broader range of eigenmodes.

[Elman et al. 2001] [Calandra et al. 2011] [Reps et al. 2013].

• Use MG on complex shifted Laplace system on all levels, s.t. $\lambda_L^{lh} - \gamma k^2 \neq 0 \ (\forall l)$.

[Erlangga et al. 2006]

Motivation

Observations:

(1) MG works like a charm on the CSL system (all levels), but does not solve the original Helmholtz equation.

MG as preconditioner only

(2) MG instability occurs only on some intermediate levels, i.e. where $\lambda_L^{lh} - k^2 \approx 0$.

Key idea:

Level-dependent MG scheme, with gradually increasing complex shift throughout the level hierarchy.

A level-dependent shift

Assume a level-dependent complex shift (*)

$$\gamma_h = e^{-\pi},$$

with $\theta_h \in [0, 2\pi]$, thus $H^h = L^h - e^{i\theta_h}k^2$
 $H^{2h} = L^{2h} - e^{i\theta_{2h}}k^2$

Analogue two-grid analysis leads to the requirement

$$egin{aligned} & \left|1-rac{\lambda_L^h-e^{i heta_h}k^2}{\lambda_L^{2h}-e^{i heta_{2h}}k^2}
ight| < 1. \ & \downarrow ext{ smooth modes } \lambda_L \ll k^2 \ & \left|1-e^{i(heta_h- heta_{2h})}
ight| \end{aligned}$$

ille

(*) Other choices possible, e.g. $\gamma_h = 1 + \beta_h i$ with $\beta_h \in \mathbb{R}$.

A level-dependent shift

Coarsegrid correction scheme:

$$\left|1 - rac{\lambda_L^h - e^{i heta_h}k^2}{\lambda_L^{2h} - e^{i heta_{2h}}k^2}
ight| pprox \left|1 - e^{i(heta_h - heta_{2h})}
ight| pprox 0 \ {}_{ ext{(if } heta_h pprox heta_{2h})}
ight|$$

- If $\theta_h = \theta_{2h}$ then classical complex shifted Laplacian.
- If $0 < \theta_h \theta_{2h} < \delta$ then an additional error is introduced, yet arbitrary small and oscillatory (see next slide).
- If $\theta_h = 0$ then original Helmholtz eqn. is solved on fine grid

MG as Helmholtz solver

E.g. choose $\gamma_h = e^{i\theta_h} = e^{i \text{ level } d\theta}$, with uniform shift increment $d\theta$.

Correction step: $\mathbf{x}^{h} = \mathbf{x}^{h} + P\tilde{\mathbf{e}}^{2h}$

Solution to
$$A^{h}\mathbf{x}^{h} = \mathbf{f}^{h}$$

with $\lambda^{h} = \lambda_{L}^{h} - e^{i\theta_{h}}k^{2}$ with $\lambda^{2h} = \lambda_{L}^{2h} - e^{i\theta_{2h}}k^{2}$

Characterization:
$$\tilde{\mathbf{e}}^{2h} = \mathbf{e}^{2h} + (\tilde{A}^{2h})^{-1}(A^{2h} - \tilde{A}^{2h}) \mathbf{e}^{2h}$$

= $\mathbf{e}^{2h} + \mathbf{q}^{2h} \rightarrow \text{unwanted error!}$

Writing $\mathbf{e}^{2h} = \sum_{i} a_i \mathbf{v}_i^{2h}$ (with \mathbf{v}_i^{2h} eigenmodes), we obtain

$$\mathbf{q}^{2h} = \sum_{i} a_{i} \left(\frac{\lambda_{i}^{2h} - \tilde{\lambda}_{i}^{2h}}{\tilde{\lambda}_{i}^{2h}} \right) \mathbf{v}_{i}^{2h}.$$

A level-dependent shift

$$\mathbf{q}^{2h} = \sum_{i} a_{i} \left(\frac{\lambda^{2h} - \tilde{\lambda}^{2h}}{\tilde{\lambda}^{2h}} \right)_{i} \mathbf{v}_{i}^{2h}$$

Only oscillatory eigenmodes contribute to the unwanted error q^{2h} !

 \Downarrow V(1,1)-cycle

The correction step error q^{2h} is eliminated by post-smoothing.

Denote $d\theta = |\theta^h - \theta^{2h}|$.

-

Introducing the Helmholtz equation

Story of a Helmholtz preconditioner

A level-dependent coarse grid correction scheme

Numerical results and scalability

N-scalability

$n_x \times n_y$	128 ²	256 ²	512 ²	1024 ²	2048 ²
L-MG iter	57	39	40	40	43
CPU total	6.26	19.99	86.45	357.2	1552
CPU/1000 pts	0.38	0.31	0.33	0.34	0.37

- 2D constant-k problem: $k(\vec{x}) = k_0 = 80$
- Sommerfeld BCs [Sommerfeld 1949]
- GMRES(3) as smoother substitute

N-scalability

$n_x \times n_y$	128 ²	256 ²	512 ²	1024 ²	2048 ²
L-MG iter	57	39	40	40	43
CPU total	6.26	19.99	86.45	357.2	1552
CPU/1000 pts	0.38	0.31	0.33	0.34	0.37

- 2D constant-k problem: $k(\vec{x}) = k_0 = 80$
- Sommerfeld BCs [Sommerfeld 1949]
- GMRES(3) as smoother substitute

k ₀	20	40	80	160	320
$n_x \times n_y$	32 ²	64 ²	128 ²	256 ²	512 ²
MG-FGMRES	19 (0.37)	29 (1.20)	53 (8.09)	106 (125)	204 (1605)
MG-FGMRES(10)	21 (0.38)	30 (1.13)	62 (7.48)	125 (73)	249 (625)
L-MG-FGMRES	19 (0.25)	30 (1.11)	52 (7.73)	97 (112)	196 (1541)
L-MG-FGMRES(10)	20 (0.25)	31 (1.04)	58 (6.88)	117 (69)	220 (586)
L-MG	22 (0.37)	33 (1.12)	57 (6.26)	111 (57)	224 (488)

- 2D constant-k problem: $k(\vec{x}) = k_0$
- ECS BCs [Aguilar et al. 1971] cf. PML [Berenger 1994]
- GMRES(3) as smoother substitute

f	12	14	16	18	20
$n_x \times n_y \times n_z$		6	64 imes128 imes6	4 ———	
MG-FGMRES	34 (294)	39 (354)	45 (430)	53 (541)	60 (645)
MG-FGMRES(10)	35 (234)	40 (269)	47 (315)	55 (369)	62 (416)
L-MG	38 (191)	46 (232)	50 (252)	58 (293)	71 (356)

- 3D wedge problem: $k(\vec{x}) = (2\pi f)/c(\vec{x})$
- ECS BCs
- GMRES(3) as smoother substitute

k ₀	1	2	3	4	5
$n_x \times n_y$	128 ²	256 ²	256 ²	512 ²	512 ²
MG-FGMRES	51 (5.40)	92 (46.8)	191 (137)	174 (813)	306 (2185)
MG-FGMRES(10)	66 (5.52)	140 (46.7)	245 (81.3)	250 (421)	393 (661)
MG-FGMRES(30)	52 (4.86)	93 (34.7)	226 (83.2)	278 (565)	426 (867)
L-MG	44 (3.42)	83 (25.3)	208 (63.5)	149 (215)	289 (418)

- 2D ionization: $k^2(\vec{x}) = e^{-x^2} + e^{-y^2} + k_0^2$
- Dirichlet (s-w) & ECS (N-E) BCs
- GMRES(3) as smoother substitute

Conclusions

- Complex shifted Laplacian (CSL) is useful preconditioner
 - choice of shift parameter γ is trade-off between preconditioning quality and efficient inversion
- Proposed a new level-dependent coarsegrid correction
 - solve original Helmholtz equation on finest grid
 - gradually increasing shift allows smaller shift on finer levels
 - use sufficiently large shift on problematic levels
- Two-grid analysis
 - ▶ level-dependent correction introduces additional error
 ⇒ can be tuned arbitrary small and is oscillatory
 ⇒ removed by (post-)smoother
 - naive level-dependency scheme could be improved with deeper analysis (future work)

{siegfried.cools, bram.reps or wim.vanroose}@uantwerp.be

Key publication for this talk:

 Cools, Reps, Vanroose. A new level-dependent coarse grid correction scheme for indefinite Helmholtz problems. Num. Lin. Alg. with Applications (2014).

Related literature:

- [2] Erlangga, Oosterlee, Vuik. *On a class of preconditioners for solving the Helmholtz equation*. Applied Numerical Mathematics (2004).
- [3] Elman, Ernst, O'Leary. A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput. (2002).
- [4] Ernst, Gander. Why it is difficult to solve Helmholtz problems with classical iterative methods. Lecture Notes in Comput. Sci. and Engineering (2012).
- [5] Reps, Vanroose, bin Zubair. On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning. J. Comput. Physics (2010).