WE137 Development of a refined zebrafish feeding trial L Gabriëls, L. Vergauwen, University of Antwerp / Zebrafishlab Dept Veterinary Sciences; M. De Boevre, Ghent University UGent; S. De Saeger, Ghent University UGent / Department of Bioanalysis; R. Blust, University of Antwerp / Systemic Physiological and Ecotoxicological Research Department of Biology; M. Eeckhout, Ghent University UGent / Department of Applied Biosciences; M. De Loose, Institute for Agricultural and Fisheries Research ILVO / Technology and Food Science Unit; D. Knapen, University of Antwerp / Zebrafishlab Dept Veterinary Sciences. Fish feeding trials are important for investigating foodborne ecotoxicological exposure as well as for evaluating food safety. Although a dietary biomagnification fish test exists, a standardized fish oral toxicity test is currently not available. Safety of food components, additives and contaminants is generally evaluated using rat feeding trials to assess (repro)toxicity. The development of a refined zebrafish feeding trial would advance existing testing strategies by reducing the cost, by replacing the use of mammals/birds by a lower vertebrate species, and by facilitating reproductive and multigenerational studies. When testing food, substitution of part of the food by the component under evaluation is often required, possibly interfering with nutritional requirements. Therefore, the extent of component substitution which can be processed by the zebrafish metabolism (maximum tolerable percentage) should be assessed prior to the component evaluation trial. Since we will conduct a feeding trial with GM maize later on in our study, we defined the maximum tolerable percentage of maize. First, we formulated experimental fish feeds based on the composition of commercial fish feeds. Maize was introduced in the feed by a stepwise substitution of a wheat component (25% of the whole feed). We compared 6 experimental feeds to three different commercial feeds in a one month feeding trial, during which we investigated the following endpoints: condition factor and growth, hepatosomatic and gonadosomatic index (HSI and GSI), reproduction, energy budget and feed digestibility. The growth of fish fed with 25% wheat or 25% maize slightly decreased. The HSI of males increased with increasing percentage of maize. Feed digestibility analysis showed a decrease in carbohydrate uptake when fish were fed with an increasing percentage of maize substitution. Based on these results, we selected a 15% maize substitution for conducting the GM maize feeding trial. This selection was based on two criteria: (1) the biological limits of the maize component in the zebrafish feed should be respected, (2) the amount of maize substitution should allow us to observe effects of GM maize if there are any. We suggest that our approach of determining component substitution rates before carrying out feeding trials could be a valuable asset when evaluating food safety, as well as for investigating dietary ecotoxicological exposure of fish.