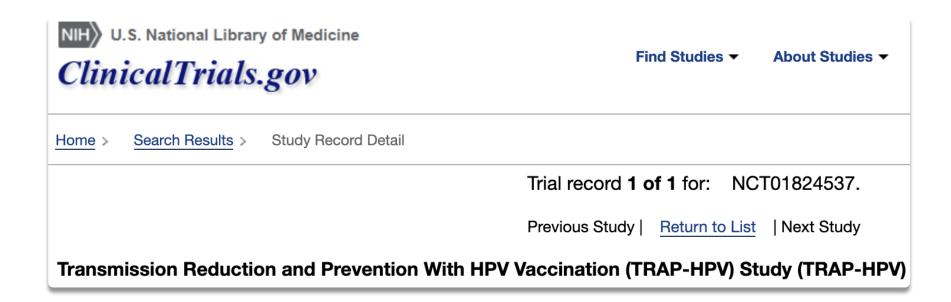


Transmission Reduction and Prevention with HPV Vaccination


AARON MACCOSHAM, MARIAM EL-ZEIN, ANN N. BURCHELL, PIERRE-PAUL TELLIER, FRANÇOIS COUTLÉE, EDUARDO L. FRANCO

### Couple-based studies

- ► HPV transmission investigated in longitudinal couple-based studies
- Recently formed relationships: optimal for examining transmission dynamics
- ▶ HITCH: only HPV couple-based transmission study to target recently formed couples
  - Vaccination → transmission reduction (Wissing, Cancer Epidemiol Biomarkers Prev, 2019)
- No RCTs on the reduction of HPV transmission in couple-based studies

#### TRAP-HPV

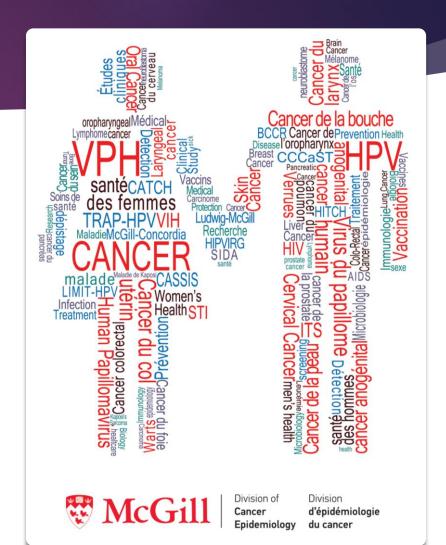
▶ **Objective:** To determine the efficacy of an HPV vaccine in reducing transmission of genital and oral HPV infection to sexually active heterosexual partners of HPV vaccinated individuals.



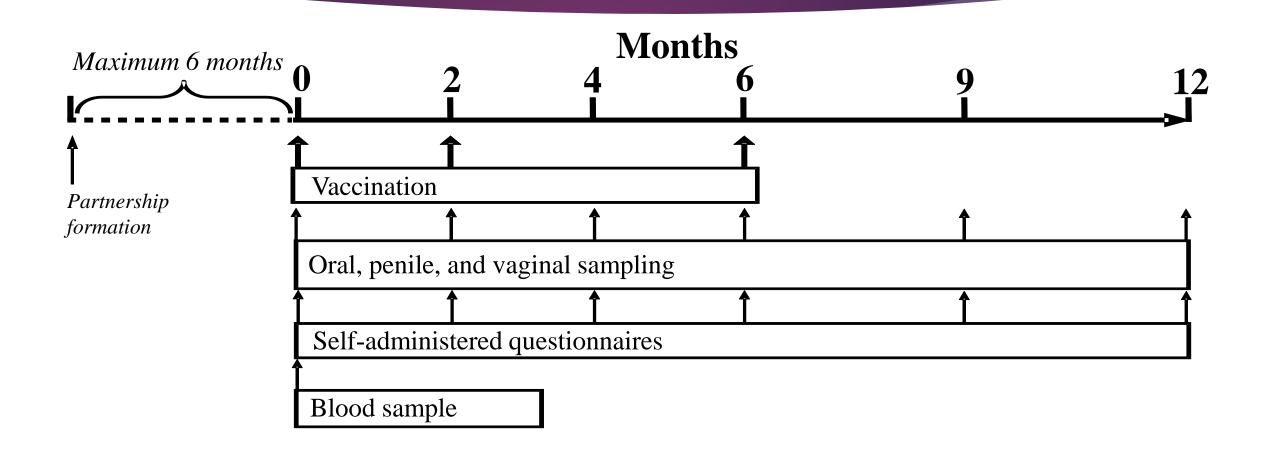
# 2x2 Factorial Design

|                          | Male (M) vaccination          |                             |
|--------------------------|-------------------------------|-----------------------------|
| Female (F) vaccination   | HPV<br>(Gardasil 9: T)        | Placebo<br>(Hepatitis A: P) |
| HPV (Gardasil 9: T)      | $M^TF^T$                      | $M^PF^T$                    |
| Placebo (Hepatitis A: P) | M <sup>T</sup> F <sup>P</sup> | MPFP                        |

### Sample size


- ▶ 500 couples needed
- Based on Bernstein and Lagakos approach (Bernstein, J Clin Microbiol, 2006)
  - ▶ 90% power
  - ▶ type one error: 0.05
  - one-sided hypothesis for reductions: 40% rate of transmission
  - assuming cumulative 16% loss to follow-up at month 12
    - ▶ attrition rate: 2.7% per-visit

## Eligibility criteria


- Volunteer couples must:
  - (1) not have been vaccinated with the intervention vaccine.
  - (2) plan on remaining in Montreal for at least 1 year.
  - (3) be in a new relationship that started no more than six months prior to study entry.
  - (4) plan on having continued sexual contact with partner.
  - (5) be between 18-45 years old.
  - (6) have no history of cervical, penile, oral or anal cancers.
  - (7) be willing to comply with study procedures.

### Recruitment

- Ongoing since January 2014
- Recruitment strategies:
  - posters
  - e-mails to student lists
  - promotional videos
  - online classified advertising services
  - word-of-mouth
- Untraditional approach: potential participants answer pre-eligibility survey



# Time points



### HPV Testing

- Master Pure extraction kit (Epicenter, Madison, Wisconsin) (Habis, Cancer Epidemiol Biomarkers Prev, 2004)
- Linear Array HPV Genotyping Test (Roche Molecular Systems, Indianapolis, Indiana) (Coutlée, J Clin Microbiol, 2006)
  - Detects 36 HPV types
    - ▶ 6, 11, 16, 18, 26, 31, 33-35, 39, 40, 42, 44, 45, 51-54, 56, 58, 59, 61, 62, 66-73, 81-84, and 89
  - ▶ PGMY09/11 consensus primer system targets L1 gene

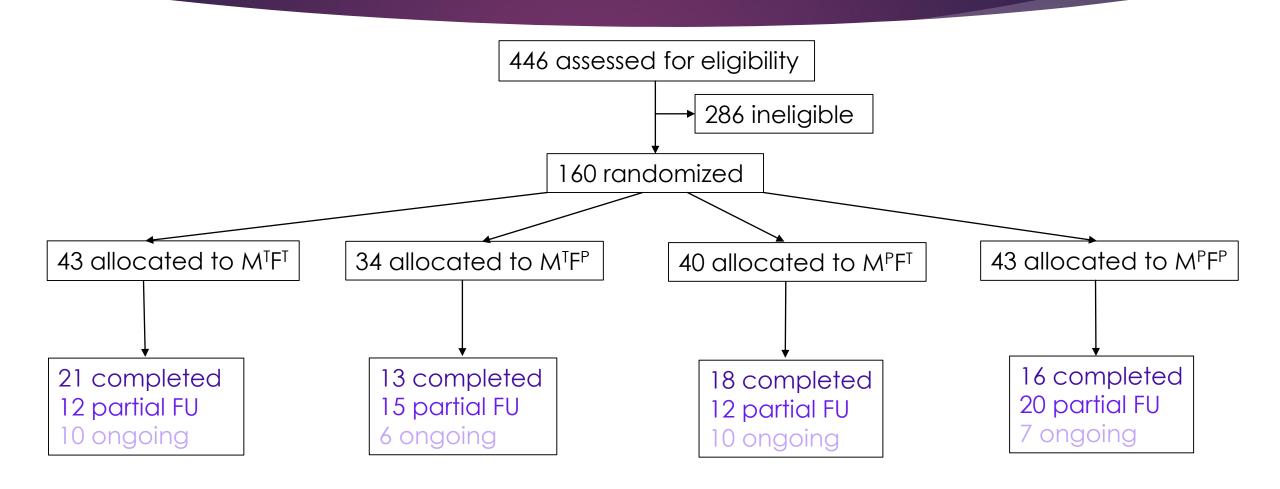
#### Outcomes

- Reduction of HPV infections with target HPV vaccine types in multiple anatomic sites in Avaxim-administered sexual partners of HPV vaccinated individuals
- Reduction in HPV type concordance, evaluable as per these group contrasts

|                        | Male (M) vaccination          |                               |
|------------------------|-------------------------------|-------------------------------|
| Female (F) vaccination | HPV<br>(Gardasil 9: T)        | Placebo<br>(Avaxim: P)        |
| HPV (Gardasil 9: T)    | M <sup>T</sup> F <sup>T</sup> | M <sup>P</sup> F <sup>T</sup> |
| Placebo (Avaxim: P)    | M <sup>T</sup> F <sup>P</sup> | M <sup>P</sup> F <sup>P</sup> |

## Statistical analysis

- Advanced regression methods
- Kaplan-Meier: plot the cumulative probability of HPV infection in sexual partners of vaccinated versus unvaccinated individuals against follow-up time
- ▶ Log-rank test: comparisons in HPV transmission between vaccine & control groups
- Additional cumulative risk models fitted with type-specific transmission as an outcome


### Strengths

- First RCT to investigate HPV transmission reduction via vaccination within couples
- Few couple-based studies have recruited a target sample size ≥500 couples
  - ▶ 502 (El-Zein, JMIR Res Protoc, 2019)
  - ▶ 874 (Liu, Sci Rep, 2015)
- ► TRAP-HPV could provide empirically-derived estimates for health economic models and mathematical models predicting herd immunity

### Challenges & Amendments

- Upper age limit: increased from 26 to 40 years old, and once more to 45 years old
- Compensation: increased from \$350 to \$500 per couple and further to \$1000
- Collection of anal samples discontinued
- Gardasil replaced with Gardasil 9 as intervention vaccine
- ► Havrix (GlaxoSmithKline) replaced with Avaxim (Sanofi Pasteur) as placebo vaccine

## Consort Diagram



### Acknowledgements

#### TRAP-HPV study group

- Affiliated with the Division of Cancer Epidemiology, McGill University, Montréal, Canada
  - ▶ Allita Rodrigues (study coordinator); Natalia Morykon and Raphaela Rodrigues (management of subject participation and specimen collection); Sheila Bouten and Samantha Shapiro (data management)
- Affiliated with the Département de Microbiologie Médicale et Infectiologie, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
  - Julie Guénoun (HPV testing and genotyping)
- We wish to thank
  - volunteering participants
  - employees of the TRAP-HPV Study
    - ▶ Jennifer Selinger, Maude Pastor, Abbie Chan, and Parker Tope (study promotion); Deisy Bustillo-Dominguez, Catherine Nguyen-Huy (temporary management of subject participation and specimen collection)
  - Doris Edmond (Student Health Services Clinic, Concordia University) and the staff of the Student Health Services Clinics at McGill and Concordia universities for their collaboration
  - Dr. Agnihotram V. Ramanakumar for conducting the randomization
  - ▶ Dr. Ziad Al-Khatib and Dr. Tam Dang-Tan for assisting in the preparation of the grant proposal