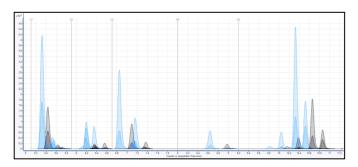
Qualitative analysis of dental material ingredients, composite resins and sealants using liquid chromatography coupled to quadrupole time of flight mass spectrometry

Philippe Vervliet¹, Siemon De Nys², Imke Boonen³, Radu C. Duca⁴, Marc Elskens³, Kirsten L. Van Landuyt², Adrian Covaci¹


¹Toxicological Centre, University of Antwerp, Antwerp, Belgium; ²KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium; ³Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Ixelles, Belgium; ⁴Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium

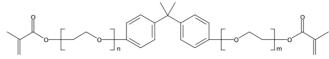
Introduction

Composite resins have an increased use after the phase-down of the use of amalgam for dental restorations. These resins consist of inorganic fillers, monomers, photoinitiators, etc. However, the exact composition of these composite resins is not known as it is regarded a trade secret. In order to perform studies on the (long-term) release, degradation and metabolism of the monomers in these resins, it is necessary to identify the ingredients and possible impurities of the different materials.

LC-QTOF-MS/MS Method Development

Initial choice of additive 2 mM NH₄Ac + Acetic acid based on Putzeys et al¹.

Optimal results for pH 3.5 in exploratory experiments (black).


Increased sensitivity when replaced by 1 mM NH_4F (blue).

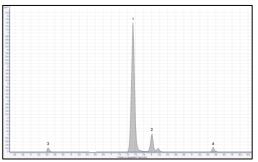
Objectives

- 1. Develop an LC-QTOF-MS/MS method for identification of dental material ingredients
- 2. Identify impurities in dental material ingredients
- 3. Identify ingredients of composite resins & sealants

Suspect screening dental material ingredients

Analysis of 1 ng/µL reference standards using custom in-house library

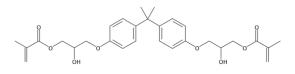
BisEMA is a group of oligomers with


different amounts of ethoxy groups. In

standards of different BisEMA a variety of

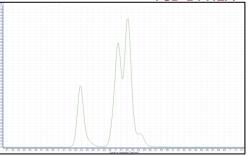
oligomers has been identified with ethoxy

BisEMA-3BisEMA-3BisEMA-6BisEMA-10BisEMA-2XXXBisEMA-3XXXBisEMA-4XXXBisEMA-5XXXBisEMA-5XXXBisEMA-6XXXBisEMA-7XXBisEMA-8XXBisEMA-9XXBisEMA-10XXBisEMA-12XX


BisGMA

Different isomers present in standard of TCD-DI-HEA, MS/MS fragments did not

help to elucidate structure of these


groups ranging from 2 - 13 (n + m).

1: BisGMA

- 2: iso-BisGMA (isomer)
- 3: BisGMA-H (monomethacrylate)
- 4: BisGMA-M (trimethacrylate)

TCD-DI-HEA

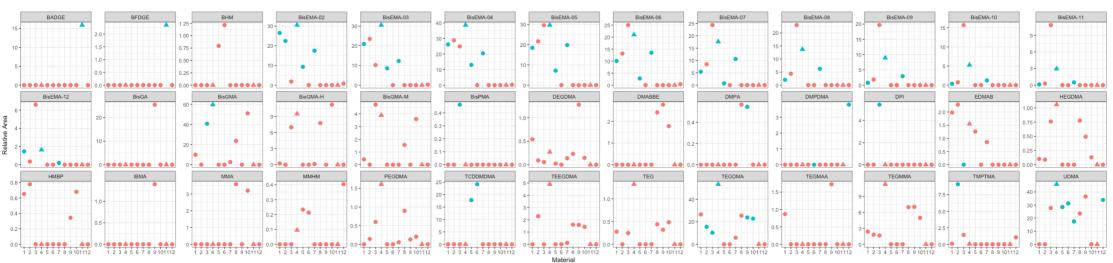
Column: Agilent Poroshell EC-C18 (3.0 x 100 mm, 2.7 μm)

Mobile Phase A: H₂O (MilliQ) + 1 mM NH₄F

Mobile Phase B: MeOH + 1 mM NH₄F

Temperature: 40°C

Flow: 0.4 mL / min


Suspect screening dental materials

Sample Preparation & Analysis

Results

For all identified features, the area in each sample was divided by the area of the deuterated internal standard (IS, d-UDMA) to obtain relative areas, allowing to compare the amount of the compound between samples. Next, safety data sheets of materials (MSDS) were checked to control whether the feature was listed or not (colored resp. blue or red).

<u>Material</u>

Material

Type

•: Composite 1: Ceram.X Universal ; 2: Dyract Extra ; 3: Filtek Supreme Flow ; 4: Fissurit FX ; 5: G-ænial posterior ; 6: Gradia Direct Posterior ; 7: N'Durance ; 8: Quadrant Anterior ; 9: Solitaire 2 ; 10: Venus ; 11: AH Plus ; 12: G-ænial anterior

Toxicological Centre University of Antwerp

References

1. Putzeys, E. et al., Journal of Separation Science 40(5), 2017: 1063-1075