

Femoroacetabular impingement

Sebastiaan Naessens

Case

- A high level ballet dancer walks into the practice. J.H. is 18 years old and normally trains 5 days/week and some weeks she has to perform during the weekends. She has been doing ballet since she was 6, but hasn't had any major injuries yet.
- Since a few years, J.H. had the feeling that her right hip was more stiffened in comparison with her left side. In addition, she always had the feeling her right leg was more instable than her left. Six months ago, she started to feel a dull, aching feeling in het right lateral thigh when doing certain movements during ballet. She remembers it started while doing a lot of split leaps during training for a show.

Case

Although it was painful in her thigh, she didn't pay a lot of attention to it and just pursued dancing and doing her normal daily life activity. During a performance 1 month ago, she felt a sudden 'pop' in her hip and could no longer move normally afterwards due to stinging pain in her groin while standing on the affected leg. She describes it as having a knife stabbed in her groin. The days following the trauma she also had pain in rest and during the night. That's why she went to see her general practitioner, who prescribed ibuprofen (3X daily, 600mg) for 4 weeks and advised her to temporary quit her sports. After these 4 weeks of rest, she could start her rehabilitation process guided by a physiotherapist. The GP referred her to you with the diagnosis: pubalgia.

Case

Status praesens: Now, four weeks later, J.H. has no more pain in rest, but still has a lot of pain in her lateral thigh during certain movements. What typically provokes her pain is sitting on a chair with her legs crossed and squatting deeply for f.e. tying her shoes. Although it is still present, the pain in her groin is already feeling better, although some movements still provoke a painful click.

Hip pain in young athletes

Very frequent

Hip pain => first exclude extra-articular causes

- Pathology around the hip joint
 - Adductors, Tensor fascia lata, Gluteus medius tendinopathy (cfr. rotator cuff pathology), Piriformis syndrome, Trochanter bursitis

Reffered pain

- Sacro Iliacal Joint
- Lumbar spine
- pelvis
- Tumors
- Vascular disease
- ••••

Articular hip pain

In young athletes: articular hip pain is often the result of...

Femoro acetabular impingement syndrome (FAI syndrome)

FAI: types

Cam

Stulberg (1975):

- Abnormal ratio between femoral head and neck
- Pistol deformity
- Bump

Cam measurement

- Alpha-angle
- Head-neck offset

Consequences of Cam type FAI

- The diameter of the femoral head increases with flexion
- Bump or larger diameter causes pressure on the chondrolabral junction and on the rim

Consequences of Cam type FAI

Consequences of Cam type FAI

- Cartilage detaches from acetabulum
- Labrum separates from chondrolabral junction
- Hernia pits on femoral neck
- >men

- => early hip OA & risk of hip replacement
- => screening of young athletes on reduced hip flexion/rotation?

Pincer

- acetabular overcoverage
- > women

Pincer measurement

Cross-over sign:

Anterior rim of the acetabulum projecting more laterally than the posterior rim, but correcting more distally with more medial projection

Center-edge angle

Pincer measurement

• Cross-over sign:

Anterior rim of the acetabulum projecting more laterally than the posterior rim, but correcting more distally with more medial projection

Pincer FAI

Consequences of pincer

Consequences of pincer

Consequences of pincer

Ruptured labrum \rightarrow loss of suction force \rightarrow micro-instability?

Causes of FAI

- Strong indicators that a FAI occur during growth in adolesence
- Deviations from the growth disc of the femoral head
- Repeated microtraumata result in damage to the growth plate (flexion – rotation movements)

Causes of FAI

Abnormal loading on growth plate

Antwerpen

"This nonew suggests that adolescent males participating in ice-hockey, basketball and soccer, training at least three times a week, are at greater risk than their non-athletic counterparts of developing the femoral headneck deformity associated with femoroacetabular impingement.

- Deep hip flexion (+rotation)
- Sports that require extreme mobility
- After hip injuries

Link cam morphology and OA

- 4 X risk
- Large cam: 10X risk
- If combined with hip IR <20°: 18X risk</p>

Agricola et al. 2013

Warwick agreement on FAI syndrome

- 22 experts from around the world (sport medicines, orthopeadic surgeons, physiotherapists, radiologists...)
- Concensus agreement
- British Journal of Sports Medicine, 2016

Warwick agreement on FAI syndrome

Symptoms: history taking

- Subjective hip stiffness before pain
- Lack of confidence, instabile feeling, giving way
- Sharp, stabbing, stinging pain
- Localisation: C-sign (>women), groin
- Acute pain associated with intense training in flexion (squats, lunges...)
- Catching, locking, clicking

Warwick agreement on FAI syndrome

Clinical signs: examination

Basic function testing:

Active: -activities that contain deep flexion (s.a. squatting, lunging) painful
-walking pattern: limped

-Trendelenburg test may be positive

- <u>Passive:</u> flexion and/or internal rotation: restricted and painful
- <u>Resistance:</u> in some cases weak extensors and/or abductors of the hip

Before labral/cartillage leasion: little pain, restricted movement

Clinical signs: examination

Additional tests:

FADIR-test (anterior hip impingement test): FLexion – ADduction – INternal rotation

IROP-test: internal rotation with overpressure

Very high sensitivity, very low specificity

Clinical signs: examination

FADIR-test

Clinical signs: examination

IROP-test

Warwick agreement on FAI syndrome

Cam/pincer morphology: X-ray

Labrum/cartillage:

Computed tomografy (CT-scan) Magnetic resonance imaging (MRI) → Not needed for diagnosis (Warwick)

BEWARE!

Number of positive findings in asymptomatic persons is extremely high!

Systematic Review

Prevalence of Femoroacetabular Impingement Imaging Findings in Asymptomatic Volunteers: A Systematic Review

Jonathan M. Frank, M.D., Joshua D. Harris, M.D., Brandon J. Erickson, M.D., William Slikker III, M.D., Charles A. Bush-Joseph, M.D., Michael J. Salata, M.D., and Shane J. Nho, M.D., M.S.

Fig 2. Comparison of prevalence of femoroacetabular impingement (FAI) morphologic characteristics and labral injury between the athletic and general populations (asymptomatic).

- More training \rightarrow more risk on cam morphology
- Prevalence cam morphology (63%) semiprofessional footbalplayers higher than amateurs (27%)

Lahner et al. 2012 Tak et al. 2015

Warwick agreement on FAI syndrome

FAI syndrome conclusions

- Cam/pincer deformity \rightarrow cam/pincer morphology
- FAI \rightarrow FAI syndrome (triad)
- Symptomatic premature contact between femur and acetabulum
- Groin pain ≠ adductor injury

Warwick agreement on FAI syndrome

Nonoperative Treatment for Femoroacetabular Impingement: A Systematic Review of the Literature

Peter D.H. Wall, MBChB (Hons), MRCS (Edin), Miguel Fernandez, PhD, MBBS, MRCS, Damian R. Griffin, MA (Cantab), MPhil (Oxon), FRCS (Tr&Orth), Nadine E. Foster, DPhil, BSc (Hons)

"The review literature appears to promote initial non-operative treatment for FAI. Although the available literature with experimental data is limited, there is a suggestion that physical therapy and activity modification confer some benefit to patients."

Conservative treatment VS surgery

Nonoperative Management of Femoroacetabular Impingement

A Prospective Study

Andrew T. Pennock,*^{†‡§} MD, James D. Bomar,[†] MPH, Kristina P. Johnson,^{†‡} ATC, OPA-C, Kelly Randich,^{†‡} DPT, and Vidyadhar V. Upasani,^{†§} MD Investigation performed at Rady Children's Hospital, San Diego, California, USA

Conservative treatment VS surgery

Conservative treatment VS surgery

	Modified Harris Hip Score			Nonarthritic Hip Score		
	Initial	Most Recent	P Value	Initial	Most Recent	P Value
Treatment						
Activity modification	69.9 ± 13.9	90.0 ± 11.8	<.001	74.1 ± 16.3	87.1 ± 14.3	<.001
Injection	68.3 ± 12.2	90.0 ± 10.2	.003	72.8 ± 13.7	86.3 ± 10.4	.011
Arthroscopic surgery	68.4 ± 9.4	89.0 ± 9.9	.013	72.8 ± 10.8	86.7 ± 13.1	.052
P value	.888	.582		.81	.463	
FAI						
Cam	68.8 ± 11.2	90.3 ± 10.5	<.001	71.5 ± 17.4	86.9 ± 13.5	< .001
Pincer	73.1 ± 11.0	86.1 ± 13.3	.002	76.8 ± 13.2	84.6 ± 15.0	.008
Combined	66.8 ± 15.6	92.8 ± 9.1	<.001	72.8 ± 14.8	89.1 ± 12.2	.003
P value	.158	.276		.434	.568	

 $\begin{array}{c} {\rm TABLE\ 2}\\ {\rm Initial\ and\ Most\ Recent\ Patient-Derived\ Outcome\ Measures}^{a} \end{array}$

^aValues are presented as mean \pm SD. FAI, femoroacetabular impingement.

A Prospective, Randomized, Controlled Trial Comparing Conservative Treatment With Trunk Stabilization Exercise to Standard Hip Muscle Exercise for Treating Femoroacetabular Impingement: A Pilot Study

Michihisa Aoyama, PT,* Yasuo Ohnishi, MD, PhD,† Hajime Utsunomiya, MD, PhD,† Shiho Kanezaki, MD, PhD,† Hiroki Takeuchi, PT,* Makoto Watanuki, MD, PhD,* Dean K. Matsuda, MD,‡ and Soshi Uchida, MD, PhD†

TABLE 1. Rehabilitation Protocol for the Trunk Training Group and the Control Group						
		Control Group	Trunk Training Group			
General exercise		(1) Hip abduction exercise, 15 times $ imes$ 5 set	(1) Hip abduction exercise, 15 times $ imes$ 1 set			
		(2) Buttock elevation exercise, 20 times $ imes$ 5 set	(2) Buttock elevation exercise, 20 times $ imes$ 3 set			
		(3) Pelvis tilting exercise, 10 times $ imes$ 3 set	(3) Pelvis tilting exercise, 10 times $ imes$ 2 set			
Trunk stabilization exercise			(4) Plank, 30 s $ imes$ 5 set			
			(5) Bird dog, 20 times $ imes$ 3 set			

Significantly different improvements in:

- Strength hip flexors
- Strength hip abductors
- Hip flexion ROM
- Patient-reported outcome score

Figure 4. Patient-reported outcome score Vail hip score at preintervention and 4 weeks and 8 weeks after the intervention Error bur: standard deviation. Two-way analysis of variance and Bonferroni post hoc test, **P < 0.01, *P < 0.05.

Figure 5. Patient-reported outcome score modified Harris hip score at preintervention and 4 weeks and 8 weeks after the intervention. Error bur: standard deviation. Two-way analysis of variance and Bonferroni post hoc test, **P < 0.01.

Universiteit Antwerpen

"The addition of trunk stabilization exercises to a typical hip rehabilitation protocol improves short-term clinical outcomes and may augment nonoperative and postoperative rehabilitation."

Knee Surg Sports Traumatol Arthrosc (2014) 22:750–755 DOI 10.1007/s00167-014-2862-3

HIP

Limited therapeutic benefits of intra-articular cortisone injection for patients with femoro-acetabular impingement and labral tear

Aaron J. Krych · Timothy B. Griffith · Joshua L. Hudgens · Scott A. Kuzma · Rafael J. Sierra · Bruce A. Levy

"In patients with symptomatic FAI and labral tear, intra-articular cortisone injection has limited clinical benefit as a therapeutic modality. Average duration of pain relief was 9,8 days."

Journal of Science and Medicine in Sport 19 (2016) 716-721

Original research

Non-operative management of femoroacetabular impingement: A prospective, randomized controlled clinical trial pilot study

Alexis A. Wright^{a,*}, Eric J. Hegedus^a, Jeffrey B. Taylor^a, Steven L. Dischiavi^a, Allston J. Stubbs^b

^a Department of Physical Therapy, High Point University, High Point, NC 27268, USA ^b Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA

Universiteit Antwerpen

"In this small pilot study, supervised manual therapy and exercise did not result in greater improvement in pain or function compared to advice and home exercise in patients with symptomatic femoroacetabular impingement."

Acute phase:

- Education
- Relative rest
- Avoid long term sitting, crossing legs, pivoting, deep squats...
- Simple analgetics

Subacute phase:

- Strengthening exercises of the hip (proximal stabilisation)
- Strengthening of the core muscles (core stabilisation)
- Sportspecific exercises (increase ability to load)
- → Home exercise program!

Warwick agreement on FAI syndrome

Surgery

Purpose:

- Primum non nocere
- Treat instabile injuries
- Optimize morphology
- Get the patient pain free
- Avoid progression in the future

Surgery

Different techniques:

- Open surgery
- Arthroscopic surgery

Arthroscopic approach

Acetabular:

Labral resection/repair/replacement (rimtrimming (acetabuloplasty))

Femoral:

Reconstruction of sphericity /offset

Rimtrimming

Reconstruction of normal morphology of the hip neck

Conclusion on arthroscopic approach

- Impingement treatment consists of :
 - Treat the injury
 - Treat the conflict
- Hiparthroscopy is safe
- The earlier the intervention, the better the effect

Warwick agreement on FAI syndrome

Post-arthroscopy policy

Basic rules:

- Weight bearing: in dialogue with surgeon
- Active assistive mobilisation: early, but no extremes
- Strengthening: early, but carefull with iliopsoas (cave: tendinopathy)

Post-arthroscopy policy

Different guidelines!

Mostly 4 phases

- Phase 1 (3-6w): protective phase
- Phase 2 (4-6w): proprioception
- Phase 3 (10-12w): hip stability
- Phase 4 (+12w): return to sport
- Competitive level: 6 months!

Conclusions post-surgery approach

All depends on the severity of the condition and on the extent of arthroscopic intervention

Slow recovery !

Warwick agreement on FAI syndrome

Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHION): a multicentre randomised controlled trial

Damian R Griffin, Edward J Dickenson, Peter D H Wall, Felix Achana, Jenny L Donovan, James Griffin, Rachel Hobson, Charles E Hutchinson, Marcus Jepson, Nick R Parsons, Stavros Petrou, Alba Realpe, Joanna Smith, Nadine E Foster, on behalf of the UK FASHION Study Group*

- 348 participants
 - 171 arthroscopy
 - 177 personalised hip therapy

	Hip arthroscopy (n=171)		Personalised hip therapy (n=177)		Unadjusted difference	Adjusted difference (95% CI)	p value
	Mean (SD)	n	Mean (SD)	n			
iHOT-33							
6 months	46.6 (25)	161	45.6 (23)	154	1.0	-0.7 (-5.2 to 3.7)	0.743
12 months*	58-8 (27)	158	49.7 (25)	163	9.1	6.8 (1.7 to 12.0)	0.0093
EQ-5D-5L (utility)							
6 months	0•544 (0•26)	144	0.573 (0.23)	147	-0.029	-0.042 (-0.088 to 0.005)	0.081
12 months	0.615 (0.25)	152	0.578 (0.24)	147	0.037	0.020 (-0.027 to 0.067)	0.397
EQ-5D VAS							
6 months	67.8 (19.3)	145	70-3 (19-3)	145	-2.5	-2·1 (-5·7 to 1·4)	0.241
12 months	71.9 (20.7)	150	69.2 (19.4)	145	2.7	2.6 (-1.2 to 6.4)	0.180
SF-12 PCS							
6 months	43.4 (7.0)	146	44.2 (6.6)	142	-0.8	-0.7 (-2.1 to 0.7)	0.304
12 months	45.1 (6.3)	145	44.2 (6.4)	132	1.0	1·1 (-0·2 to 2·5)	0.099
SF-12 MCS							
6 months	42·1 (7·3)	146	42·1 (7·2)	142	-0.1	-0·1 (-1·5 to 1·3)	0.929
12 months	43-2 (7-1)	145	42.6 (6.9)	132	0.6	0·4 (-1·2 to 2·0)	0.589
iHOT-33=International Hip Outcome Tool. VAS=visual analogue score. PCS=physical component score. MCS=mental							

component score. *Primary outcome.

Table 2: Patient-reported outcome measures

Figure 2: Changes in mean iHOT-33 score from baseline to 6 and 12 months after randomisation

Error bars are 95% Cls. iHOT-33=International Hip Outcome Tool.

