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The Helmholtz Equation

The focus of the research lies on solving the Helmholtz equation (indefinite)
on a domain Ω with given boundary conditions on ∂Ω

−∆u+ σu = f onΩ ⊂ Rd, (σ < 0)
u = g on ∂Ω.

Model problem is the 2D Helmholtz equation on [0, 1]2

with homogeneous Dirichlet boundary conditions

−∆u(x,y) + σu(x,y) = f(x,y),
u(x,y) = 0 (x,y) ∈ ∂Ω.

A variety of industrial applications include Electromagnetic Scattering (radar),
Seismic Imaging (petrol exploration), Medical Imaging (PCT), and many more.

The equation is typically discretised using second-order central differences,
yielding a matrix-vector equation of the form

Av = f

where v contains the solution in each of the nd interior grid points, and A is a
nd × nd-discretisation matrix, which in 2D is defined by the stencil

A(σ) =
1
h2

 −1
−1 4 + σh2 −1

−1


Wave numbers σ < 0 with |σ| > 1/h2 undermine the diagonal dominance of A,
rendering the matrix indefinite.

The Multigrid Method

It is our aim to solve this system of equations numerically using the advanced
iterative method known as Multigrid. A Multigrid cycle is the nested version of
the so-called Two-Grid correction scheme

eh← [I− Ih2h(A
2h)−1I2hh A

h]Rνeh := TGR eh.

A basic iterative solver R called the
smoother eliminates the high oscillatory
error components in each intergrid step.
Part of the efficiency of the Multigrid
solver lies in its low computational
cost: whereas direct methods
use O(Np) flops to compute a solution,
Multigrid typically requires only O(N).

Although Multigrid provides excellent results on the definite Helmholtz problem,
a direct application of Multigrid to the indefinite variant is inadvisable.

An explanation for this failure can be found by studying the eigenvalues of TGR,
which can be written approximately as

λk(TGR) ≈ λk(R)ν
[
1 −

λk(A
h)

λk(A2h)

]
, 1 6 k <

N

2
.

In situations where λk(A2h) is both relatively small (≈ 0) and/or reversely signed
w.r.t. λk(Ah), one observes that ρ(TGR) > 1, implying convergence to the
solution is not guaranteed.

Solutions & Research
A Multigrid preconditioned Krylov solver is applied to the Helmholtz problem,
intrinsically solving the system

M−1Av =M−1f

where M is designated to be a Complex Shifted Laplacian preconditioner

M(σ,β) = −∆+ σ(1 + βi).

This implies an inner loop of Multigrid iterations, constructing the Krylov
subspace base vectors, is nested within the outer loop of Krylov iterations.

A contrariety rises from the fact that the Multigrid method requires β to be
sufficiently large, while the envelopping Krylov solver benefits from β→ 0.

A joint Local Fourier Analysis of the smoother and Two-Grid operator provides

U(m+1) = G(θ1, θ2,σ,β)U(m), m > 1, θi ∈ (−π,π] ,

with amplification factor G(θ1, θ2,σ,β) describing the evolution of the error’s
amplitude U( . ) through consecutive iterations. Separate analysis shows

GR(θ1, θ2,σ,β) = 1 −ω+
2ω

4 + σ̃h2(cos θ1 + cos θ2),

GTG(θ1, θ2,σ,β) = 1−
1
16

(cos θ1+1)2(cos θ2+1)2
(
−2 cos θ1 − 2 cos θ2 + 4 + σ̃h2

sin2 θ1 + sin2 θ2 + σ̃h2

)
which can be combined into

GTGR(θ1, θ2,σ,β) for θi ∈ (−π,π] .

The Minimal Complex Shift Parameter

βmin := argmin
β>0

{
max

−π<θ1,θ26π
|GTGR(θ1, θ2,σ,β)| 6 1

}
can be interpreted as both the smallest
possible shift for Multigrid to converge and is,
under this condition, optimal in view of Krylov
convergence. It is intrinsically a function of σ.
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