Kan Al en big data ons aan verantwoordbare zorg helpen?

W. Van Biesen Ghent University Hospital

Person: Pick up a big red block. Computer: OK.

Person: Grasp the pyramid.

Computer: I don't understand which pyramid you mean.

Conceptualisation of the world

Manipulating symbols: 2+2=4; 4+2=6; 2+2+2=6 *\$*£%; %\$*£M; *\$*\$£M

Creating "meaning"

SHRDLU language

"Call Beth, no John."

100% Call John

WATSON

IBM Watson brings together a set of transformational technologies to drive optimized outcomes

Understands natural language and human speech 2 Generates and evaluates hypothesis for better outcomes

3 Adapts and Learns from user selections and responses

...built on a mass. evidence-based architectu

IBM Watson Flops For Cancer Treatment: Why Did Al Fail? HER Dimerization – Inhibitor

Ligand

Anti-HER2 Monoclonal Antibody

HER2

HER2

HER3

Growth

signal

Growth signal inhibition

HER2 Homodimer HER1/ EGFR -

HER family

EGFR

HER2 HER3 Heterodimer

Grov

sign

Theoretical and Basic research Eloquence based medicine

Evidence Based Medicine

Decision making on (medical) actions, intentionally based on a transparant and systematic analysis of available evidence, and this applied to a real-life clinical context

> With the goal to decrease the DISCREPANCY between medical actions And Medical knowledge

Evidence Based Medicine Randomized Controlled Trial

Randomisation to ensure that the only difference between two experimental groups is the intervention under scrutiny

Causality

Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial

F Perry Wilson, Michael Shashaty, Jeffrey Testani, Iram Aqeel, Yuliya Borovskiy, Susan S Ellenberg, Harold I Feldman, Hilda Fernandez, Yevgeniy Gitelman, Jennie Lin, Dan Negoianu, Chirag R Parikh, Peter P Reese, Richard Urbani, Barry Fuchs

Cochrane review Hemmingsen et al, BMJ, 2011

	No of ev	ents/total				
Study	Intensive control	Conventional control	Risk ((Mantel-H random)	aenszel,	Weight (%)	Risk ratio (Mantel-Haenszel, random) (95% CI)
UGDP 1978	52/204	52/210	-	-	8.6	1.03 (0.74 to 1.44)
Service 1983	0/10	0/10			0.0	Not estimable
VA CSDM 1995	5/75	5/78	_		0.8	1.04 (0.31 to 3.45)
Jaber 1996	0/23	0/22			0.0	Not estimable
UKPDS 1998	539/3071	213/1138	-		25.9	0.94 (0.81 to 1.08)
Kumamoto 200	0 3/55	6/55		-	0.6	0.50 (0.13 to 1.90)
Bagg 2001	0/21	0/22			0.0	Not estimable
ACCORD 2008	257/5128	203/5123		•	20.4	1.26 (1.06 to 1.51)
ADVANCE 2008	498/5571	533/5569			30.7	0.93 (0.83 to 1.05)
REMBO 2008	4/41	4/40			0.7	0.98 (0.26 to 3.64)
IDA 2009	0/51	0/51			0.0	Not estimable
VADT 2009	102/892	95/899	+	-	12.3	1.08 (0.83 to 1.41)
Total (95% CI)	1460/15 142	1111/13 217			100.0	1.02 (0.91 to 1.13)
Test for heteroge	eneity: τ ² =0.02					
df=7, P=0.18, I	² =30%		0.01 0.1 1		00	
Test for overall e	effect: z=0.33,		Favours intensive	Favou		
	whet fam all	a a constant second	- 124			

No of events/total

Fig 2 Forest plot for all cause mortality

Wrong outcomes impede meta-analysis

Urea Biocarbonate Cleared volumorate product erythropoeisis markers Phosphorus B2M Reduction the flow Phosphorus Uric acid relevant atient biochemical Creatinine de Retinol binding surrogate B2M Cystacin C Protein bound molecules Rebound urea Urea Uric acid Protein bound molecules Lohexol Creatinine Creatinine Clearance Myoglobulin B2M Phosphorus Protein bound molecules Cystacin C Retinol binding protein Potassium Creatinine Mass Daugirdas removal **Biochemical** SPKt/v urea phosphorus KEL Uricacid Levels OtherInor BIN specified OtherInot specified ALS S Online Protein Dourd no build internet eKt/v Small molecules icarbonate creatinine calcium Phosphate

Adequacy of dialysis: definitions in RCTs: a systematic review

Impact of non-published evidence: the reboxetine case

Pahavatina v placaba	Reboxetine (n/N)	Placebo or selective serotonin reuptake inhibitor (n/N)		Odds ratio (95% CI)	Ratio of odds ratios; published:unpublished (95% CI)	
Reboxetine v placebo Remission					(7576 CI)	
	(0/12)	24/120		2 51 (1 40 to 4 25)		
Published (1)	60/126	34/128		2.51 (1.49 to 4.25)		
Unpublished (6)	395/938	379/930		1.06 (0.88 to 1.28)	2.37 (1.36 to 4.13)	115
Total (7)	455/1064	413/1058	•	1.17 (0.91 to 1.51)		
Response						
Published (1)	70/126	43/128		2.47 (1.49 to 4.11)		
Unpublished (6)	469/938	439/930	-	1.12 (0.93 to 1.35)	2.21 (1.28 to 3.79)	99
Total (7)	539/1064	482/1058	◆	1.24 (0.98 to 1.56)		
Patients with adverse	e events					
Published (2)	108/154	91/156		.67 (0.52 to 13.79)	
Unpublished (6)	839/979	713/959		2.15 (1.66 to 2.80)	1.24 (0.24 to 6.53)	25
Total (8)	947/1133	804/1115	-	2.14 (1.59 to 2.88)		
Withdrawal owing to	adverse even	ts				
Published (2)	15/154	16/156		0.95 (0.45 to 1.99)		
Unpublished (6)	122/979	48/959		2.61 (1.79 to 3.80)	0.36 (0.16 to 0.84)	-57
Total (8)	137/1133	64/1115	-	2.21 (1.45 to 3.37)		

www.european-real-best-practice.org

Eyding et al, BMJ, 2010

Evaluation of the Inclusion of Studies Identified by the FDA as Having Falsified Data in the Results of Meta-analyses: The Example of the Apixaban Trials

Our sensitivity analysis results showed that conclusions may be altered in meta-analyses by the inclusion of publications with falsified data. This study should add impetus for robust sensitivity analyses and stronger protections against falsified data. Falsified data can affect not only the original publication, but also any subsequent meta-analyses and any resulting clinical or policy changes resulting from the findings of these studies.

JAMA Internal Medicine April 2019 Volume 179, Number 4

Biases in electronic health record data due to processes within the healthcare system: retrospective observational study

Denis Agniel,¹ Isaac S Kohane,^{1,2} Griffin M Weber^{1,3}

WHAT IS ALREADY KNOWN ON THIS TOPIC

Dynamic processes within the healthcare system, such as the hours when clinics are open and when patients are scheduled to be seen, leave an imprint on electronic health record data

WHAT THIS STUDY ADDS

An evaluation of using the effects of healthcare processes on 272 laboratory tests to predict three year survival in the full patient populations seen over a year at two large hospitals

The hour of the day the test was ordered, the day of the week, and the amount of time between consecutive tests is more predictive of three year survival than the actual value of the test result, for most tests

Polysaccharide Conjugate Vaccine against Pneumococcal Pneumonia in Adults

stekend

Pneumococca J.J.M. Bonten, S.M. Huijts, M. Bolkenbaas, C. Webber, S. Patterson, C.H. van Werkhoven, A.M.M. van Deursen, E.A.M. Sanders, T.J.M. Patton, A. McDonough, A. Moradoghli-Haftvani, H. Smith, T. N thar B. Schmoele-Thoma, D.A. Scott, K.U Core A. Smorenburg M.J.M. Bonten, S.M. Huijts, M. Bolkenbaas, C. Webber, S. Patterson, S.

80% relative risk reduction

Figure 2. Post Hoc Analysis of the Cumulative Episodes of the Primary and Secondary Efficacy End Points in the Per-Protocol Population.

Polysaccharide Conjugate Vaccine against Pneumococcal Pneumonia in Adults

M.J.M. Bonten, S.M. Huijts, M. Bolkenbaas, C. Webber, S. Patterson, S. Gault,
C.H. van Werkhoven, A.M.M. van Deursen, E.A.M. Sanders, T.J.M. Verheij,
M. Patton, A. McDonough, A. Moradoghli-Haftvani, H. Smith, T. Mellelieu,
M.W. Pride, G. Crowther, B. Schmoele-Thoma, D.A. Scott, K.U. Jansen,
R. Lobatto, B. Oosterman, N. Visser, E. Caspers, A. Smorenburg, E.A. Emini,
W.C. Gruber, and D.E. Grobbee

49 vs 90 infection with vaccine type strai 100 vs 144 Pneumococcal CAP PER 84000 patients!!!!

NNT: 51/42000 => 1/823

Mortality from pneumococcal pneumonia: 2 vs 2

Overall mortality: 3006 vs 3005

Overall CAP: 747 vs 787

_t al, NEJM, 2015

External validity

4

Big Data/AI can be helpful

- Uniformisation of data
- Completeness of data
- Correctness/veracity of data
- Representativity of data

Veracity Volume Variability Velocity

Figure 3: a) (left panel) Illustration of the top levels of the tree-structured taxonomy. The full set of 2032 diseases are leaf nodes and were used for the developing the algorithm. b) (right panel) Classification results for a set of 130 images of melanocytic lesions, blue curve from the algorithm, red dots from individual dermatologists. Images taken from Esteva et al. 2017 [30].

How much does Herceptin cost?

Primary endpoint effect size: disease free survival at 2 year:

7,6 %(85,5% vs 78,2%).

Treatment	No of patients given treatment	Drug cost (£000)	Proven benefit	Potential benefit at our hospital	Cost per patien cured (£000)
Adjuvant chemotherapy for lung cancer	15	23	5-15% improved 5 year overall survival ^{w3}	1 extra patient cured	23
Oxaliplatin as adjuvant therapy for colon cancer compared with fluorouracil alone	20	137	5% improved 3 year disease-free survival; no benefit to overall survival ^{w4}	1 extra patient without recurrence at 3 years	137
Neoadjuvant chemotherapy for oesophageal cancer	25	8	9% improved 5 year survival ^{ws}	3 extra patients cured	2.67
Rituximab in addition to CHOP for non-Hodgkin lymphoma in patients over 60	25	215	13% improved 2 year overall survival ^{w6}	3 extra patients cured	71.67
Adjuvant aromatase inhibitors in postmenopausar breast cancer	270	120	3.7% improved disease-free survival compared with tamoxifen; no benefit to overall survival ^{w7}	8 extra patients without recurrence at o gears	15
Total	355	503		16 extra patients cured	
norseptin for early stage breast cancer	75	1940	0-4% improved 4 year overall survival ^{w1 w2}	3 extra patients cured	650

Table 1 Cost and potential benefits of adjuvant cancer treatments in Norfolk and Norwich University Hospital Trust

Figure 1. Monthly and Median Costs of Cancer Drugs at the Time of Approval by the Food and Drug Administration (FDA), from 1965 through 2008.

Shown are costs for 1 month of cancer treatment for a person who weighs 70 kg or has a body-surface area of 1.7 m². The red line indicates median prices during a 5-year period. Prices have been adjusted to 2007 dollars and reflect the total price for the drug at the time of approval, including both the amount of Medicare reimbursement and the amount paid by the patient or by a secondary payer. (For details about the costs of individual drugs, see the Supplementary Appendix, available with the full text of this article at NEJM.org.)

Bach, NEJM, 2009

R-RCT vs. RCT STEMI Thrombectomy Story

1st patient: June 2010
30 centers
33 months to full enrollment
7,244 patients

Lagerqvist B et al. N Engl J Ned 2014;371:1111-1120

1st patient: August 2010
87 centers
48 months to full enrollment
10,732 patients

Jolly SS et al. N Engl J Med 2015;372:1389-1398

DETermination of the role of OXygen in suspected Acute Myocardial Infarction

Robin Hofmann, MD Karolinska Institutet Department of Clinical Science and Education Division of Cardiology, Södersjukhuset Stockholm, Sweden

DETO2X-AMI compared to other studies

Number of randomized patients with suspected AMI 0 1000 2000 3000 4000 5000 6000 7000

Primary Endpoint up to 365 days

Causality

Figure 1 Evidence-based decision-making for clinical contexts.

Figure 1 Evidence-based decision-making for clinical contexts.

Figure 1 Evidence-based decision-making for clinical contexts.

Figure 2. Survival-only pictographs from primary study

Statistical illiteracy: uncertainty

Fig. 6. The illusion of certainty. Shown are results from face-to-face interviews conducted in 2006, in which a representative sample of 1,016 German citizens was asked: "Which of the following tests are absolutely certain?" (Gigerenzer, 2008).

TABLE 8

Answers by 20 AIDS Counselors to the Client's Question: "If One Is Not Infected With HIV, Is It Possible to Have a Positive Test Result?"

- 1 "No, certainly not"
- 2 "Absolutely impossible"
- 3 "With absolute certainty, no"
- 4 "No, absolutely not"
- 5 "Never"
- 6 "Absolutely impossible"
- 7 "Absolutely impossible"
- 8 "With absolute certainty, no"18
- 9 "The test is absolutely certain"
- 10 "No, only in France, not here"
- "False positives never happen" 11 "With absolute certainty, no" 12"With absolute certainty, no" 13"Definitely not" . . . "extremely 14rare" "Absolutely not" ... "99.7% 15 specificity" "Absolutely not" . . . "99.9% 16 specificity" "More than 99% specificity" 17"More than 99.9% specificity" 19 "99.9% specificity"
- 20 "Don't worry, trust me"