





## An efficient Multigrid calculation of the Far field map for Helmholtz problems

 $11^{th}$  International Conference on Mathematical and Numerical Aspects of Waves, 3-7 June 2013

TWNA Research Group, University of Antwerp <u>S. Cools\*</u>, B. Reps & W. Vanroose\*

\*Correspondence to: siegfried.cools@ua.ac.be, wim.vanroose@ua.ac.be.

Universiteit Antwerpen



### Presentation contents

### **Quick overview**

- Motivation: efficient Far field map computation
- Introduction: the Helmholtz equation
- The Far field map
- The Complex Contour method
- Solving the HH eqn. on a complex contour using multigrid
- Numerical validation & multigrid performance (2D-3D)
- Conclusions

### Motivation: Far field map

### Inverse scattering problems

Far field amplitude data

Iteratively solve

 $\min_i \|F_{data} - F_i\|,$ 

where  $F_i = \{ Far field maps of$ *i*-th approximation to the object for*N* $incoming waves <math>\}$ .

▷ Requires *many* forward problem solves = Far field map calculations from the direct scattering problem.





### Helmholtz equation

"Representation of the physics behind a wave scattering at an object  $\chi$  defined on a compact area O located within a domain  $\Omega \subset \mathbb{R}^d$ ."

The total wave solution  $u_{tot}$  satisfies the homogeneous HH equation

$$\left(-\Delta-k^2(\mathbf{x})
ight)u_{tot}(\mathbf{x})=0 \quad ext{on} \quad \Omega\subset \mathbb{R}^d, \quad d\geq 1,$$

with no wave source present within the domain. Space-dependent wave number function k defined as

$$k(\mathbf{x}) = egin{cases} k(\mathbf{x}), & ext{for } \mathbf{x} \in O, \ k_0, & ext{for } \mathbf{x} \in \Omega \setminus O, \end{cases}$$

where  $k_0 \in \mathbb{R}$ ,  $O \subset \Omega \subset \mathbb{R}^d$ , O compact.



### Helmholtz equation

Decomposition ( $u_{in} = e^{ik_0\eta \cdot \mathbf{x}} = incoming wave, u = scattered wave$ )

$$u_{tot} = u_{in} + u$$

implies

$$(-\Delta - k^{2}(\mathbf{x})) u_{tot}(\mathbf{x}) = 0$$
  

$$\Rightarrow (-\Delta - k^{2}(\mathbf{x})) u(\mathbf{x}) = (\Delta + k^{2}(\mathbf{x}))u_{in}(\mathbf{x})$$
  

$$\Rightarrow (-\Delta - k^{2}(\mathbf{x})) u(\mathbf{x}) = (k^{2}(\mathbf{x}) - k_{0}^{2})u_{in}(\mathbf{x}),$$

yielding the inhomogeneous scattered wave equation

$$\left(-\Delta-k^2(\mathbf{x})
ight)u(\mathbf{x})=f(\mathbf{x})\quad ext{on}\quad \Omega\subset\mathbb{R}^d,$$

(1)

where  $f(\mathbf{x}) = (k^2(\mathbf{x}) - k_0^2)u_{in}(\mathbf{x}) \doteq k_0^2\chi(\mathbf{x})u_{in}(\mathbf{x})$ .



### Helmholtz equation

### Scattered wave equation (1)

$$\left(-\Delta-k^2(\mathbf{x})\right)u(\mathbf{x})=f(\mathbf{x})\quad ext{on}\quad \Omega\subset\mathbb{R}^d,$$

with  $f(\mathbf{x}) = k_0^2 \chi(\mathbf{x}) u_{in}(\mathbf{x})$ .

Solved for u on discretized subset  $\Omega^N \subset \Omega$  ('numerical box') with outgoing wave boundary conditions, e.g. PML, ECS.

### State-of-the-art iterative solvers:

multigrid-preconditioned Krylov methods

Elman Ernst O'Leary (2002)

Erlangga Oosterlee Vuik (2004) - Complex Shifted Laplacian (CSL)

Reps Vanroose bin Zubair (2010) - Complex Stretched Grid (CSG)

## Helmholtz equation & Multigrid

### Two-grid correction scheme

- Relax  $\nu_1$  times on  $A^h v^h = f^h$  (e.g.  $\omega$ -Jacobi, Gauss-Seidel, ...).
- Compute  $r^h = f^h A^h v^h$ , restrict  $r^{2h} = I_h^{2h} r^h$ , and solve

$$A^{2h}e^{2h}=r^{2h}$$

- Interpolate  $e^h = I^h_{2h} e^{2h}$  and correct  $v^h \leftarrow v^h + e^h$ .
- Relax  $\nu_2$  times on  $A^h v^h = f^h$ .

**Multigrid V-cycle** = recursion.



## Helmholtz equation & Multigrid

### Two-grid correction scheme

- Relax  $\nu_1$  times on  $A^h v^h = f^h$  (e.g.  $\omega$ -Jacobi, Gauss-Seidel, ...).
- Compute  $r^h = f^h A^h v^h$ , restrict  $r^{2h} = I_h^{2h} r^h$ , and solve

$$A^{2h}e^{2h}=r^{2h}$$

- Interpolate  $e^h = I^h_{2h} e^{2h}$  and correct  $v^h \leftarrow v^h + e^h$ .
- Relax  $\nu_2$  times on  $A^h v^h = f^h$ .

**Multigrid V-cycle** = recursion.

<u>NOTE:</u> multigrid cannot solve HH scattering system (1), only preconditioning systems! (CSL/CSG)

Ernst Gander (2012)



### Far field mapping

Assume 
$$(-\Delta - k^2(\mathbf{x})) u^N(\mathbf{x}) = k_0^2 \chi(\mathbf{x}) u_{in}(\mathbf{x})$$
 for  $\mathbf{x} \in \Omega$ ,  
 $(-\Delta - k_0^2) u(\mathbf{x}) = g(\mathbf{x})$  for  $\mathbf{x} \in \mathbb{R}^d$ ,

where  $g(\mathbf{x}) \doteq k_0^2 \chi(\mathbf{x})(u_{in}(\mathbf{x}) + u^N(\mathbf{x})).$ 

Analytical solution using Helmholtz Green's function:

$$\begin{split} u(\mathbf{x}) &= \int_{\mathbb{R}^d} G(\mathbf{x}, \mathbf{x}') \, g(\mathbf{x}') \, d\mathbf{x}' \\ &= \int_{\Omega} G(\mathbf{x}, \mathbf{x}') \, k_0^2 \chi(\mathbf{x}') \left( u_{in}(\mathbf{x}') + u^N(\mathbf{x}') \right) d\mathbf{x}', \quad \mathbf{x} \in \mathbb{R}^d. \end{split}$$

 $\triangleright$  Calculate *u* in any point  $\mathbf{x} \in \mathbb{R}^d$  outside the numerical box, using only the information *inside* the numerical box.

### Far field mapping

Let  $\mathbf{x} = (\alpha, \rho)$  be given by a unit vector  $\alpha \in \mathbb{R}^d$  and length  $\rho \in \mathbb{R}$ . Asymptotic form of  $G(\mathbf{x}, \mathbf{x}')$  (separable) yields the far field  $(\rho \to \infty)$  wave pattern for u

$$\lim_{\rho\to\infty} u(\rho, \alpha) = D(\rho)F(\alpha), \qquad \alpha \in \mathbb{R}^d,$$

where

$$F(\alpha) = \int_{\Omega} e^{-ik_0 \mathbf{x}' \cdot \alpha} g(\mathbf{x}') \, d\mathbf{x}'. \tag{2}$$

is the far field amplitude map.



## Far field mapping

Note that the far field integral can be split into a sum of two contributions:  $F(\alpha) = l_1 + l_2$ , with

$$I_{1} = \underbrace{\int_{\Omega} e^{-ik_{0}\mathbf{x}\cdot\boldsymbol{\alpha}}\chi(\mathbf{x})u_{in}(\mathbf{x})d\mathbf{x}}_{\text{all factors known explicitely}} \quad \text{and} \quad I_{2} = \underbrace{\int_{\Omega} e^{-ik_{0}\mathbf{x}\cdot\boldsymbol{\alpha}}\chi(\mathbf{x})u^{N}(\mathbf{x})d\mathbf{x}}_{\text{requires }u^{N}(\mathbf{x}) \text{ for } x \in \Omega }$$

## Far field mapping

Note that the far field integral can be split into a sum of two contributions:  $F(\alpha) = l_1 + l_2$ , with

$$I_{1} = \underbrace{\int_{\Omega} e^{-ik_{0}\mathbf{x}\cdot\boldsymbol{\alpha}}\chi(\mathbf{x})u_{in}(\mathbf{x})d\mathbf{x}}_{\text{all factors known explicitely}} \quad \text{and} \quad I_{2} = \underbrace{\int_{\Omega} e^{-ik_{0}\mathbf{x}\cdot\boldsymbol{\alpha}}\chi(\mathbf{x})u^{N}(\mathbf{x})d\mathbf{x}}_{\text{requires }u^{N}(\mathbf{x}) \text{ for } x \in \Omega }$$

Summary: Far field map calculation in a nutshell:

- ► Step 1. Solve the HH eqn. (1) for u to obtain a solution u<sup>N</sup> on a numerical domain.
- Step 2. Calculate/approximate the Fourier integral (2) on the given numerical domain.

## Far field mapping

Note that the far field integral can be split into a sum of two contributions:  $F(\alpha) = l_1 + l_2$ , with

$$I_{1} = \underbrace{\int_{\Omega} e^{-ik_{0}\mathbf{x}\cdot\boldsymbol{\alpha}}\chi(\mathbf{x})u_{in}(\mathbf{x})d\mathbf{x}}_{\text{all factors known explicitely}} \quad \text{and} \quad I_{2} = \underbrace{\int_{\Omega} e^{-ik_{0}\mathbf{x}\cdot\boldsymbol{\alpha}}\chi(\mathbf{x})u^{N}(\mathbf{x})d\mathbf{x}}_{\text{requires }u^{N}(\mathbf{x})\text{ for }x\in\Omega \ !}$$

Summary: Far field map calculation in a nutshell:

► Step 1. Solve the HH eqn. (1) for u to obtain a solution u<sup>N</sup> on a numerical domain.



Step 2. Calculate/approximate the Fourier integral (2) on the given numerical domain.

## Far field mapping

#### Extension to $\chi$ analytical

Far field map definition (2) relies on the object of interest  $\chi$  having compact support; however,

**Theorem:** Let  $U = \{f : \mathbb{R}^d \to \mathbb{R} \text{ comp. supp.}\}$  and  $V = \{f : \mathbb{R}^d \to \mathbb{R}, f \text{ analytical } | \forall \varepsilon > 0, \exists K \subset \mathbb{R}^d \text{ compact}, \forall x \in \mathbb{R}^d \setminus K : |f(x)| < \varepsilon\},$ then  $U \subset V$  dense.

**Proof:** using notion of compactly supported, non-analytical,  $C^{\infty}$  bump functions, cf. Mead Delves (1973).

Hence, the far field mapping  $F(\alpha)$  (2) is well-defined for analytical object functions  $\chi$  that vanish at infinity.

For  $\boldsymbol{u}$  and  $\boldsymbol{\chi}$  analytical the far field integral

# $I_2 = \int_{\Omega} e^{-ik_0 \mathbf{x} \cdot \boldsymbol{\alpha}} \chi(\mathbf{x}) \underbrace{u^N(\mathbf{x})}_{\text{difficulty}} d\mathbf{x}$



can be calculated over a complex contour  $Z=Z_1+Z_2$  , rather than over the real domain  $\Omega,$  i.e.

$$I_2 = \underbrace{\int_{Z_1} e^{-ik_0 \mathbf{z} \cdot \boldsymbol{\alpha}} \chi(\mathbf{z}) u^N(\mathbf{z}) d\mathbf{z}}_{\text{requires } u^N(\mathbf{z}) \text{ for } \mathbf{z} \in Z_1 !} + \int_{Z_2} e^{-ik_0 \mathbf{z} \cdot \boldsymbol{\alpha}} \chi(\mathbf{z}) u^N(\mathbf{z}) d\mathbf{z}.$$

For u and  $\chi$  analytical the far field integral

$$I_2 = \int_{\Omega} e^{-ik_0 \mathbf{x} \cdot \boldsymbol{\alpha}} \chi(\mathbf{x}) \underbrace{u^N(\mathbf{x})}_{\text{difficulty}} d\mathbf{x}$$



can be calculated over a complex contour  $Z=Z_1+Z_2$  , rather than over the real domain  $\Omega,$  i.e.

$$I_{2} = \underbrace{\int_{Z_{1}} e^{-ik_{0}\mathbf{z}\cdot\boldsymbol{\alpha}}\chi(\mathbf{z})u^{N}(\mathbf{z})d\mathbf{z}}_{\text{requires }u^{N}(\mathbf{z}) \text{ for } \mathbf{z} \in Z_{1} !} + \int_{Z_{2}} e^{-ik_{0}\mathbf{z}\cdot\boldsymbol{\alpha}}\chi(\mathbf{z})u^{N}(\mathbf{z})d\mathbf{z}$$

# Solving HH eqn. on complex contour

Complex Shifted Laplacian (CSL) system with  $\beta \in \mathbb{R}$ 

$$\left(-\Delta - (1 + i\beta)k^2(\mathbf{x})\right)u(\mathbf{x}) = f(\mathbf{x})$$

$$-\left(\frac{1}{h^2}L+(1+i\beta)k^2\right)u_h=b_h,$$

with L = Laplacian stencil matrix. Division by  $(1 + i\beta)$  yields

$$-\left(\frac{1}{(1+i\beta)h^2}L+k^2\right)u_h=\frac{b_h}{1+i\beta}$$
(3)

= the original HH system discretized with  $\tilde{h} = \sqrt{1 + i\beta} h \doteq \rho e^{i\gamma} h$ . Reps Vanroose bin Zubair (2010)

# Solving HH eqn. on complex contour

Rule-of-thumb for CSL

Erlangga Oosterlee Vuik (2006) Cools Vanroose (2013)

HH system (3) can be efficiently solved using multigrid for  $\beta > 0.5$ .

Conversion to angle  $\gamma$ 

 $\sqrt{1+\beta i} \doteq \rho \exp(i\gamma)$ 

$$\tilde{h} = \sqrt{1 + i\beta} h = \rho \exp(i\gamma)h$$

$$\Leftrightarrow \ \gamma = \frac{\arctan(\beta)}{2} \underset{\beta=0.5}{\approx} 13.28^{\circ}$$

<u>Note:</u> softened to  $\gamma \approx 9.5^{\circ}$  with GMRES as smoother substitute.



## Numerical validation (2D)

$$\chi(x,y) = -\frac{1}{5} \left( e^{-(x^2 + (y-4)^2)} + e^{-(x^2 + (y+4)^2)} \right)$$

**Object of interest**  $|\chi|$  (modulus)

Real domain with ECS  $|\chi(\mathbf{x})|$  $(\theta_{ECS} = 45^{\circ})$ 

1+



Complex contour  $|\chi(\mathbf{z})|$  $(\gamma = 14.6^{\circ})$ 



### Scattered wave solution |u|

1+

### Real domain with ECS $|u(\mathbf{x})|$ LU factorization



## Numerical validation (2D)

$$\chi(x,y) = -\frac{1}{5} \left( e^{-(x^2 + (y-4)^2)} + e^{-(x^2 + (y+4)^2)} \right)$$

Complex contour |u(z)|V(1,1) cycles ( $tol_{res} = 10^{-6}$ )



## Numerical validation (2D)

### Far field amplitude map

### Real domain with ECS $F(\alpha)$





### Complex contour $F(\alpha)$

 $\chi(x,y) = -\frac{1}{5} \left( e^{-(x^2 + (y-4)^2)} + e^{-(x^2 + (y+4)^2)} \right)$ 



$$\frac{\|F_{co} - F_{ex}\|_2}{\|F_{ex}\|_2} = 1.39\text{e-}4$$

## Multigrid performance (3D)

## Solving the HH system - complex contour $\gamma = 10^{\circ}$ GMRES(3)-smoothed V(1,1) cycles (tol<sub>res</sub> = 10<sup>-6</sup>)

| $n_x \times n_y \times n_z$ | 16 <sup>3</sup>    | 32 <sup>3</sup>    | 64 <sup>3</sup>    | 128 <sup>3</sup>  | 256 <sup>3</sup>   |
|-----------------------------|--------------------|--------------------|--------------------|-------------------|--------------------|
| $k_0 = 1/4$                 | <b>10</b> (0.79s.) | <b>9</b> (4.65s.)  | <b>9</b> (44.2s.)  | <b>9</b> (352s.)  | <b>9</b> (2778s.)  |
|                             | 0.24               | 0.20               | 0.21               | 0.20              | 0.20               |
| $k_0 = 1/2$                 | 12 (0.92s.)        | <b>10</b> (4.96s.) | <b>10</b> (48.3s.) | <b>10</b> (390s.) | <b>9</b> (2797s.)  |
|                             | 0.31               | 0.24               | 0.22               | 0.23              | 0.21               |
| $k_0 = 1$                   | 7 (0.62s.)         | 13 (6.59s.)        | <b>11</b> (54.6s.) | <b>10</b> (387s.) | <b>10</b> (3079s.) |
|                             | 0.13               | 0.32               | 0.27               | 0.24              | 0.24               |
| $k_0 = 2$                   | 2 (0.28s.)         | 8 (4.24s.)         | 13 (63.9s.)        | <b>11</b> (428s.) | <b>10</b> (3006s.) |
|                             | 0.00               | 0.14               | 0.33               | 0.27              | 0.24               |
| $k_0 = 4$                   | 1 (0.20s.)         | 2 (1.35s.)         | 7 (36.1s.)         | 13 (503s.)        | <b>11</b> (3306s.) |
|                             | 0.00               | 0.00               | 0.12               | 0.33              | 0.26               |

## Multigrid performance (3D)

Solving the HH system - complex contour  $\gamma = 10^{\circ}$  GMRES(3)-smoothed V(1,1) cycles (tol<sub>res</sub> = 10<sup>-6</sup>)



| $n_x \times n_y \times n_z$ | 16 <sup>3</sup>    | 32 <sup>3</sup>    | 64 <sup>3</sup>    | 128 <sup>3</sup>  | 256 <sup>3</sup>   |
|-----------------------------|--------------------|--------------------|--------------------|-------------------|--------------------|
| $k_0 = 1/4$                 | <b>10</b> (0.79s.) | <b>9</b> (4.65s.)  | <b>9</b> (44.2s.)  | <b>9</b> (352s.)  | <b>9</b> (2778s.)  |
|                             | 0.24               | 0.20               | 0.21               | 0.20              | 0.20               |
| $k_0 = 1/2$                 | 12 (0.92s.)        | <b>10</b> (4.96s.) | <b>10</b> (48.3s.) | <b>10</b> (390s.) | <b>9</b> (2797s.)  |
|                             | 0.31               | 0.24               | 0.22               | 0.23              | 0.21               |
| $k_0 = 1$                   | 7 (0.62s.)         | 13 (6.59s.)        | <b>11</b> (54.6s.) | <b>10</b> (387s.) | <b>10</b> (3079s.) |
|                             | 0.13               | 0.32               | 0.27               | 0.24              | 0.24               |
| $k_0 = 2$                   | 2 (0.28s.)         | 8 (4.24s.)         | 13 (63.9s.)        | <b>11</b> (428s.) | <b>10</b> (3006s.) |
|                             | 0.00               | 0.14               | 0.33               | 0.27              | 0.24               |
| $k_0 = 4$                   | 1 (0.20s.)         | 2 (1.35s.)         | 7 (36.1s.)         | 13 (503s.)        | <b>11</b> (3306s.) |
|                             | 0.00               | 0.00               | 0.12               | 0.33              | 0.26               |

# Multigrid performance (3D)

Solving the HH system ( $k_0 = 1$ ) - complex contour  $\gamma = 10^{\circ}$  GMRES(3)-smoothed FMG(1,1) cycle

| $n_x \times n_y \times n_z$ | 16 <sup>3</sup> | 32 <sup>3</sup> | 64 <sup>3</sup> | 128 <sup>3</sup> | 256 <sup>3</sup> |
|-----------------------------|-----------------|-----------------|-----------------|------------------|------------------|
| CPU time                    | 0.20 s.         | 0.78 s.         | 6.24 s.         | 53.3 s.          | 462 s.           |
| $  r  _2$                   | 3.3e-5          | 7.9e-5          | 2.7e-5          | 1.1e-5           | 4.6e-6           |

Intel<sup>®</sup> Core<sup>™</sup> i7-2720QM 2.20GHz CPU, 6MB Cache, 8GB RAM.

# Multigrid performance (3D)

Solving the HH system ( $k_0 = 1$ ) - complex contour  $\gamma = 10^{\circ}$  GMRES(3)-smoothed FMG(1,1) cycle



Intel<sup>®</sup> Core<sup>™</sup> i7-2720QM 2.20GHz CPU, 6MB Cache, 8GB RAM.



### Conclusions

- We have developed a novel highly efficient calculation method for the far field map resulting from *d*-dimensional Helmholtz scattering problems
- Based on a reformulation of the classical Green's function integral to an equivalent integral over a complex valued domain
- Advantage: very efficient multigrid scattered wave solution of the Helmholtz problem on a complex domain (cf. CSL)

 $\rightarrow$  overcomes the main computational difficulty

- Advantage: increasingly performant on larger domains (k<sub>0</sub>-scalabilty) and in higher spatial dimensions
- *Restriction:* Space-dependent wave number  $k(\mathbf{x})$  analytical





Current and future work (may) include(s):

 $\triangleright$  Optimizing the shape of the contour w.r.t. the object function. Does it work for all functions  $\chi$ ?

 $\rightarrow$  cf. work by D. Huybrechs (KULeuven, Belgium): path of steepest descent for oscillatory integrals

 Application of the proposed method to (other) practical scattering problem types, e.g. molecular break-up reactions (6D-9D Schrödinger's equation)

 $\rightarrow$  subsequent talk by W. Vanroose.



### References

- Y.A. Erlangga, C.W. Oosterlee and C. Vuik. A novel multigrid based preconditioner for heterogeneous Helmholtz problems. *SIAM Journal on Scientific Computing* 27(4):1471–1492, 2006.
- [2] D. Huybrechs and S. Vandewalle. On the evaluation of highly oscillatory integrals by analytic continuation. *SIAM Journal on Numerical Analysis* 44(3):1026–1048, 2006.
- [3] W. Vanroose, D.A. Horner, F. Martin, T.N. Rescigno and C.W. McCurdy. Double photoionization of aligned molecular hydrogen. *Physical Review A*, 74(5):052702, 2006.
- [4] B. Reps, W. Vanroose and H. bin Zubair. On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning. *Journal of Computational Physics* 229(22):8384–8405, 2010.
- [5] S. Cools, B. Reps and W. Vanroose. An efficient multigrid method calculation of the far field map for Helmholtz problems. *In preparation.* arXiv:1211.4461v2, 2013.