

Barrriers in HPV vaccination & cervical screening programmes Antwerp, Belgium, 27-28 June 2016

International Agency for Research on Cancer Lyon, France

"Cancer research for cancer prevention"

lacopo Baussano

Outline

- Mathematical models of HPV transmission
 - HPV transmission
 - HPV progression (not presented)
- Epidemiological modeling (projections & empirical)
 - Impact of catch-up in High-income countries
 - Impact of catch-up in Middle/Low-income countries
- Effect of Herd Immunity
 - HPV prevalence heterogeneity across populations

- HPV prevalence heterogeneity within populations

HPV transmission model

Catch-up in Sweden: faster & resilient

Coverage: routine, 70%; catch-up, 50%; extended catch-up, 70% *Reduction attributable to vaccination, among 15-34 year-old women

Coverage: routine, 70%; catch-up, 50%; extended catch-up, 70% *Reduction attributable to vaccination, among 15-34 year-old women

Evidence of Early Impact: Catch-up

orld Health

- Chlamydia screening in Sweden
 - Genital swabs or urine samples; PCR with genotyping.
 - Most samples were from women 18 to 23 years of age.
 - Vaccination coverage available for each birth cohort.
 - HPV6/11/16/18 prevalence decline, only among women below 23 years of (high vaccination coverage)

Monitoring HPV vaccination in Rwanda

• Surveys.

<u>*Cytology*</u>: general population, n. 2,508, aged 18– 69, 20% HIV positive.

<u>Urine</u>: school-based, n. 912, aged 17-22

Rwanda, 2011 (Gardasil; MoH MSD)

Cumulative human papillomavirus vaccination coverage, by vaccination round

Prevalence

- Any HPV =34%
- HR-HPV =22%
- HPV16/18 =7 %

International Agency for Research on Cancer

Urine survey: effect of vaccination

Choice of test for HPV prevalence monitoring from urine sensitivity versus specificity

Vaccinated	N	HPV6/11/16/18-pos	Adjusted ¹ PR (95% CI)
Bhutan			
GP5+/6+	973		
No	77	2 (2.6)	1
Yes	896	6 (0.7)	0.32 (0.06-1.64)
E7-MPG (IARC)	973		
No	77	1 (1.3)	1
Yes	896	11 (1.2)	0.86 (0.11-6.77)
Rwanda			
GP5+/6+	912		
No	519	21 (4.1)	1
Yes	393	2 (0.5)	0.12 (0.03-0.51)
E7-MPG (IARC)	912		
No	519	33 (6.4)	1
Yes	393	11 (2.8)	0.45 (0.23-0.90)

¹Adjusted for age and sexual behavior

HPV Prevalence* heterogeneity

Mostly attributable to different sexual activity patterns (i.e. ≠ incidence)

HPV prevalence across populations

- HPV control thresholds
 - Same vaccination coverage are likely to meet ≠ prevalence reduction targets according to the prevaccination prevalence.
 - Crucial difference with most vaccinepreventable infections, elimination threshold (p_c) assumed as constant across populations.

```
− HPV R<sub>0</sub> range ~1.8 to 5.0 \rightarrow P<sub>c</sub>= to 45% to 80%
```

- Assuming same vaccination coverage & efficacy
 - ≠ HPV16 prevalence (i.e. 1% vs. 5%).
 - Women \leq 35 years of age.
 - For any level of coverage impact of vaccination is larger in population 1% prevalence.
 - Same direct effect across populations, different herd immunity effect
 - Larger HI in populations with lower prev.

HPV prevalence within populations

- Implications to project the impact of HPV vaccination against types other than HPV16/18
 - HI estimated for HPV16 is a conservative estimate of the HI expected for other types
 - Impact of vaccination is proportional to the fraction of

International cancer attributable to each HPV

- HPV16 vs. HPV45
 - Share the transmission network
 - Prevalence determined by their ≠ biology (in particular Infection Duration)
 - − Infection duration is inversely related to R_0 → directly related to P_c

Finnish effectiveness trial

Arm A communities (n.11): 90% of participating girls and boys were assigned receive HPV-16/18 vaccine

Arm B communities (n.11): 90% of girls were assigned to receive HPV-16/18 vaccine, boys were assigned to receive hepatitis B-virus (HBV) vaccine

Arm C communities (n.11): all were assigned to receive HBV-vaccine.

Notably, sample size calculations allowed for herd immunity effect and were obtained using an HPV transmission model

International Agency for Research on Cancer

Lehtinen M. et al, Vaccine 2015

HPV vaccination in Finland

Lehtinen M. et al, Vaccine 2015

Conclusions – Future developments

- Catch-up
 - Accelerate direct protection against HPV (and consequently cervical cancer) among cohort of sexually active women at vaccination.
 - Accelerate indirect protection against HPV (and consequently cervical cancer) among unvaccinated and sexually active women.
 - Modeling and empirical results are consistent
- Herd immunity effect
 - Is not constant across populations and HPV types
 - Is directly dependent from HPV prevalence in absence of vaccination
 - Populations with different HPV prevalence need different coverage to reach the same HPV control threshold
 - In the same population vaccination coverage may generate ≠ HI vs. ≠ HPV types

– Finnish trial will provide empirical data to test the model-based findings

Acknowledgments

IARC

- Infection and Cancer section
- Cancer Surveillance section

University of Antwerp, Vaccine and Infectious Disease Institute

- P. Van Damme /A. Vorsters

VU University Medical, Amsterdam.

- PJF Snijders / CJLM Meijer

Karolinska Institutet/Universty of

World Health Organiz Joakim Dillner / Miriam Elfström

ICO - Barcelona

BILL&MELI

Mireia Diaz Sanchis Xavier F. Bosch

MoH of Bhutan

MoH of Rwanda