Impact and Effectiveness of the Quadrivalent Human Papillomavirus (qHPV) Vaccine

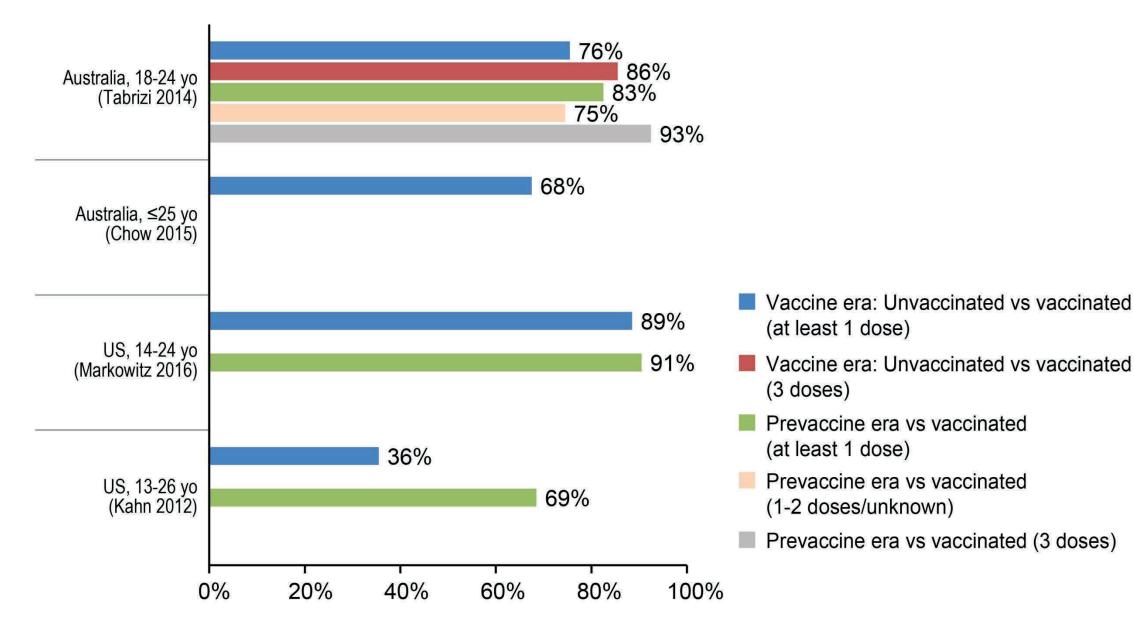
10 Years of Real-World Experience

Suzanne M. Garland^{*1}; Susanne K. Kjaer,²; Nubia Muñoz³; Stan L. Block⁴; Darron R. Brown⁵; Mark J. DiNubile⁶; Brianna R. Lindsay⁶; Barbara J. Kuter⁶; Gonzalo Perez^{6,7}; Geraldine Dominiak-Felden⁸; Alfred J. Saah⁶; Rosybel Drury⁸; Rituparna Das⁶; Christine Velicer⁶

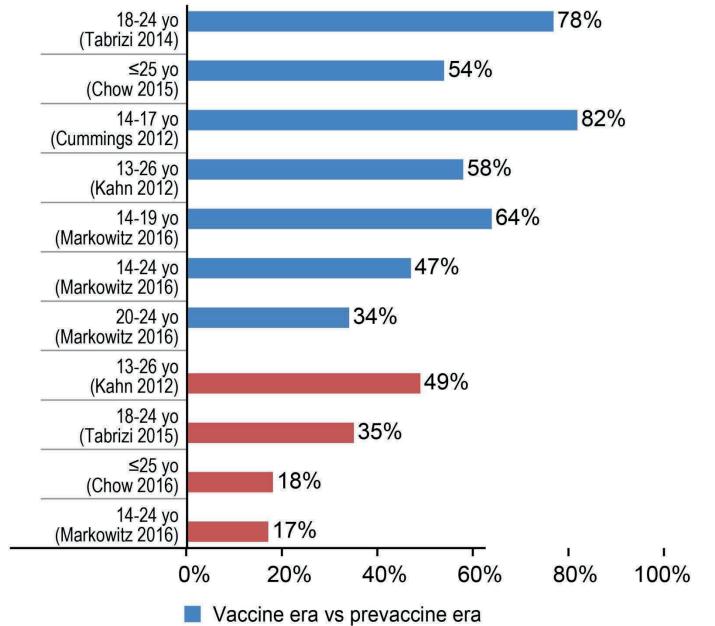
¹Royal Women's Hospital, University of Melbourne, Murdoch Children's Research Institute, Victoria, Australia;
 ²Danish Cancer Society Research Center and Department of Gynecology, Rigshospitalet, University of Copenhagen, Denmark;
 ³Colombian National Institute of Cancer, Bogota, Colombia; ⁴Kentucky Pediatric and Adult Research, Bardstown, KY, USA;
 ⁵Indiana University School of Medicine, Indianapolis, IN, USA; ⁶Merck & Co., Inc., Kenilworth, NJ, USA;
 ⁷Universidad del Rosario, Bogota, Colombia; ⁸Sanofi Pasteur MSD, Lyon, France

Results

Background

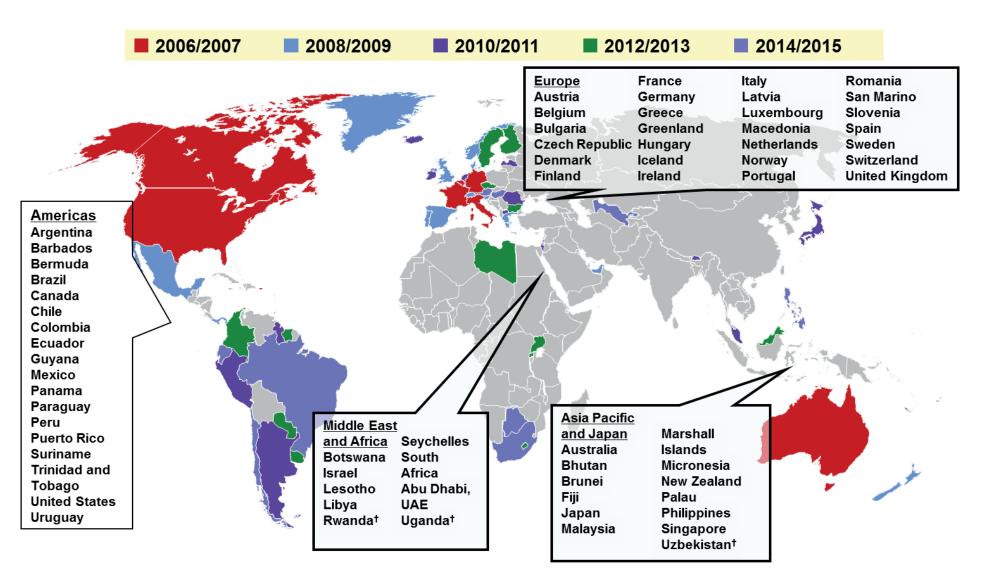

HPV genotypes

- HPV 16/18 cause 70% of cervical cancers and 80%-90% of HPV-related neoplasms at other sites
- HPV 6/11 account for 90% of anogenital warts


• HPV vaccines in widespread use

- Bivalent (2vHPV; Cervarix[®], GSK): HPV 16/18
- Quadrivalent (qHPV; Gardasil[®]/Silgard[™], Merck): HPV
 6/11/16/18
- Nonavalent (9vHPV; Gardasil[®]9, Merck): HPV
 6/11/16/18/31/33/45/52/58
- Prophylactic HPV vaccine programs constitute major

Reduction of HPV 6/11/16/18 infection in vaccinated females vs prevaccine era or contemporaneous unvaccinated females



Reduction of HPV 6/11/16/18 infection in vaccine era

worldwide public health initiatives

Countries with HPV vaccine in a national immunization program, by year

[†]Global Alliance for Vaccines and Immunisation (Gavi).

Genital warts—selected studies

Country	Reference	Setting	% Reduction
Australia (high vaccine uptake)	Chow 2015	Melbourne Sexual Health Centre, ≤7 yr after vaccine era	45% annually in females <21 yo
	Smith 2016	National hospital admissions database, ≤4 yr after vaccine era	85%-87%, 10-19 yo 62%-67%, 20-29 yo
	Donovan 2011	National surveillance, ≤2 yr after vaccine era	59%, 12-26 yo
Denmark	Bollerup 2016	National prescription registries, ≤5 yr after vaccine era	43% annually, 12-15 yo 55% annually, 16-17 yo 39% annually, 18-19 yo 21% annually, 20-21 yo 12% annually, 22-25 yo 6% annually, 26-29 yo
Sweden	Herjweijer 2016	National hospital admissions with genital warts diagnosis code, ≤4 yr after vaccine era	82%, 10-16 yo (3 vs 0 dose) 71%, 10-16 yo (2 vs 0 dose) 69%, 10-16 yo (1 vs 0 dose)
United States	Flagg 2013	Large claims database, ≤3 yr after vaccine era	No change, 10-14 yo 38%, 15-19 yo 13%, 20-24 yo

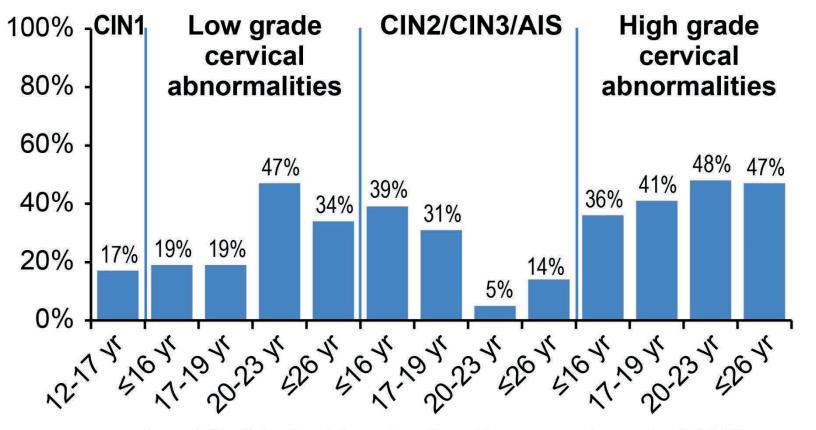
Australia: Reduction in cervical lesions in vaccinated (≥1 dose) vs contemporaneous unvaccinated screened females in Victoria

Unvaccinated (in vaccine era) vs prevaccine era

Factors Influencing Estimates of Impact/Effectiveness	Relevant Considerations	Examples of Possible Bias
Vaccination program	 % uptake/length of time Age at vaccination Catch-up cohort 	 Higher uptake → possible herd protection Older age at vaccination → more prior HPV exposure
Vaccination status	Data sourcesDose numberAge at each dose	 Registry data more accurate than self-reports Age at dose can help time vaccination relative to sexual debut
Outcome data	Data sourcesData type	Pap/histological outcome categorizationHPV typing
Study context	 Location of study Changes in sexual behaviors Availability of risk factor data 	 Secular trends can be independently associated with lower rates of lesions (not vaccination)
Cervical screening program	Changes in screeningPopulation coverageAge/interval of screening	 Increased screening over time can result in increased detection
Observational study design	 Ecological Case-control vs cohort Impact and/or effectiveness 	 Individual-level data can help confirm/inform ecological observations
Cohort selected	 Screened/total population High-risk population Convenience sample Comparison cohort Incomplete vaccination series 	 Total population includes those not screened, so no outcome data Effectiveness can be influenced if individuals with incomplete vaccination series are at higher risk of HPV exposure prior to vaccination
Statistical analysis	 Sample size Length of/lost to follow-up Adjustment factors 	 Smaller sample size → less stable Raw or adjusted prevalence ratios or relative risks

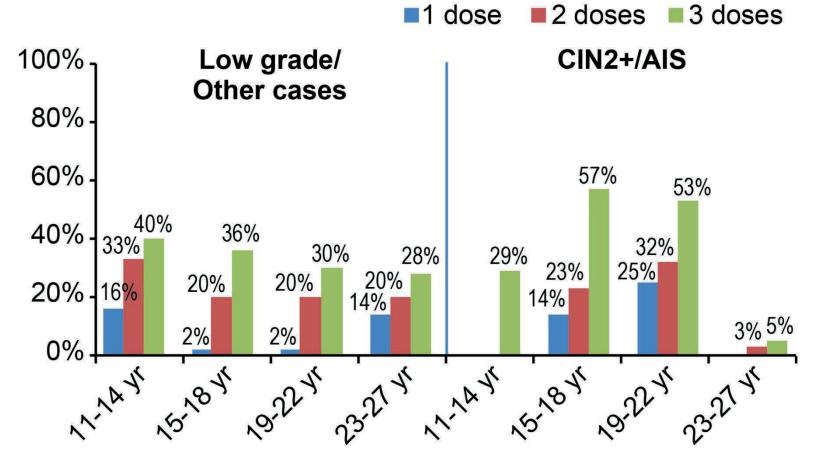
Rationale

 Although high efficacy against multiple endpoints was consistently observed in clinical trials, it is essential to document how trial results translate to real-world settings


• Aim

To assess the global real-world effect of the qHPV vaccine containing HPV types 6/11/16/18 over its first decade of use

Methods


- PubMed and Embase were searched for peer-reviewed manuscripts in any language published after 1 January 2007, using prespecified search terms
- Observational studies of effectiveness or impact of qHPV vaccination on HPV infection or disease were considered for inclusion
- Studies exclusively of the 2vHPV vaccine, review articles, and clinical trial reports were excluded
- The heterogeneity of study designs and individual circumstances surrounding each study precluded summary estimates

Study Design and Outcomes

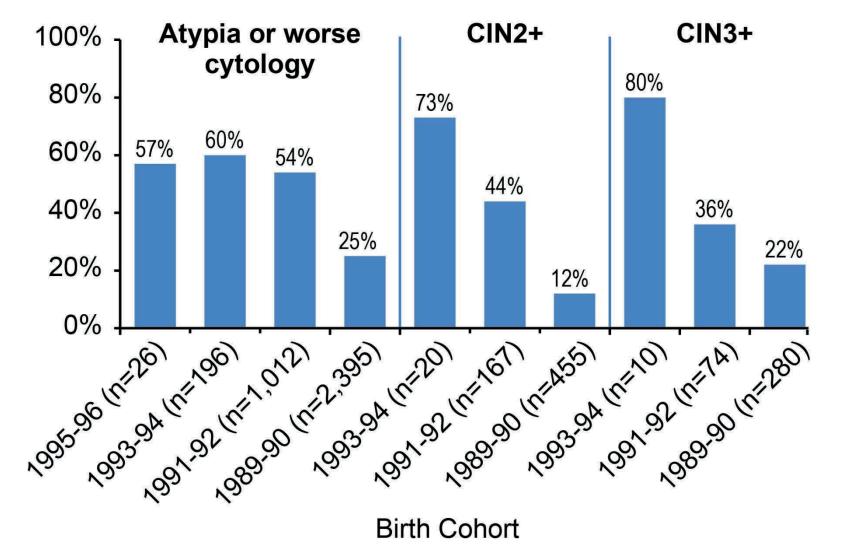
Age-Eligible for Vaccination Program (age in 2007)

Australia: Reduction in cervical lesions in vaccinated vs contemporaneous unvaccinated screened females in Queensland

Age-Eligible for Vaccination Program (age in 2007)

Summary

- HPV vaccination programs constitute major public health initiatives worldwide
- This systematic review assessed the global impact and effectiveness of the qHPV-vaccine on HPV infection and disease in real-world settings over its first decade of use
- Substantial reductions were seen in qHPV-vaccine recipients HPV 6/11/16/18—attributable infections and resultant diseases with the shortest incubation periods
 - Genital warts
 - Cervical cytological and histological abnormalities


Conclusions

- Over the last decade, the impact of HPV vaccination in real-world settings has become increasingly evident
 - Especially where broad coverage prior to sexual debut is achieved
- Despite high vaccine effectiveness, the full public health impact of HPV vaccination is unfortunately far from being realized
- Preventable HPV-related diseases continue to present major challenges to the public health in both developing and developed nations

Systematic review

- To comprehensively synthesize available real-world data to quantify the effectiveness and impact of qHPV vaccination on HPV infection, anogenital warts, and cervical cytological/histological abnormalities
- Vaccine effectiveness: Proportion of infection or disease prevented by vaccination
- Estimated by comparing incidence in vaccinated versus unvaccinated individuals within similar populations
- Vaccine impact: Population-prevented fraction of infection or disease
- Assessed by comparing vaccine vs prevaccine era

Denmark: Vaccine impact on cervical lesions by birth cohort

n=number of women with lesion in each age group, vaccinated and unvaccinated included.

Disclosures

- Merck manufactures the quadrivalent and nonavalent HPV vaccines under the brand names of Gardasil or Silgard and Gardasil-9, respectively
- The literature extraction was jointly sponsored and supported by Sanofi Pasteur MSD (Lyon, France) and Merck & Co., Inc. (Kenilworth, NJ, USA)
 - The systematic review was designed, managed, and analyzed jointly by the sponsors and invited external experts in the field
- SMG has been awarded grant funding through her institution for HPV-vaccine studies from Merck and GlaxoSmithKline, and received consultant fees and lecture honoraria from Merck

Acknowledgements

 The authors thank Sally Jackson, MSc; Marc Baay, PhD; and Thomas Verstraeten, MD, MSc, of P95 (a healthcare research company specializing in pharmaco-epidemiology) for their assistance with the literature search and data extraction required for our systematic review

Reference

 Garland SM, et al. Impact and effectiveness of the quadrivalent human papillomavirus vaccine: a systematic review of ten years of real-world experience. *Clin Infect Dis.* 2016; DOI: 10.1093/cid/ciw354.

http://tinyurl.com/hr63vle

Copyright © 2017 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc. Kenilworth, NJ, USA. All rights reserved.