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1. Main lectures

1.1. Quadratic forms (K.J. Becher). In this lecture we recall the basics of
the theory of quadratic forms over general fields, restricting mostly to fields of
characteristic different from 2.

We start by relating the two crucial view points on quadratic forms, namely as
polynomials and as symmetric bilinear forms, which in their combination make
them accessible to such a exceptional variety of tools and techniques. We recall
Witt’s classification theorems, the unique decomposition of a regular quadratic
form into an anisotropic and a hyperbolic part and the related construction of the
Witt ring. From there we move on to Pfister forms and their particular properties,
including Witt’s proof that they are ‘round’. In this context we mention Hurwitz’
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theorem on the existence of compositions of quadratic forms in certain dimen-
sion, which will be relevant in later lectures in the context of decomposability of
involutions.

We further address the behaviour of quadratic forms under field extensions.
In particular, we see the statement, independently proven by E. Artin and by
T.A. Springer, that anisotropy is conserved under finite field extensions of odd
degree, which is related to a challenging open problem for involutions.

We finally introduce function fields of quadratic forms. This tool, stemming
from the classical algebraic geometry view point on a quadratic form as a quadric,
is extremely useful in proving general structure theorems on quadratic forms. As
an illustration, we look at function fields of Pfister forms and sketch the proof of
the famous Arason-Pfister Hauptsatz, stating that the intersection of all powers
of the fundamental ideal in the Witt ring is zero. This result together with the
Milnor-Conjecture, proven by V. Voevodsky, yields that quadratic forms can in
theory be classified by a filtrated sequence of natural invariants taking values in
Galois cohomology groups over the base field.

Fortunately, quadratic form theory is meanwhile covered by numerous accessible
textbooks, in particular [28], [18], [13]. The material of this lecture is for example
covered by the first chapters of [28].

1.2. Involutions on central simple algebras (J.-P. Tignol). This lecture
introduces the involutions of ring theory, which are ring anti-automorphisms of
period 2. We first explore the various involutions on matrix algebras and discover
that they come in two kinds, depending on their restriction to the center. We first
approach the first kind, which consists of involutions that fix the center. Using
the fact that linear automorphisms of matrix algebras are inner, we succeed in
setting up a correspondence between these involutions and invertible matrices, so
that each involution is adjoint to an invertible matrix that is symmetric or skew-
symmetric and uniquely determined up to a central factor. Assuming that the
characteristic is different from 2, we thus obtain a distinction among involutions
of the first kind, discriminating those that are adjoint to symmetric matrices from
those that correspond to skew-symmetric matrices. The former are called orthog-
onal involutions, or involutions of orthogonal type, while the latter are known as
symplectic involutions, or involutions of symplectic type; they live only on matrices
of even degree.

We next take a more intrinsic viewpoint on our observations by substituting en-
domorphism algebras of finite-dimensional vector spaces for matrix algebras. From
this perspective we revisit the relation between involutions and matrices and give it
a new interpretation as a correspondence between involutions on endomorphism al-
gebras of a vector space and symmetric or skew-symmetric nondegenerate bilinear
forms up to scalars on the space. In this correspondence, orthogonal involutions
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correspond to symmetric forms while symplectic involutions correspond to skew-
symmetric forms. We also learn how to tell one type from the other by looking at
the dimension of the space of elements that are fixed under the involution.

A dramatic new turn in our quest comes when we realize that matrix algebras
are an instance of the more general class of central simple algebras, but that central
simple algebras are all very close relatives of matrix algebras, insofar as each of
them becomes a matrix algebra when scalars are extended to an algebraic closure of
the base field. This observation leads us to view central simple algebras as twisted
forms of matrix algebras, and to extend to central simple algebras the theory of
involutions developed so far for matrix algebras. On a central simple algebra that
is not split, i.e., which is not a matrix algebra over a field or—equivalently—an
endomorphism algebra of a vector space, the correspondence between involutions
and bilinear forms is lost, so that involutions may be thought of as adjoint to ghost
bilinear forms, which hatch only when the field of scalars is sufficiently enlarged
for the algebra to be split.

We inspect several specimen of central simple algebras, with a special emphasis
on the celebrated quaternion algebras of Hamilton’s fame and their tensor prod-
ucts, which provide an ample supply of involutions. We then embark on the project
to distinguish among central simple algebras those that carry an involution of the
first kind. In the course of our exploration, we discover the wondrous virtues of
the unfairly obscure Goldman element, which holds the key to a simple proof of
Albert’s criterion: a central simple algebra carries an involution of the first kind
if and only if its tensor product with itself is split. It is also revealed that central
simple algebras of odd degree are split when they carry an involution of the first
kind.

The lecture concludes with a discussion along similar lines of involutions of the
second kind, also known as unitary involutions, which are those that restrict to
a nontrivial automorphism of the center. On split algebras, those involutions are
adjoint to hermitian forms. We define the norm (or corestriction) of a central
simple algebra over a quadratic field extension and characterize the central simple
algebras that carry an involution of the second kind as those whose norm is split.

1.3. Hermitian forms and adjoint involutions (T. Unger). Starting with
central simple algebras, more general rings may naturally occur, for example after
scalar extension of the centre, or in the context of gauges (discussed in another lec-
ture). The goal of this lecture, therefore, is to introduce the theory of ε-hermitian
forms over general rings with involution. Most of the time we will not assume
that 2 is invertible. Instead of a Witt ring, as in quadratic form theory, there is
a Witt group, as there is in general no suitable product of forms. The elements
of this group are isometry classes of nonsingular forms modulo hyperbolic forms.
Metabolic forms will be introduced. Their classes are also zero in the Witt group.
If 2 is invertible, metabolic and hyperbolic forms are the same. To a form over
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a ring with involution we can associate an adjoint involution on a suitable endo-
morphism ring, whose Witt group is related to the Witt group of the original ring
with involution via the categorical mechanism of Morita equivalence. In the final
part of this lecture we will see how the theory applies to simple artinian rings and
division rings with involution. We will also briefly discuss isotropic, hyperbolic and
metabolic involutions on central simple algebras, cf. [6] and [9].

The main reference for this lecture is the exhaustive monograph of Knus [16].

1.4. Linear algebraic groups (A. Quéguiner-Mathieu). Starting from one of
the algebraic structures introduced in the previous talks (quadratic forms, central
simple algebras with involution, hermitian forms), one may define several groups,
such as invertible elements in the algebra, and the groups of isometries and simil-
itudes. Those groups actually are the groups of points of some algebraic groups.
Based on a detailed study of some examples, we will introduce algebraic groups,
viewed as representable functors. The main reference for this point of view is
Waterhouse [30]. We also refer to The Book of Involution [17] for a brief and
comprehensive overview, and to Milne’s reference book [21].

1.5. Galois cohomology (R. Parimala). In this lecture we define the notion
of Galois cohomology both in the abelian and nonabelian setting. We explain
how classical invariants of quadratic forms can be interpreted in terms of Ga-
lois cohomology. We also explain the Milnor Conjecture (from [22]) on higher
cohomological invariants for quadratic forms. The proof of this conjecture due
to Orlov-Vishik–Voevodsky [23] leads to a classification of quadratic forms up
to Witt equivalence by the Galois cohomology invariants. We also explain how
twisted forms of algebraic structures like quadratic forms and central simple al-
gebras, up to isomorphism, can be described by certain nonabelian cohomology
sets. We interpret invariants of hermitian forms over central simple algebras with
involution in terms of Galois cohomology.

1.6. Invariants of involutions (J.-P. Tignol). Using pfaffians of skew-symme-
tric matrices, we discover that the discriminant of a quadratic form of even dimen-
sion can be determined directly from its adjoint involution. This observation leads
to the definition of a discriminant for orthogonal involutions on central simple
algebras of even degree. Tempting the same approach for the Clifford algebra of
quadratic forms, we hit a serious obstacle because the Clifford algebra of a qua-
dratic form of even dimension changes when the form is multiplied by a scalar,
whereas orthogonal involutions correspond to quadratic forms up to scalars. How-
ever, the even Clifford algebra does not change, and we succeed in defining an
analogue of the even Clifford algebra for orthogonal involutions on central simple
algebras of even degree, following ideas of Jacobson and Tits. This approach also
leads to the definition of a discriminant for unitary involutions; in this case the
discriminant turns out to be a central simple algebra. Time permitting, we will
also make some remarks on symplectic involutions. For these there is no “classical”
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invariant, but in certain cases an invariant can be defined in a Galois cohomology
group of degree 3.

1.7. Springer’s theorem and function fields of conics (R. Parimala). Start-
ing with the classical theorem of Springer stating that a quadratic form over a field
isotropic over an odd degree extension isotropic over the base field, several ques-
tions have been raised in literature concerning behaviour of isotropy for hermitian
forms over algebras with involution. A weak Springer analogue for hermitian forms
due to Bayer–Lenstra states that hermitian forms over algebras with involution
which are hyperbolic over an odd degree base change is hyperbolic.

There are strong connections between the following two conjectures. Hermitian
Springer Conjecture: Hermitian forms over central simple algebras with involutions
of orthogonal type are isotropic if they are isotropic in an odd degree base change.
Generic Isotropicy Conjecture: Hermitian forms over central simple algebras with
orthogonal involution which are isotropic over the function field of the Severi-
Brauer variety of the algebra is already isotropic.

Recently Karpenko showed in [15] that these two conjectures are equivalent.
Nevertheless, the Hermitian Springer Conjecture is wide open except in the case
of hermitian forms over quaternion algebras with orthogonal involutions, where
it was proven in [24]. We explain a result on excellence for hermitian forms over
divison algebras with involution with respect to conic function field extensions
and deduce the hermitian Springer conjecture in the case of hermitian forms over
quaternion algebras with orthogonal involutions.

See also [10] for an overview of the results and problems discussed here.

1.8. Classification of linear algebraic groups (A. Quéguiner-Mathieu).
Semi-simple algebraic groups can be classified in terms of a combinatorial data,
called a root data. They split into two families : exceptional and classical groups.
In the 60’s, André Weil proved that all classical adjoint groups can be described in
terms of some algebra with involution, providing some additional motivation for
studying these algebraic structures. In this talk, we will introduce root systems and
Dynkin diagrams, and sketch the proof of Weil’s theorem. We will also explain the
dictionnary between types of involutions and types of groups. The main reference
for root systems is [11]; a description of root systems and their diagrams is provided
in [17, §24]; see also [21, Appendix C] for a comprehensive survey.

1.9. Totally decomposable algebras with involution (K.J. Becher). Pfister
forms are the quadratic forms which are obtained as tensor products of binary
quadratic forms. Tensor products of quaternion algebras with involution are an
analogue in the realm of algebras with involution. Such algebras with involution
are called totally decomposable. We will look at some examples of decomposable
involutions in small degrees and characterise when an involution of the first kind
on a biquaternion algebra is decomposable.
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The link between the two concepts was pointed out in [5], and it was thoroughly
studied there for orthogonal involutions in degree 8, where it is related to the phe-
nomenon of triality. A crucial property of Pfister forms is that they are anisotropic
or hyperbolic over any field extension. The same holds for totally decomposable
involutions. In this lecture we will see the main steps of the proof of this statement
in the case of orthogonal involutions in characteristic different from 2, which was
given in [7].

A main ingredient is the analysis of the situation when an involution becomes
hyperbolic over a generic splitting field of the underlying algebra. For orthogonal
involutions, Karpenko proved in [14] that this cannot happen unless the involution
is already hyperbolic. For algebras of index two this result is more elementary and
was obtained by I. Dejaiffe [12] and by Parimala-Shridharan-Suresh [24]. This spe-
cial case is crucial in the proof that totally decomposable algebras with orthogonal
involution in the split case are adjoint to Pfister forms.

This statement on totally decomposable algebras with involution is related to a
(meanwhile proven) conjecture by D. Shapiro, which characterises Pfister forms by
the existence of a composition formula with another quadratic form of a particular
dimension. See [27].

1.10. The real theory of forms and involutions (T. Unger). In this lecture
we will give an introduction to ordered and (formally) real fields, and to quadratic
forms over such fields we associate a natural invariant: the signature (see [18], for
example). We will discuss how signatures can be defined for involutions on central
simple algebras, via trace forms [19, 25], and for hermitian forms over algebras
with involution, via Morita equivalence, [4], [1], [2]. We will also discuss the
characterization of weakly hyperbolic forms and involutions via signatures (Pfister’s
local-global principle) [20, 8], and, time permitting, some other applications.

1.11. Exceptional isomorphisms and triality (A. Quéguiner-Mathieu).
Algebras with involution of small degree play a specific role in the theory. Indeed,
their automorphism groups are algebraic groups of small rank, which have specific
properties. Two examples will be studied in this talk. Exceptional isomorphims
come from the fact that some low degree Dynkin diagrams of different types co-
incide. Triality is related to the specific symmetries of the Dynkin diagram of
type D4. In both cases, we may derive from this that the Clifford algebra of a
an algebra with orthogonal involution is a classifying invariant in some low de-
gree cases. Some consequences will be studied, such as decomposability theorems
for algebras with involution. We will also prove, using triality, that there exists
non isomorphic involutions that become isomorphic after generic splitting of the
underlying central simple algebra.

1.12. Serre’s Conjecture II (R. Parimala). We define the notion of cohomo-
logical dimension of a field and state Conjecture II due to Serre ([29]) concerning
the triviality of principal homogeneous spaces under semisimple simply connected
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linear algebraic groups over perfect fields of cohomological dimension at most 2.
We explain an approach taken in [3] to proving this conjecture for classical groups
via classification of hermitian forms by invariants in Galois cohomology and then
dealing with the principal homogeneous spaces arising from the center through
certain norm surjectivity results. Of fundamental importance to this approach is
the result of Merkurjev–Suslin solving the conjecture for SL(A), where A is a cen-
tral simple algebra over the given field. Triviality of principal homogeneous spaces
in this case is equivalent to reduced norm surjectivity. Conjecture II is open in
general for groups of types trialitarian D4, E6, E7 and E8.

1.13. Valuation theoretic methods (J.-P. Tignol). Valuation theory is an
important tool in the analysis of quadratic forms, which is often indispensable
to prove anisotropy. We see in this lecture how the scope of this tool can be
expanded to apply to noncommutative structures, in particular to division algebras
and anisotropic hermitian spaces, yielding residue algebras and forms defined over
the residue field. The leading motivation is a recent construction in [26] of a
central simple algebra of degree 16 with an orthogonal involution that is not totally
decomposable, even though it is totally decomposable after scalar extension to a
generic splitting field of the underlying algebra. This example defeats the hope
to characterize totally decomposable orthogonal involutions of degree 16 by the
vanishing of a cohomological invariant of degree 3.

2. Special lectures

2.1. Totally decomposable quadratic pairs (A. Dolphin). Given its inti-
mate connection to the theory of quadratic forms, it is not surprising that the
theory of algebras with involution is somewhat unusual over fields of characteris-
tic 2. Involutions on split algebras correspond to symmetric bilinear forms, and
these are not equivalent to quadratic forms over such fields. Therefore involutions
are not the correct object to use if one wishes to extend the theory of quadratic
forms to the setting of central simple algebras in order to, for instance, study
twisted orthogonal groups in characteristic 2.

Instead, quadratic pairs, introduced in the Book of Involutions, must be used.
These pairs correspond to quadratic forms in an analogous manner to the corre-
spondence between involutions and symmetric bilinear forms. That is, a quadratic
pair on a split central simple algebra is adjoint to some quadratic form, unique up
to similarity.

In this talk, we give an introduction to quadratic pairs. In particular we will see
what the correct notion of a totally decomposable quadratic pair is, and see how
they correspond to quadratic Pfister forms. We shall also discuss the interaction
between totally decomposable quadratic pairs and involutions of both orthogonal
and symplectic type.



8 ALGAR 2019: ALGEBRAS WITH INVOLUTION

2.2. Mixed Witt ring of an algebra with involution (N. Garrel). The lack
of ring structure on the Witt group of hermitian forms over an algebra with involu-
tion makes it difficult to adapt many methods from the theory of quadratic forms,
where the Witt ring is a central tool. We present a construction of a “mixed” Witt
ring, in which the product of two hermitian forms is a quadratic form, involving
trace forms in a crucial way. Furthermore, as is the case for quadratic forms, we
can define lambda-operations on a related mixed Grothendieck-Witt ring. We will
examine how these new algebraic structures allow to define new invariants, and
interpret previously known ones in a more natural setting.
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